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Abstract

We examine a dynamic, multi-period, bilateral matching market, such as a labor
market where workers are long-lived and production occurs over a period of time. We
define and identify sufficient conditions for the existence of a dynamically stable match-
ing. Our framework accommodates many forms of inter-temporal preference comple-
mentarities, including a taste for variety and a status-quo bias. Extensions of our model
incorporating imperfect information and financial transfers are proposed. We relate our
analysis to market unraveling and to common market design applications, including the
medical residency match.
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Gale and Shapley (1962) elegantly tackled the problems of “College Admissions and the

Stability of Marriage.” By privileging stability, their analysis suggests an immutability to a

match’s outcome. But, this is not what we often observe. Consider a few consequences of

seemingly, or aspirationally, stable pairings:

1. After freshman year, a student transfers to another college.

2. After ten years of marriage, a couple divorces. Each then marries a new partner.

3. To repay her student loans, an MBA graduate works in management consulting for

two years. Once debt free, she joins a start-up for a fraction of her old salary.

As illustrated by the preceding cases, three important characteristics color most economic

and social relationships. First, relationships have a temporal component. They last multiple

periods and they can be revised with the passage of time. Commitment is limited and

intended long-term relationships—four years of college, a lifelong marriage, a committed

career—often see interim revisions. Second, preferences are path dependent. Switching

costs, a desire for variety, and inter-temporal financial constraints introduce chronological

complementarities among outcomes. Finally, an agent is often uncertain about the future

and refines his opinions as new information comes to light. Any analysis of a two-sided

market where relationships are not ephemeral, as in the above examples, must address these

features. A one-period model misses them all.

A central challenge in extending Gale and Shapley’s (1962) static model beyond a single

period is that there is no immediate analog to their stability condition in a dynamic, multi-

period framework. As emphasized by Roth (2002) and others, the long-term viability of

a market often hinges upon its ability to consistently coordinate upon a stable outcome.

In this paper, we propose a new stability definition—dynamic stability—that confronts the

richness of a multi-period economy. Addressing the above desiderata, it allows for limited

commitment, accommodates history dependence, and builds upon a robust model of agent

behavior and beliefs. Drawing on familiar intuitions, a market outcome is dynamically

stable if at each moment in time it is individually rational and no pair of agents can arrange

a mutually-preferable relationship plan conjecturing that the wider market evolves in an

unfavorable manner. The notion is succinct and open to applications and extensions.

Although it draws on classic ideas, dynamic stability provides a level of generality absent

from prior studies of multi-period matching economies. Many studies have defined stabil-

ity within a particular multi-period application, such as daycare assignment (Kennes et al.,

2014a), and thus are highly case specific. More abstract definitions, such as those proposed
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by Damiano and Lam (2005) or Kurino (2009), rely on strong assumptions concerning pref-

erences or beliefs, hampering their application to many real-world problems. For instance,

switching costs, status-quo bias, or a taste for variety are not compatible with the “time-

separable” preference specification common to the literature (Pereyra, 2013; Kurino, 2014).

The sufficient condition ensuring the existence of a dynamically stable matching, however,

accommodates these features. Furthermore, dynamic stability can be easily employed in

applications involving monetary transfers or preference uncertainty, features not examined

previously in multi-period matching models. While our exposition here centers on a two-

period setting, it is straightforward to extend our analysis to more than two periods, and we

do so in Appendix B and in a companion paper (Kadam and Kotowski, 2015).1

Though we adopt Gale and Shapley’s terminology of a matching between men and women,

our model’s applications extend beyond the study of interpersonal relations. Labor markets

offer a germane application. According to the U.S. Bureau of Labor Statistics (2012), “in-

dividuals born from 1957 to 1964 held an average of 11.3 jobs from ages 18 to 46.” Young

workers, of course, move between jobs frequently. But, even middle-aged workers may have

volatile employment arrangements, with 32.8 percent of jobs started by those aged 40 to 46

ending in less than a year (U.S. Bureau of Labor Statistics, 2012). Such dynamics have long

been recognized by the labor-market search-and-matching literature (Rogerson et al., 2005),

but they have been absent from studies of matching following Gale and Shapley (1962).

Our model admits such career dynamics while incorporating common labor-market features,

including learning-by-doing and non-constant wage profiles.

While our analysis is primarily a positive description of a multi-period economy, much

research on matching markets is motivated by normative market design applications, such

as the design of medical resident (Roth, 1984a) and student-school assignment schemes (Ab-

dulkadiroğlu and Sönmez, 2003). Our model applies to these applications as well since

they are multi-period problems. For example, a celebrated instance of market design is the

National Resident Matching Programr (NRMPr) medical residency match (Roth and Per-

anson, 1999).2 The NRMP is a clearinghouse that matches graduating medical students to

hospital residency programs in the United States using an algorithm. While much attention

is placed on the initial match of a trainee-doctor to a residency program, a deeper look at

this market reveals a rich multi-period structure. This is hardly surprising as medical resi-

1Kadam and Kotowski (2015) investigate a special case of the model developed in this study with an
emphasis on technical questions, such as the (non-)lattice structure of the set of dynamically stable matchings.

2“National Resident Matching Program” and “NRMP” are registered trademarks of the National Resident
Matching Program.
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dency is a long-term engagement. Some programs, for example, only provide introductory

instruction (PGY-13) and students must also match with a complementary advanced spe-

cialty (PGY-2). Others provide all years of training. Attrition and program switching occur

as well (McAlister et al., 2008; Yaghoubian et al., 2012). To quote one resident’s experience:

S.M. matched to a preliminary year in Internal Medicine and an advanced posi-

tion in Anesthesiology. Surprisingly, he found himself enjoying intern year much

more than he had expected. At the end of intern year he moved on to Anesthesiol-

ogy. Several months later S.M. realized he had been happier with the day-to-day

work in Internal Medicine than in Anesthesiology. (. . . ) [H]e arranged to finish

the year in Anesthesiology and then return to the Internal Medicine program as

a PGY-2. (Losada, 2010)

In light of such outcomes, an assessment of a match’s success and of participants’ welfare

requires a longer-term perspective, which our model provides.4 Its adaptation to other

market design exercises, such as school assignment, follows accordingly.

Though our setting is too lean to address the details found in many market design appli-

cations, our analysis points to several themes deserving broader attention from scholars and

practitioners. First, the multi-period nature of many situations introduces subtle comple-

mentarities in agents’ preferences that may undermine an assignment’s long-term stability.

Mechanisms sensitive to this concern are therefore critical. Second, agents often participate

in markets with limited knowledge about the future. When possible, proposed assignments

should be robust to (or accommodate) agents’ path dependent, post-match learning. Finally,

as elaborated upon by Kadam and Kotowski (2015), (re-)matching frequency and assignment

length are design variables. Novel solutions to otherwise complex problems may follow from

their adjustment.

As suggested by the above examples, our study focuses on an economy where agents

interact over multiple periods, forming and revising their relationships with time.5 Simi-

lar two-sided,6 one-to-one matching markets are studied by Damiano and Lam (2005) and

3“PGY-1” stands for Post Graduate Year 1. It is the first year of training doctors receive after graduating
from medical school.

4Goldacre et al. (2010) conclude that about a quarter of doctors in the United Kingdom change specialty
within the first ten years of their careers. We are unaware of analogous statistics for the United States.

5A complementary class dynamic models examines one-time matchings that arise over multiple periods.
Here focus has ranged from questions of preference formation (Kadam, 2014) and unraveling (Roth and
Xing, 1994) to managing the (stochastic) arrival and departure of agents or objects (Ünver, 2010; Leshno,
2012; Akbarpour et al., 2014; Doval, 2014; Thakral, 2015).

6One-sided markets, such as the house assignment problem, are a related class for analysis (Shapley and
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Kurino (2009). More recently, several authors have considered multi-period, many-to-one or

many-to-many matching models. Dur (2012), Bando (2012), Pereyra (2013), and Kennes

et al. (2014a) propose models in this vein. Though these papers span a family of multi-

period applications and environments, some even incorporating overlapping generations of

agents, our model is not a special case of any of them. Notably, our model accommodates

preferences featuring richer forms of inter-temporal complementarity, our stability concepts

are distinct, and our algorithms for constructing stable assignments are new. We further

contrast our analysis and the above studies in Section 2 after introducing our model. None

of the preceding studies address monetary transfers or uncertainty and learning.

Though we stress the dynamic and sequential aspects of multi-period interactions, an in-

teresting parallel exists between multi-period one-to-one matching markets and static many-

to-many matching markets. Over a lifetime, each agent can have many partners. Recently,

Hatfield and Kominers (2012b) have examined such markets in the matching with contracts

framework (Hatfield and Milgrom, 2005). Dynamic matching problems can be analyzed

within this paradigm by allowing agents to encode the date(s) of their relationship(s).7

While we at times employ parallel reasoning, our model is not subsumed by their analysis.8

The possible absence of a man-optimal stable matching (Example D.1) further contrasts our

model with prior many-to-many matching models (Roth, 1984b).

This paper is organized as follows. In Section 1, we introduce our model. We define

our preferred stability concept, dynamic stability, and we identify sufficient conditions for

the existence of a dynamically stable matching. Our proofs are constructive, relying on new

multi-period generalizations of Gale and Shapley’s (1962) deferred acceptance algorithm.

Importantly, the existence of a dynamically stable matching is not a consequence of a naive

repetition of successive one-period matching markets. In fact, consecutive “spot markets” can

generate unstable outcomes, kindle regret, and encourage strategic behavior. We illustrate

these facts in Section 2 where we provide additional context for our analysis referring both to

the existing literature and to common practice. With examples, we highlight the challenges

of defining stability in a multi-period economy. We also explain how the NRMP matching

algorithm, mentioned above, resolves the chronological complementarities among training

programs and how it differs from our procedures. Sections 3 and 4 provide extensions to

Scarf, 1974; Hylland and Zeckhauser, 1979). Abdulkadiroğlu and Loertscher (2007), Bloch and Cantala
(2013), and Kurino (2014), among others, study dynamic variants of this problem. We do not study this
case, though our analysis is complementary.

7Dimakopoulos and Heller (2014) adopt this approach to model the assignment of trainee lawyers to
courts in Germany.

8Preferences fail substitutability, which is a key condition ensuring a stable matching’s existence.
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our model. In Section 3 we introduce incomplete information. We argue that re-matching

after learning new information often fails to generate a Pareto improvement relative to an

initial matching derived with imperfect information. We relate this observation to market

unraveling, whereby agents commit to matching at earlier and earlier times. Finally, in

Section 4 we consider monetary transfers, borrowing and savings. While expanding financial

access and services is welfare enhancing in a partial-equilibrium sense, it can destabilize

the market as a whole. Section 5 concludes. An online supplement collects omitted proofs

(Appendix A), generalizes our model to T periods (Appendix B), analyzes our model’s core

(Appendix C), and presents additional examples and discussion (Appendices D and E).

1 The Model

Mindful of the noted applications, for expositional ease we present our model using Gale

and Shapley’s terminology of a matching between men and women. Synonyms for common

applications would be students and schools, doctors and hospitals, or workers and firms. For

brevity, we define some concepts only from the perspective of a typical man. Our model

is symmetric and all definitions apply to women with obvious changes in notation. To

streamline exposition, we postpone discussion of its subtleties to Section 2.

1.1 The One-Period Market

To introduce notation and to provide a benchmark, we briefly review Gale and Shap-

ley’s (1962) one-period matching market. There are finite, disjoint sets of men, M =

{m1, . . . , m|M |}, and women, W = {w1, . . . , w|W |}. Each man (woman) can be matched to

one woman (man) or not matched at all. By convention, a man (woman) who is not matched

to a woman (man) is treated as matched to himself (herself). Thus, Wm := W ∪ {m} is the

set of man m’s potential partners, and w’s potential partners are Mw := M ∪ {w}. As there

is only one period, each agent has a strict preference only over potential partners.

A matching is a function that assigns a partner to each agent. More formally, the function

µ : M ∪W → M ∪W is a one-period matching if µ(m) ∈ Wm for all m ∈ M , µ(w) ∈ Mw for

all w ∈ W , and µ(i) = j =⇒ µ(j) = i for all i. A stable matching cannot be blocked by

any agent or pair. That is, (i) each agent weakly prefers his/her assigned partner to being

not matched; and, (ii) no pair prefers to be together in lieu of their assigned partners.

Theorem 1 (Gale and Shapley (1962)). There exists a stable one-period matching.
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To prove Theorem 1, Gale and Shapley introduce the (man-proposing) deferred acceptance

algorithm, which proceeds as follows:

1. In round 1, each man proposes to his most preferred partner. Given the received

proposals, each woman tentatively engages her most preferred suitor and rejects the

others.

2. In round τ ≥ 2, each man proposes to his most preferred partner who has not yet

rejected him. Each woman evaluates any received proposals and her engaged partner

(if any) and tentatively engages her most preferred suitor and rejects the others.

The above process continues until no further rejections occur. At this point, engaged pairs

are matched and all others remain unmatched. The resulting assignment is stable. As

Roth (2008) explains, the algorithm has enjoyed wide application and we rely on it in many

arguments to follow.9

1.2 A Multi-period Market

Extending the model, suppose agents interact over two periods. In every period, each man

(woman) can be matched with one woman (man) or not matched at all. An agent’s partners

in periods t and t′ may differ. We call this sequence of matchings a partnership plan. Thus,

(j, k) is a partnership plan for i where he is matched with j in period 1 and with k in period

2. When confusion is unlikely, we write jk for (j, k). The plan jk is persistent if j = k.

Else, it is volatile. Each agent has a strict and rational preference over partnership plans.

If i prefers plan jk to plan j′k′, we write jk ≻i j′k′. As usual, jk %i j′k′ if jk ≻i j′k′

or jk = j′k′. The function µ : M ∪ W → (M ∪ W )2 is a multi-period matching if for all

i, µ(i) = (µ1(i), µ2(i)) and µ1 and µ2 are one-period matchings. Henceforth, we refer to a

multi-period matching simply as a matching.

Stability

In a one-period market, stability combines (i) an individual-rationality requirement and (ii) a

pairwise no-blocking condition. The conditions assert that an agent or a pair cannot benefit

by pursuing his/her/their best option outside of the market. A natural translation of these

ideas to a multi-period setting begins from an ex ante perspective in period 1 and continues

on a period-by-period basis. Adopting this approach, the matching µ is ex ante individually

9Appendix E describes the algorithm more formally and presents an example of its operation.
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rational for agent i if he prefers µ(i) to his best unilateral outside option, which entails

remaining unmatched. More formally, we say that agent i can period-1 block the matching

µ if ii ≻i µ(i). An individually rational matching cannot be period-1 blocked by any agent.

Similar logic guides blocking by a pair, though the set of available outside options is

exponentially richer. If a pair blocks the matching µ in period 1, they pursue their most

preferred arrangement among themselves in lieu of following the plan encoded in µ. They

may aspire to a two-period partnership or they may decide upon a more unusual timing.

Thus, the pair (m,w) ∈ M ×W can period-1 block the matching µ if

1. ww ≻m µ(m) and mm ≻w µ(w);

2. wm ≻m µ(m) and mw ≻w µ(w);

3. mw ≻m µ(m) and wm ≻w µ(w); or,

4. mm ≻m µ(m) and ww ≻w µ(w).10

A matching is ex ante stable if it cannot be period-1 blocked by any agent or by any pair.

Though ex ante stability may be an appropriate solution concept for some applications,

it presumes that agents can unequivocally commit to a matching, which may be rare in

practice. Thus, our preferred stability definition, dynamic stability, eschews commitment

and allows agents to block a matching conditional on the market’s history. That is, agent i

can period-2 block the matching µ if (µ1(i), i) ≻i µ(i). Similarly, the pair (m,w) can period-2

block the matching µ if

1. (µ1(m), w) ≻m µ(m) and (µ1(w), m) ≻w µ(w); or,

2. (µ1(m), m) ≻m µ(m) and (µ1(w), w) ≻w µ(w).

A matching is dynamically individually rational if for all t it cannot be period-t blocked by

any agent. A matching is dynamically stable if for all t it cannot be period-t blocked by any

agent or pair. As explained in Section 2, dynamic stability balances behavioral plausibility,

tractability, and extensibility and it differs from stability definitions encountered elsewhere

in the literature on multi-period matching.

10Condition 4 may seem redundant. We include it for completeness since single-agent and pairwise defini-
tions of blocking are special cases of more general coalition-based definitions (Appendix C).
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Table 1: All ex ante stable matchings in Example 1.

Matching m1 m2 w1 w2

µ1 w1w1 w2w2 m1m1 m2m2

µ2 w1w2 w2w1 m1m2 m2m1

µ3 w2w1 w1w2 m2m1 m1m2

Example 1. Consider a market with two men and two women. Their preferences are:

≻m1
: w1w1, w1m1, w1w2, m1w1, w2w1, m1m1

≻m2
: w2w2, w2m2, w2w1, m2w2, w1w2, m2m2

≻w1
: m2m2, m2m1, m1m2, m1m1, w1w1

≻w2
: m1m1, m1m2, m2m1, m2m2, w2w2

Here, w1w1 is m1’s most preferred plan, w1m1 is second best, and so on. Unlisted plans

are inferior to those listed and are not individually rational. This market has three ex ante

stable matchings, which are listed in Table 1. To read the table, under µ1, µ1(m1) = w1w1,

µ1(m2) = w2w2, and so on. As clear from the table, both persistent and volatile matchings

may be ex ante stable.

If we focus on the matching µ2, we note that m1 is paired with w2 in period 2. However,

w1m1 ≻m1
w1w2 = µ2(m1). Thus, it seems unlikely m1 would agree to a continuation of µ2

once period 2 arrives. He prefers to renege on his commitment and the consequences for him

of doing so are unambiguously positive. Thus, µ2 is not dynamically stable. The remaining

matchings, µ1 and µ3, are both dynamically stable. By allowing blocking in multiple periods

conditional on the market’s history, dynamic stability refines its ex ante counterpart through

its accommodation of limited commitment. Intuitively, it offers the same type of refinement

as provided by sub-game perfection to the Nash equilibria of an extensive-form game.

Existence of Stable Matchings

An important feature of both ex ante and dynamically stable matchings is that we can

confirm their existence using generalizations of the deferred acceptance algorithm. As every

dynamically stable matching is also an ex ante stable matching, we start by verifying the

latter’s existence. To do so, we employ the following algorithm, which will reappear below.

In the plan deferred acceptance procedure (P-DA), each man proposes to one woman at a

time and specifies their exclusive relationship’s timing. A man and woman may be together

for both periods or together in one period and single otherwise. Such proposals are made just

like in the usual deferred acceptance algorithm with the woman tentatively accepting her
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best available option. Once no proposals are rejected, the final matching is set. Interestingly,

our argument can be interpreted as men proposing from a restricted set of “contracts,” as

they may in the setting of Hatfield and Milgrom (2005). We then confirm that the resulting

matching is stable when the restriction is removed.

Algorithm 1 (P-DA). The (man-proposing) plan deferred acceptance procedure identifies a

matching µ∗ as follows. For each m let X0
m = ∪w∈W{ww,wm,mw}. At τ = 0, no plans in

X0
m have been rejected. In round τ ≥ 1:

1. Let Xτ
m ⊂ X0

m be the subset of plans that have not been rejected in some round

τ ′ < τ . If Xτ
m = ∅ or mm ≻m x for all x ∈ Xτ

m, then m does not make any proposals.

Otherwise, m proposes to the woman identified in his most preferred plan in Xτ
m. If

ww is his most preferred plan, he proposes a two-period relationship to w. If wm (mw)

is his most preferred plan, he proposes a one-period partnership with w for period 1

(2). In period 2 (1), both m and w are to be unmatched.

2. Let Xτ
w be the set of plans made available to w. If ww ≻w x for all x ∈ Xτ

w, w rejects

all proposals. Otherwise, w (tentatively) accepts her most preferred plan in Xτ
w and

rejects the others. A woman may accept at most one plan at a time.

The above process continues until no rejections occur. If w accepts m’s proposal in the final

round, define µ∗(m) and µ∗(w) accordingly. If i does not make or receive any proposals in

the final round, set µ∗(i) = ii.

We will illustrate the P-DA’s operation as part of Example 3 below. In the interim, we

note that the procedure’s outcome enjoys the following property.

Theorem 2. The P-DA matching is ex ante stable.

As with all formal results, we prove Theorem 2 in Appendix A. The argument proceeds

along familiar lines. Any incipient blocking pair must meet in some round in the P-DA’s

operation, which implies that the woman must have rejected the man’s proposal. As the

woman’s tentative matching only improves in later rounds of the P-DA, the woman must

prefer the final outcome to the blocking arrangement.

The P-DA outcome is ex ante stable and may also be dynamically stable, but not always.

At times, a dynamically stable matching may not exist.
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Example 2. Consider a market with one man and one woman.11 Their preferences are:

≻m : wm,ww,mm ≻w : mm,ww

There are only two candidate stable matchings. The matching where µ(m) = mm is not ex

ante stable as the couple can period-1 block it. The matching where µ′(m) = ww is ex ante

stable. However, it is not dynamically stable since m will renege after period 1.

Example 2 suggests that agents’ preferences must exhibit additional structure to ensure

the existence of a dynamically stable matching. Ideally, this structure should be compati-

ble with behavioral and economic characteristics common to dynamic markets, including a

status-quo bias and complementarities among sequentially-assigned partners. The condition

we propose, sequential improvement complementarity, allows these features, as we explain

below.

Definition 1 (SIC). The preference ≻i satisfies sequential improvement complementarity if

1. jk ≻i jj %i ii =⇒ kk ≻i jj;

2. jk ≻i ji ≻i ii =⇒ kk ≻i ji; and,

3. ik ≻i ij ≻i ii =⇒ kk ≻i ij.

Let Ci be the set of preferences satisfying SIC for agent i.

The economic content of SIC is concentrated in its first point.12 This condition can be

paraphrased as follows: If an agent prefers to switch assignments after period 1, rather than

maintaining his initial assignment, then the change must be toward a “better” option. For

instance, a worker might wish to move from an unpaid internship to a full-time job. The

converse change, from a full-time job to an unpaid internship, is inferior to keeping the

full-time position. Intuitively, the prospect of a better future assignment fuels the dynamic

incentives supporting stable outcomes. Many common cases are compatible to with SIC:

1. kk ≻i jk ≻i kj ≻i jj — Agent i’s preference is time separable and history independent.

Irrespective of his period 1 match, he wants to match with k in period 2.

11Hatfield and Kominers (2012a) consider a similar example of a doctor and a hospital contracting morning
and afternoon shifts. They suggest the doctor and the hospital should sign a unified contract covering both
shifts. In our model, that suggestion corresponds to the ex ante stable outcome.

12SIC(2) and SIC(3) adapt SIC(1) for cases where the agent can be unmatched in one period.
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2. jk ≻i kk ≻i kj ≻i jj — Agent i has a taste for variety since the volatile plan jk is

most preferred.

3. kk ≻i kj ≻i jj ≻i jk — Agent i exhibits a status-quo bias (Samuelson and Zeck-

hauser, 1988). Conditional on matching with j in period 1, he wants to continue that

relationship even though a match with k was superior ex ante. Given their empirical

ubiquity, due to switching costs for example, we examine preferences with such “inertia”

in greater detail below.

Theorem 3. If agents’ preferences satisfy SIC, there exists a dynamically stable matching.

Theorem 3’s proof is constructive using a generalized P-DA procedure. The plan deferred

acceptance procedure with adjustment introduces an adjustment step among agents who are

unmatched by the P-DA in period 2.

Algorithm 2 (P-DAA). The (two-period, man-proposing) plan deferred acceptance proce-

dure with adjustment identifies a matching µ∗ as follows:

Step 1. Implement the P-DA procedure and call the resulting interim matching µ̃1 =

(µ̃1
1, µ̃

1
2). For each agent i who is assigned a partner in period 2 (µ̃1

2(i) 6= i), set µ∗(i) = µ̃1(i)

and exclude the agent from further consideration.

Step 2. For each remaining man, define a preference among the remaining women condi-

tional on his interim assignment: w ≻
µ̃1

1
(m)

m w′ ⇐⇒ (µ̃1
1(m), w) ≻m (µ̃1

1(m), w′).13 Define the

remaining women’s conditional preferences analogously. Next, implement Gale and Shap-

ley’s (1962) (man-proposing, one-period) deferred acceptance algorithm where each agent

makes/accepts proposals according to his/her conditional preference, ≻µ̃1

1
(i)

i . If µ̃2
2(·) is the

resulting one-period matching, for all agents involved set µ∗(i) = (µ̃1
1(i), µ̃

2
2(i)).

Remark 1. In Appendix B we present T -period generalizations of SIC, of the P-DAA proce-

dure, and of Theorem 3. The intuition from the 2-period case carries over by induction.

The P-DAA operates in two steps, and both are required to ensure stability. Step 1

corresponds to the P-DA and secures the matching’s ex ante stability. Step 2 improves

upon the P-DA matching and ensures that the final outcome cannot be period-2 blocked.14

The following example illustrates the importance of this second step. The economy’s only

dynamically stable matching features a cyclic assignment among two men and two women.

13Kennes et al. (2014a) present a similar definition when introducing their “isolated preference relation.”
14All components of SIC are important. If exactly one component of SIC fails, a dynamically stable

matching may not exist. See Example 2 and Examples D.3 and D.4 in Appendix D.
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Example 3. There are three men and three women whose preferences satisfy SIC:

≻m1
: w1w2, w2w2, w1m1, m1m1

≻m2
: w2w1, w1w1, w2m2, m2m2

≻m3
: w1w1, w2w2, w3w3, m3m3

≻w1
: m1m1, m1m2, m1w1, w1w1

≻w2
: m2m2, m2m1, m2w2, w2w2

≻w3
: m3m3, w3w3

Table 2 summarizes the P-DAA’s operation. The first step, coinciding with the P-DA,

terminates in three rounds. In round 1, m1 proposes a two-period partnership to w2 and is

rejected. The proposals of m2 and m3 are similarly rejected. By the third round, each man’s

proposal is accepted. The resulting interim matching is ex ante stable.

Since m3 and w3 are matched together in period 2, their final matching is set. The others

move onto the P-DAA’s second step. Their conditional preferences at µ̃1
1(·) are:

≻w1

m1
: w2, m1 ≻w2

m2
: w1, m2 ≻m1

w1
: m2, w1 ≻m2

w2
: m1, w2

Conditional on µ̃1
1(·), m1 and w2 wish to match together for period 2. Similarly, m2 and w1

wish to match together. Of course, the deferred acceptance algorithm leads to this outcome.

The final assignment is this economy’s only dynamically stable matching.

Conditional on the period 1 match, the adjustment step in the P-DAA refines the assign-

ments of agents who are unmatched in period 2. A natural further adjustment, which is not

part of the P-DAA, is to attempt a similar improvement for agents who are unmatched in

period 1 conditional on their period 2 assignment. By changing the interim status quo, this

adjustment may unwittingly introduce instability.

Example 4. There is one man and three women whose preferences satisfy SIC.

≻m1
: w1w3

µ2

, w1w2, m1w2

µ1

, w2w2, m1m1

≻w1
: m1w1 , w1w1

≻w2
: w2m1, m1m1, w2w2

≻w3
: w3m1 , m1m1, w3w3

There are two dynamically stable matchings, marked in the preference list above. Neither

matching Pareto dominates the other. The P-DAA identifies µ1, which is underlined. It

matches m1 and w2 only for period 2. This outcome suggests an obvious adjustment: m1

and w1 should partner for period 1 holding fixed their period 2 pairings. Following this

adjustment, m1’s incentives for period 2 change and the resulting assignment is unstable.
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Table 2: Operation of the P-DAA Procedure in Example 3.

Proposal Extended Proposal(s) Received

Step Round m1 m2 m3 w1 w2 w3

1
(P-DA)

1 w2w2 w1w1 w1w1 {m2m2,m3m3} m1m1 -

2 w1m1 w2m2 w2w2 m1w1 {m2w2,m3m3} -

3 w1m1 w2m2 w3w3 m1w1 m2w2 m3m3

2
(Adjustment)

1 w2 w1 - m2 m1 -

Final Matching w1w2 w2w1 w3w3 m1m2 m2m1 m3m3

A Special Case: Rankings and Inertia

To highlight the properties of stable matchings, it is helpful to focus on a special case of our

environment. This case straddles the time-invariant and inertia examples noted above and,

therefore, provides a useful starting point for applied studies.

The simplest way to construct a multi-period preference begins with an agent’s ranking

of potential partners abstracting from all temporal considerations. We call such a single-

period assessment by i a spot ranking and we denote it by Pi. If j is superior to k, we write

jPik. Following custom, jRik if jPik or j = k. Given a spot ranking, it is natural that

partnership plans with higher-ranked partners are preferred. We say that ≻i reflects the spot

ranking Pi if jRij
′ and kRik

′, with at least one ranking being strict, imply that jk ≻i j
′k′.15

Preferences that reflect a spot ranking may assume many forms. For example, the dictionary

(lexicographic) preference,

≻i : jj, jk, jl, kj, kk, kl, lj, lk, ll, . . . , (1)

and its rhyming dictionary alternative,

≻′
i : jj, kj, lj, jk, kk, lk, jl, kl, ll, . . . ,

both reflect the spot ranking jPikPil. Preferences in this class are often modeled with addi-

tively separable utility functions or with reference to history independence or time invariance.

Whereas preferences reflecting a spot ranking satisfy SIC, they preclude common cross-

period complementarities. For example, workers often prefer longer-term employment with

15Reflection resembles Roth’s (1985a) responsiveness. It differs since the timing of partners matters.
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the same employer. Similarly, families often want their younger child (the period 2 match) to

attend the same school as his older sibling (the period 1 match) (Dur, 2012). Such instances

of status-quo bias or switching cost suggest that agents often favor persistent outcomes. A

natural way to capture this idea is to allow persistent plans to (weakly) rise in rank relative

to other plans. We say that the preference ≻i exhibits inertia relative to ≻′
i if

• jj ≻′
i kk

′ =⇒ jj ≻i kk
′;

• jj ≻′
i kk ⇐⇒ jj ≻i kk; and,

• If j 6= j′ and k 6= k′, then jj′ ≻′
i kk

′ ⇐⇒ jj′ ≻i kk
′.

For instance,

≻′′
i : jj, jk, kk, jl, ll, kj, kl, lj, lk, . . .

exhibits inertia relative to ≻i, defined in (1), as kk and ll are relatively more preferred.

Switching to j, the ex ante best match, after initial assignments to k or l is not desirable.

While any preference can be seasoned with extra inertia, we apply it to preferences that

reflect a spot ranking. If Υ(≻i) is the set of preference profiles that exhibit inertia relative

to ≻i and Si is the set of preferences reflecting a spot ranking, then define S̄i := ∪≻i∈Si
Υ(≻i)

as the set of preferences with inertia relative to Si. Preferences in S̄i satisfy the “rankability”

condition of Kennes et al. (2014a). In their model of daycare assignment, children’s prefer-

ences satisfy this condition.16 Unlike their definition, our construction decouples the ranking

and the inertia elements of rankability, which facilitates this class’ further generalization

beyond two periods (Kadam and Kotowski, 2015).

Corollary 1. Si ⊂ S̄i ⊂ Ci. Thus, if ≻i∈ S̄i for all i, a dynamically stable matching exists.

While inertia biases preferences toward persistent plans, it hardly precludes volatile out-

comes. For instance, in Example 1, ≻i∈ S̄i for all i yet both women prefer the volatile

dynamically stable matching µ3 to its persistent counterpart. Therefore, match volatility is

not necessarily driven by an intrinsic preference for variety. Generally, it can occur despite

a proclivity for persistence as a compromise among competing interests.

Beyond constituting a natural class of preferences for applied analysis, when ≻i∈ S̄i for

all i the resulting economy enjoys several properties, some of which we highlight below.

16Kennes et al. (2014a) assume that priorities (daycares’ “preferences”) satisfy a more restrictive condition.
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Simplifying the P-DAA Though the P-DAA procedure is an intuitively generalizes the

deferred acceptance algorithm, its multi-step nature complicates its operation. When ≻i∈ S̄i

for all i, the P-DAA enjoys a considerable simplification. First, elicit each agent’s preference

for persistent plans and define the ex ante spot ranking induced by ≻i as jP≻i
k ⇐⇒ jj ≻i

kk.17 Second, employ P≻i
in the deferred acceptance algorithm to find a stable matching.

Algorithm 3 (E-DA). The (man-proposing) ex ante deferred acceptance procedure assigns

the one-period matching identified by the (man-proposing, one-period) deferred acceptance

algorithm where each agent makes/accepts proposals according to P≻i
in each period.

When ≻i∈ S̄i for all i, the E-DA and the P-DAA matchings coincide (Lemma A.3); hence,

the E-DA outcome is dynamically stable. A laudable quality of the procedure is that it draws

on relatively little information. Beyond P≻i
, an agent need not know or communicate ≻i in

its entirety. In some applications this limited requirement may be advantageous.

Welfare Generally, a dynamically stable matching may not be Pareto optimal. In fact, it

may be Pareto dominated by another dynamically stable matching (Kadam and Kotowski,

2015). The reason behind this conclusion is that dynamically stable matchings often feature

collectively “cyclic” assignments, as in Examples 1 and 3. Cyclic assignments naturally arise

in multi-period economies due to the coordination and scheduling aspects introduced by the

time dimension. However, if preferences are restricted to S̄i we can conclude the following.

Theorem 4. If ≻i∈ S̄i for all i, then every persistent dynamically stable matching is Pareto

optimal.

Noting the equivalence between the E-DA and the P-DAA procedures, a corollary to

Theorem 4 is that the P-DAA matching is Pareto optimal when ≻i∈ S̄i for all i. More

generally, the P-DAA matching may not be Pareto-optimal as the algorithm may pass-over

a cyclic assignment that some agents may particularly enjoy (Example D.2). For brevity we

do not pursue it here, but a further extension of the P-DAA can incorporate additional ad-

justment rounds to resolve such coordination failures. Necessarily, such adjustments become

increasingly complex once we step beyond a 2-period setting.

Rescheduling and Timing Though key for welfare, scheduling is also central for market

stability. Given a (two-period) matching, three schedule changes are possible: the initial

17Kennes et al. (2014a) present an analogous definition when introducing their “isolated preference rela-
tion.” Of course, if ≻i reflects Pi, then Pi = P≻i

(Lemma A.2).
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matching can be prolonged, the final matching can be expedited, or matching times can be

reversed. Of these, only the second is a dynamically stable proposition.

Theorem 5. Suppose ≻i∈ S̄i for all i and let µ = (µ1, µ2) be a dynamically stable matching.

Then µ̄ = (µ2, µ2) is also dynamically stable.

An intuition for Theorem 5 can be found by recalling a finitely repeated non-cooperative

game. In a Nash equilibrium of such a game, the players’ final period actions must be a stage-

game Nash equilibrium. Thus, repeating it in every period is also an equilibrium of the game

as a whole. Similarly, when ≻i∈ S̄i for all i, repeating the final period matching is also stable.

Despite preference inertia, the natural reciprocal to Theorem 5 is not generally true. Though

qualified in Section 3, prolonging an assignment, (µ1, µ1), can beget instability. Likewise,

reversing a stable matching’s timing, (µ2, µ1), can be equally troublesome. Changing µ3 in

Example 1 in either manner leads to a dynamically unstable outcome.

2 Discussion

Having introduced our model, we would like to provide additional context for some of our

definitions and conclusions. To emphasize key themes, we focus on two points. First, we

contrast our matching procedures with commonly-proposed (and employed) alternatives.

Thereafter, we explain how dynamic stability resolves the many trade-offs encountered when

addressing “stability” in multi-period economies. On both matters there is much variance in

the literature and in practice.

2.1 Multi-period Matching Mechanisms

A reassuring feature of our analysis is that a generalization of the deferred acceptance al-

gorithm leads to a dynamically stable outcome. Thus, the P-DAA enjoys both a literal

interpretation, as a centralized assignment mechanism, and a metaphorical one, as a model

of a decentralized market where the proposing side enjoys market power. Of course, many

multi-period generalizations of the deferred acceptance algorithm are possible. Below we

sketch other common approaches, noting that they often fail to achieve a dynamically stable

outcome. We also address the strategic issues that arise in multi-period setting.
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Repeated, Single-Period Matching Markets

Likely the simplest multi-period generalization of the deferred acceptance procedure consists

of a repetition of one-period matchings derived using Gale and Shapley’s (1962) original

algorithm. Intuitively, this approach captures the flavor of successive spot markets. At a high

level, Damiano and Lam (2005), Kurino (2009), Dur (2012), Pereyra (2013), and Kennes et al.

(2014a) rely on mechanisms implementing successive single-period stable matchings of this

form. Successive assignments are derived conditional on past outcomes. Translating this idea

to our setting requires care. When preferences are defined over partnership plans, there need

not exist a stand-alone “single-period preference” that can be used to identify a “stable one-

period matching.” Like Kennes et al. (2014a), we consider the following operationalization.

Algorithm 4 (S-DA). The (man-proposing) spot-market deferred acceptance procedure de-

fines the matching µ̃ = (µ̃1, µ̃2) on a period-by-period basis as follows:

Period 1. Define µ̃1 as the one-period matching identified by the (man-proposing) deferred

acceptance algorithm where each agent i makes/accepts proposals according to his/her ex

ante spot ranking, P≻i
.18

Period 2. Define agent i’s conditional spot ranking at j as kP j
≻i
l ⇐⇒ (j, k) ≻i (j, l).

Set µ̃2 to be the one-period matching identified by the (man-proposing) deferred acceptance

algorithm where each agent i makes/accepts proposals according to his/her conditional spot

ranking at µ̃1(i), P
µ̃1(i)
≻i

.

When preferences reflect a spot ranking (≻i∈ Si), then P≻i
= P j

≻i
. Thus, the S-DA

matching coincides with the E-DA matching and is dynamically stable. However, once

preferences exhibit inertia (≻i∈ S̄i), the S-DA matching may be unstable.

Example 5. Consider the following market where ≻i∈ S̄i for all i:

≻m1
: w2w2, w1w2, w1w1, . . .

≻m2
: w1w1, w3w3, w3w1, . . .

≻m3
: w1w1, w2w1, w2w2, . . .

≻w1
: m1m1, m2m2, m3m3, m1m2, m1m3, . . .

≻w2
: m3m3, m1m1, m3m1, . . .

≻w3
: m2m2, . . .

18Recall that jP≻i
k ⇐⇒ jj ≻i kk. This parallels how a single-period preference can be inferred in

an inter-temporal consumption problem. For example, if an agent’s utility function is Ui(x1, x2, . . .) =
∑

t δ
tui(xt), we can identify his single-period preference ui(·) by eliciting preferences over constant con-

sumption streams.
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As confirmed in Online Appendix E, the S-DA matching is

µ̃(m1) = w1w2 µ̃(m2) = w3w3 µ̃(m3) = w2w1

µ̃(w1) = m1m3 µ̃(w2) = m3m1 µ̃(w3) = m2m2

This matching is neither ex ante nor dynamically stable.19 For example, m1 and w2 can

period-1 block µ̃. Instead, the dynamically stable E-DA matching is

µ∗(m1) = w1w1 µ∗(m2) = w3w3 µ∗(m3) = w2w2

µ∗(w1) = m1m1 µ∗(w2) = m3m3 µ∗(w3) = m2m2

This example also illustrates why the P-DAA procedure does not allow all agents to re-match

conditional on their period-1 assignment. Here, that exercise’s outcome coincides with the

unstable S-DA matching.

Dynamic matching procedures that fail to account for complementarities between succes-

sive periods, like the S-DA, introduce an “exposure problem” into the matching process. The

same issue arises in a multi-item auction where complementary goods are sold independently

through multi-round procedures (Milgrom, 2000; Bulow et al., 2009). In Example 5, w1 faces

risk if she pursues a relationship with m1, her favorite partner. In period 1 she is able to

match with m1, seemingly making progress toward her most preferred outcome, m1m1. Nev-

ertheless, she faces risk concerning the durability of others’ preferences. Others’ changing

opinions impose an externality on w1, ultimately leading to disappointment. The P-DAA

mitigates this problem by allowing some agents to match for period 2 from the outset.

Backward Induction and the NRMP

The P-DAA determines assignments chronologically. First, matchings for period 1, and pos-

sibly period 2, are specified. And then, period 2 adjustments are made. This operation

contrasts with the backward induction reasoning common in multi-period scenarios. As a

practical illustration of a mechanism using this latter approach, consider again the NRMP.

Four program types participate in the NRMP’s Main Residency Matchr (Table 3).20 Stu-

dents can enter Categorical and Primary programs immediately after medical school (PGY-1)

19 The S-DA procedure is a specialization of the DA-IP mechanism proposed by Kennes et al. (2014a) to
assign children to daycares. To nest Example 5 in their framework, call men “children” and women “daycares”
with unit capacity. All preferences satisfy their assumptions. If {P≻w1

, P≻w2
, P≻w3

} is the initial priority
structure, the matching µ̃ is “stable” in their sense of the term (Kennes et al., 2014a, Definition 8). Hence,
our definitions of ex ante and dynamic stability are distinct from, and not weaker than, their proposal.

20“Main Residency Match” is a registered trademark of the National Resident Matching Program.

19



Table 3: Available and Filled Positions in the 2014 Main Residency Match.*

Program Type
Categorical /

Preliminary† Advanced Physician Total
Primary

Program Year PGY-1 PGY-1 PGY-2 PGY-2 –

Starting Calendar Year 2014 2014 2015 2014 –

Positions Available 22,557 4,121 2,719 274 29,671

Positions Filled 22,149 3,538 2,592 211 28,490
* Adapted from National Resident Matching Program (2014a, Table 7).
† Sum of Medicine-Preliminary, OB/GYN-Preliminary, Pediatrics-Preliminary, Surgery-Preliminary,

and Transitional programs.

and these programs lead to certification in their specialty, usually after 3–6 years. Prelimi-

nary programs provide one or two years of training, are open to students immediately after

medical school (PGY-1), but do not lead to certification. Instead, they are prerequisites for

Advanced programs, which students enter subsequently (PGY-2) for an additional 3–5 years

of training. Physician positions are advanced positions (PGY-2) that start in the current

year but are available only to students who have completed graduate medical education.21 As

noted in Table 3, non-Categorical positions constitute about 24 percent of available positions.

There is a clear sequential complementarity between Preliminary and Advanced train-

ing. The NRMP algorithm addresses this complementarity anti-chronologically. For each

Advanced program in his rank order list, a student may also submit a supplemental ranking

of Preliminary programs. (Submitting supplemental lists is not required.) If the algorithm

matches an applicant to an Advanced program, it then attempts to match him to a Pre-

liminary program from the associated supplemental ranking. Successfully matching to a

Preliminary program is not assured and a student may be matched only to the Advanced

program at the algorithm’s conclusion.

This procedure may lead to outcomes reminiscent of S.M.’s experience recounted in the

introduction. For example, consider a medical student applying to advanced programs a2

and b2 in cities a and b. Clearly, a Preliminary program in city a, call it a1, complements the

co-located Advanced program. Likewise, Preliminary program b1 complements its co-located

21In their historical account of unraveling in the medical resident matching process, Roth and Xing (1994)
note how some advanced specialties would match with students far in advance. “In [the matches for neuro-
logical surgery (PGY-2), otolaryngology (PGY-2 and PGY-3) and urology (PGY-3)], medical-school seniors
obtain their second- and third-year employment from 18 to 30 months before they will begin work, and also
before they will be matched to their PGY1 positions” (Roth and Xing, 1994, p. 1021, original emphasis).
Though the institutional context now differs, such phenomena highlight this market’s multi-period nature.
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Advanced program in city b. For concreteness, suppose the student’s (true) preference is

a1a2 ≻i b1b2 ≻i b1a2 ≻i a1b2 (2)

where the period 1 assignment corresponds to preliminary training and the period 2 as-

signment corresponds to advanced training. Within the NRMP, the student can submit

supplemental rankings accompanying each advanced program. For example, a plausible

submission given his preferences may be

a2{a1 ≻̂i b1} ≻̂i b2{b1 ≻̂i a1} ≻i · · · . (3)

Since a1a2 ≻i b1a2, {a1 ≻̂i b1} is the supplemental list accompanying advanced program

a2. Suppose the NRMP algorithm successfully assigns the student to his most preferred

advanced program, a2, and then to his second-choice preliminary program, b1. The b1a2

outcome creates a risk for dynamic instability. Like S.M. from the introduction, the student

may seek to transfer at the preliminary program’s conclusion since b1b2 ≻i b1a2. If he succeeds

in doing so, he is better off.22 Of course, this revision may mask a broader welfare loss. The

student’s initial match to program a2 may have displaced another student-doctor from that

position, resigning her to a less-preferred program. A chain of further displacements may

affect others as well.

It is important to stress, however, that the complementarity among Preliminary and

Advanced programs is but one of many practical challenges that the NRMP matching process

must address. Others include couples wishing to match together, programs requiring even or

odd numbers of residents, and the transfer of unfilled positions among programs within the

same hospital (“reversions”). In theory any of these features can compromise a matching’s

stability and welfare properties (Roth, 1996). In practice, however, the algorithm appears to

successfully navigate the resulting portfolio of concerns.

Strategic Issues

Though we have discussed several multi-period matching procedures, we have abstracted

from the strategic concerns arising in markets operating according to these principles. Our

analysis presumes that each agent follows his true preferences, but it is reasonable to assume

22In the NRMP algorithm, students are the “proposers.” Therefore, program b2 may be willing to accom-
modate i in future years since it did not necessarily reject him during the initial NRMP match when (3) was
the student’s report. A waiver from the NRMP may be required to execute the change.
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that an agent may wish to improve his outcome by mis-representing his interests. A matching

mechanism or procedure is called strategyproof if it is a dominant strategy for each agent to

truthfully reveal his preferences. Otherwise, some agent can manipulate the outcome.

In the one-period case, there does not exist a strategyproof matching mechanism that

always yields a stable outcome (Roth, 1982). For example, in the man-proposing deferred

acceptance algorithm it is a dominant strategy for each man to truthfully reveal his pref-

erences. For the women, however, a worthwhile strategy often involves a “truncation” of

preferences (Roth and Rothblum, 1999). This involves pretending that the least-desirable

acceptable partners are unacceptable.

In a multi-period market, the scope for manipulation is considerably richer. For example,

an agent receiving proposals may wish to claim her most preferred partner is not acceptable.

Consider again the S-DA procedure and Example 5. Had w1 shunned the period-1 proposal

of m1, her favorite partner, the S-DA would have matched her with m2 in both periods which

she prefers.23 Curiously, in a dynamic market, a proposing agent may also wish to strategize.

In the NRMP example above, if program b2 considered the student acceptable, the student

could have improved his match by claiming b2{b1 ≻̂i a1} ≻̂i a2{a1 ≻̂i b1} instead of (3).

More positive conclusions apply to the mechanisms we have proposed. Unqualified strat-

egyproofness is impossible (Roth, 1982), but the P-DAA outcome can be implemented in

a strategyproof manner for the proposing side when preferences satisfy our assumptions.

If ≻i∈ S̄i for all i, implementing the E-DA suffices since the one-period deferred accep-

tance algorithm is strategyproof for the proposing side. More generally, we can conclude the

following.

Theorem 6. Suppose agents’ preferences satisfy SIC. If agents can only communicate pref-

erences that satisfy SIC, then the P-DAA is strategyproof for the proposing side.

The restriction on announcements is necessary. Otherwise, every mechanism that iden-

tifies a dynamically stable matching (if one exists) can be manipulated by at least one man

and by at least one woman (Example D.5).

2.2 Stability in Multi-period Matching Markets

While we consider dynamic stability to be the simplest and the most natural multi-period

generalization of Gale and Shapley’s original idea, it differs from existing proposals. As

23In a recent working paper, Kennes et al. (2014b) show that the scope for a beneficial strategic manipu-
lation of their dynamic matching mechanism becomes small with increasing market size.
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Damiano and Lam (2005) explain, defining stability in a multi-period economy requires

resolving many degrees of freedom absent from the one-period case. Thus, many variations

are possible.

Some differences among proposed stability concepts stem from application-specific fea-

tures. In a school-choice application, for example, the stability/fairness of an assignment is

typically ascertained on a period-by-period basis (Dur, 2012; Pereyra, 2013; Kennes et al.,

2014a). Priorities are commonly defined in terms of single/next-period assignments rather

than lifetime “enrollment plans” and, consequently, agents’ incentives on each side of the

market reference different time horizons. The resulting notions of blocking and stability dif-

fer from our’s (see footnote 19 above). Beyond such model-specific elements, several general

considerations emerge in multi-period economies. We address two of these below.

Pairwise vs. Multilateral Blocking

Following Gale and Shapley (1962), we build our stability concepts around pairwise blocking.

In contrast, others have emphasized the importance of blocking actions by larger groups

(Damiano and Lam, 2005; Kurino, 2009). This emphasis is motivated by the noted parallel

between multi-period one-to-one matching markets and static many-to-many markets where

such definitions are sometimes preferred (Roth, 1984b; Echenique and Oviedo, 2006; Konishi

and Ünver, 2006).

For completeness, we provide coalition-based definitions of blocking in Appendix C where

we study our economy’s core.24 Nevertheless, we prefer the pairwise specification for three

reasons. First, stronger definitions may preclude meaningful applied analysis. Conditions

ensuring the core’s non-emptiness, for example, may not apply to an application of interest.

Second, our definitions capture the practical nature of economic interaction in markets where

large-scale coordination among agents is not possible, rarely observed, or illegal. Though a

multi-period economy introduces some added scope for coordination, the practical difficulties

commonly cited in the one-period case continue to apply. Finally, we wish to maintain a

minimal departure from classic bilateral matching models, which motivate our analysis.

24Conditions ensuring the core’s non-emptiness and coincidence with the set of dynamically stable match-
ings are stronger than SIC, but plausible in applications. They do not preclude complementarities among
successive assignment. Volatile matchings may belong to the core.
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Ambiguity vs. Perfect Foresight

In a multi-period economy, an agent needs to anticipate the future. For example, if he

contemplates blocking a proposed matching, he must subscribe to some model concerning

the economy’s subsequent evolution. In principle, this counterfactual reasoning may lead

to a complex chain of conjectures. Such forward-looking, higher-order matters are cen-

tral to the stability concepts studied by Damiano and Lam (2005) and Kurino (2009), for

example. Favoring spareness, dynamic stability models future developments through an im-

plicit robustness criterion embedded in the definitions of blocking, whereby agents anticipate

unfavorable future developments. The advantages of this approach, particularly when prefer-

ences are history dependent, are well-illustrated if we consider an agent blocking a proposed

matching in period 1 only, as in the following example.

Example 6. Consider a market with two men and one woman. Their preferences are:

≻m1
: m1w1, w1w1, m1m1

≻m2
: w1w1, m2w1, m2m2

≻w1
: m1m1, m2m2, w1m2, w1m1, w1w1

The plans defining this economy’s only dynamically stable matching are underlined. Inter-

estingly, m1w1 ≻m1
w1w1. This raises the question: Should m1 leave w1 for period 1 only and

then return? Though a seemingly promising idea, and a frequently entertained possibility

(Damiano and Lam, 2005; Bando, 2012; Kennes et al., 2014a), its reasonableness depends on

the market’s contemporaneous and subsequent development. Since preferences are history

dependent, the possibilities and stories are many.

1. If w1 is passive and is unmatched given m1’s period 1 absence, then the proposition is

promising only if m2 is equally unassertive and does not pursue a period 2 relationship

with w1. In this case, w1 would accept m1’s return in period 2 since w1m1 ≻w1
w1w1.

If m2 is alert and matches with w1 in period 2, m1 remains unmatched. In either case,

w1 feels regret as a matching with m2 from the outset would have been preferable.

2. Anticipating regret, suppose w1 reacts to m1’s period 1 absence from the market and

pairs with m2 in period 1 instead. Now, m1 will lose-out in period 2. Conditional on

her period-1 matching, w1 wishes to maintain her partnership with m2.

3. If there is uncertainty, matters are complicated further. For instance, if m1 conjectures

that ≻w1
: m1m1, m2m2, w1m2, w1w1, w1m1, . . . he risks being rejected by w1 in period

2 even if he believes m2 is timid and resigned to remaining unmatched in both periods.
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In practice, all of the preceding cases—and many more—are plausible models of this market’s

development.25 A knotty selection problem follows. Dynamic stability posits that m1 resolves

this ambiguity conservatively. As implicit in the definition of period-1 blocking, m1 assumes

that his period 1 absence will precipitate unfavorable developments and he should not count

on a subsequent chance to pair with w1.

Generalizing the example’s intuition, when an agent or a pair (or a coalition in Appendix

C), block a proposed matching, our definitions assume that each agent believes the market

will evolve in the most unfavorable manner (to them) in response to their deviation. In prac-

tice, of course, this implies exclusion from the wider market.26 Excluded agents anticipate

implementing the best continuation plan given their conjectured restricted circumstances.27

The result is a robust, detail-free model rationalizing agents’ behavior adaptable to many ap-

plications. It avoids elaborately prophetic counterfactual reasoning concerning the market’s

evolution or a coalition’s credibility, which becomes taxing even in modestly-sized markets

with short time horizons. Moreover, it ensures that dynamic stability can be applied when

imperfect information further impedes such assessments. Case 3 in Example 6 above al-

ready hinted at this application and we elaborate upon it in the following section where we

introduce incomplete information into our model.

3 Limited Information and Learning

A strength of our model is that it can easily incorporate further extensions. One such ex-

tension involves imperfect information and learning. Most agents enter into multi-period

relationships with limited knowledge about future preferences. Marriages are announced

and dissolved, employees change jobs, and students transfer schools as relevant facts emerge.

Learning justifies interim relationship revisions, especially when they improve upon an initial

assignment. Though we are sympathetic to this intuition, our analysis qualifies it consider-

ably once a matching’s overall stability is accounted for.

To appreciate some of the emergent implications, we amend our model as follows. Each

25And this is without acknowledging likely reputation concerns.
26In a market design application, the return of “non-cooperative” agents is controllable by the designer.

Thus, market exclusion may be real rather than conjectured and is used in practice. For example, in the
NRMP matching process, applicants/residency programs that fail to honor the prescribed outcome, without
securing a waiver, may be barred from accepting alternative positions/applicants or participating in future
NRMP Matches (National Resident Matching Program, 2014b).

27Similarly, in a repeated game players anticipate best responding to the planned punishment should they
deviate from a proposed equilibrium.
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agent i has a preference over partnership plans ≻i, but does not know the complete ranking.

Though initially partial, his knowledge will improve with time. Specifically, assume that at

period 1 agent i knows the following:

(L1) His preferences have inertia, ≻i∈ S̄i.

(L2) His ex ante spot ranking is P≻i
.

Given this limited information, there are many ex post preferences that the agent may

actually hold. For example, if jP≻i
kP≻i

l then the agent knows that jj ≻i kk ≻i ll, but the

relative ranking of kj is unknown. As time passes, agent i learns more about his preferences.

(L3) If in period 1 agent i is assigned to k, he learns his preferences for plans of the form

kl′, for all l′.

Continuing the above illustration, after being matched with k, agent i could discover that

jj ≻i kj ≻i kk ≻i ll ≻i kl ≻i · · · .

Together, (L1)–(L3) outline a simple model of path-dependent learning. The situation is

consistent with agent i learning about switching costs or the strength of preference inertia. In

the above illustration, agent i knows that jj ≻i kk, but is initially unsure whether switching

to j in period 2 after being matched with k in period 1 is worthwhile. Given his period 1

knowledge, kj ≻i kk and kk ≻i kj are both plausible. He recognizes the true case only after

a period-1 match to k. Beyond (L1)–(L3), we do not introduce further beliefs or priors.

To study a market where agents have limited information, we adopt a high-level per-

spective. Rather than introducing further ad hoc micro-level assumptions, we will model

the market in reduced form by focusing on its final outcome. We assume that a market’s

outcome is the result of some matching mechanism. Though the term “matching mechanism”

has the connotation of a centralized process, our intended meaning is broader. It should be

interpreted as a black-box encompassing a pattern of regularized interaction leading to a

matching in any economy. More formally, call the function A(·) a matching mechanism if

it assigns a matching to each economy.28 An economy is a tuple e = (M,W, (≻i)) encom-

passing sets of men and women along with their preferences. Thus, A(e) = (A1(e), A2(e))

is a matching among agents in e consistent with the interaction summarized by A(·). The

P-DA, the P-DAA, the E-DA, and the S-DA are all examples of matching mechanisms.

28For simplicity, we do not consider random mechanisms.
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Whereas matching mechanisms may differ along many dimensions, our restricted infor-

mation structure draws attention to those with two pertinent properties. First, a reasonable

mechanism should not leverage information that agents themselves do not know. In period

1, for example, agents know only their ex ante spot rankings. Thus, a matching mechanism

should base its period 1 assignment only on that information and not on agents’ ex post

preferences. We call the matching mechanism non-prophetic if it assigns the same period 1

matching in all economies where agents’ ex ante spot rankings coincide. Formally, matching

mechanism A(·) is non-prophetic if for all economies e = (M,W, (≻i)) and e′ = (M,W, (≻′
i))

such that P≻i
= P≻′

i
for each i, A1(e) = A1(e

′). The E-DA and the S-DA are both non-

prophetic mechanisms.

Second, the mechanism should lead to a dynamically stable matching when ≻i∈ S̄i for

all i, which is the assumed case. Dynamic stability remains a desirable benchmark in this

setting since it captures an appealing no-regret property. To illustrate, observe that dynamic

stability has both prospective and retrospective interpretations. In its traditional forward-

looking form, an agent threatens to veto a matching that has not yet occurred. In its

backward-looking form, dynamic stability captures how an agent feels ex post. While an

agent cannot “turn back the clock” to period-1 block once on period 2’s threshold, by (L3)

he can assess a matching’s continuation relative to persistent alternatives. For example,

if after period 1 m discovers that in fact ww ≻m µ(m) and w learns that mm ≻w µ(w),

both will feel regretful not pairing together at an earlier opportunity. A dynamically stable

matching insulates agents from such regret. We call a matching mechanism dynamically

stable on S̄ if it identifies a dynamically stable matching when ≻i∈ S̄i for all i. Many

matching mechanisms are both non-prophetic and dynamically stable on S̄. The E-DA is an

example, but there are others as well. Importantly, there exist such mechanisms that may

result in volatile outcomes, perhaps by leveraging newly available information when setting

the period 2 assignment.29

At this point, two natural questions arise. First, what are the properties of a stable

matching in such market? And second, when is re-matching after period 2 preferences are

known a welfare-enhancing proposition? We address these questions with two theorems.

29A simple example is the following: First, in the following economy

≻m1
: w1w1, w1w2, w2w2, w2w1,m1m1

≻m2
: w2w2, w2w1, w1w1, w1w2,m2m2

≻w1
: m2m2,m2m1,m1m2,m1m1, w1w1

≻w2
: m1m1,m1m2,m2m1,m2m2, w2w2

the mechanism assigns the dynamically stable matching where µ(m1) = w1w2 and µ(m2) = w2w1. In all
other economies, it assigns the E-DA matching.
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Theorem 7, which can be viewed as partial reciprocal to Theorem 5, begins with the stable

matching µ = (µ1, µ2) generated by a non-prophetic mechanism. It shows that µ̄ = (µ1, µ1)

is also dynamically stable. Thus, the theorem shows that in markets operating as we have

assumed, forgoing a re-matching for period 2 is innocuous if stability is the sole concern. As

shown by Example 3 above, this property is not generally true.

Theorem 7. Let A be a non-prophetic matching mechanism that is dynamically stable on S̄.

Suppose that in economy e where ≻i∈ S̄i for all i, A(e) = µ = (µ1, µ2). Then µ̄ = (µ1, µ1) is

a dynamically stable matching in economy e.

Since µ and µ̄ are both dynamically stable, they can be compared on an equal footing

and we can tackle the second question posed above. While re-matching between periods

offers an opportunity to improve welfare in light of newly available information, Theorem 8

shows that the scope for improvement is actually very small. In fact, re-matching cannot be

Pareto improving relative to maintaining the interim status-quo. Furthermore, if an agent

gains from re-matching, then his or her initial partner must necessarily be harmed by the

ordeal—even when he or she finds a new period 2 partner.

Theorem 8. Assume ≻i∈ S̄i for all i and suppose µ = (µ1, µ2) is dynamically stable. Let

µ̄ = (µ1, µ1). If µ(i) ≻i µ̄(i), then µ2(i) = j and µ̄(j) ≻j µ(j).

An application unifying the preceding analysis considers market unraveling. Though

unraveling may take on many forms, its most characteristic feature is the early commitment

of parties to relationships far in the future, often before valuable information becomes known.

It is known that uncertainty contributes to unraveling as early contracting provides insurance

(Roth and Xing, 1994; Li and Rosen, 1998; Hałaburda, 2010; Ostrovsky and Schwarz, 2010;

Echenique and Pereyra, 2013). Our model reinforces this intuition in a new way. Suppose

agents interact on two occasions, in periods 1 and 2, and they learn new information before

period 2. If a non-prophetic and dynamically stable (on S̄) mechanism describes this market’s

operation, agents will generally be averse to the prospect of revising their initial matching.

Prolonging the initial period-1 matching is dynamically stable (Theorem 7); hence, they will

not feel regretful ex post. Furthermore, half of agents who re-match between periods will

be harmed by the change (Theorem 8). The high incidence of loss relative to the interim

status-quo renders the existence and operation of a vibrant period-2 (re-)matching market

quite precarious, despite the arrival of new information. Hence, any period-2 market has a

natural inclination to thin out and to fold into the period-1 interaction.
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The job market for entry-level lawyers in the United States approximates our two-period

setting and illustrates the above phenomenon. This market de facto operates through the

market for summer law interns in the preceding year (the period 1 matching).30 Most firms

have a summer program and extend job offers for the following year (the period 2 matching)

to a high fraction (more than 90 percent) of summer interns (NALP, 2014). Thus, most

firms and students elect to prolong their initial matching rather than waiting for additional

information to arrive during the student’s final year of law school.

4 Financial Transfers

An important generalization of Gale and Shapley’s model involves financial transfers (Craw-

ford and Knoer, 1981; Kelso and Crawford, 1982). Considering this extension in a multi-

period setting introduces novel concerns not apparent in the one-shot, static case. For

example, in a multi-period setting, agents’ access to savings, credit, and other financial tools

assumes practical prominence. The ability to shift income across time affects welfare di-

rectly through consumption smoothing. More subtly, however, this ability also has indirect

consequences through its implications for incentives and, ultimately, market stability.31 Our

model lets us disentangle both direct and indirect effects.

For a unified exposition and notation, we continue to consider a market composed of men

and women. Though intrahousehold transfers feature in many domestic arrangements, we

hope this nomenclature does not shroud this extension’s broader applicability. Instead, we

may consider a matching between firms and workers, with transfers interpreted as wages, or a

matching between students and schools, with transfers being tuition charges or scholarships.

Extending our original complete-information model, define agents’ strict preferences over

plans of the form

x =
(
(i1, y1), (i2, y2)

)
≡

(

i1 i2

y1 y2

)

.

A single-period assignment, (it, yt), identifies an agent’s period-t partner and a transfer

received of a numeraire commodity in that period. An agent assigned the plan
(
j k
2 −1

)
is

matched to j in period 1 and receives 2 units of the numeraire. In period 2, he is matched

to k and supplies 1 unit of the numeraire. We continue to call µt : M ∪ W → M ∪ W a

single-period matching. We assume that period-t transfers between agents belong to the

30Roth and Xing (1994) and Ginsburg and Wolf (2004) describe this market in detail. Avery et al. (2001)
examine the closely-related market for judicial law clerks.

31These conclusions echo Rogerson’s (1985) from his analysis of a multi-period, principal-agent relationship.
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finite set Y ⊂ Z and are specified by the function σt : M ∪W → Y .32 We assume that 0 ∈ Y

and yt ∈ Y ⇐⇒ −yt ∈ Y . The functions µt and σt are compatible if µt(i) = j =⇒ σt(i) =

−σt(j). Thus, when together, a credit for i is a debit for j. When µt and σt are compatible,

the pair ρt = (µt, σt) is a single-period outcome. An outcome, ρ = (ρ1, ρ2) ≡
(
µ1 µ2

σ1 σ2

)
, is a

sequence of single-period outcomes.

While the above setup naturally generalizes our existing model, it remains incomplete.

In multi-period economies, access to credit or savings affects behavior. To illustrate, suppose

agent i’s preference is
(
j j
2 2

)
≻i

(
k k
2 2

)
≻i

(
j j
3 1

)
. Absent further embellishments, if given a

choice between
(
k k
2 2

)
and

(
j j
3 1

)
, he should opt for the former. Suppose, however, that the

agent can save part of his period-1 allocation of the transferable good. Now, if given a choice

between
(
k k
2 2

)
and

(
j j
3 1

)
, the latter is superior. Access to savings lets him independently

transform the transfer stream (3, 1) into (2, 2) thereby replicating
(
j j
2 2

)
, which he prefers.

From i’s point of view, the plans
(
j j
2 2

)
and

(
j j
3 1

)
become “equivalent” once saving is possible.

While financial access can be subsumed into preferences a priori, we introduce it sepa-

rately. Though this layering complicates some notation, it allows for welfare comparisons

and new comparative statics with changing financial capabilities. As a first step, endow each

agent with a financial technology, fi(·) : Y × Y → 2Y×Y . The set fi(y) consists of all inde-

pendently attainable transfer profiles at y = (y1, y2). Intuitively, fi(y) can be interpreted

as agent i’s intertemporal budget set. For example, if agent i can save without interest,

we might define fi(y) = {(y1, y2), (y1 − 1, y2 + 1), . . .}. By saving, an agent can reduce the

receipts in period 1 and increase them in period 2, as in the discussion above. Similarly, if

the agent can borrow, we might define fi(y) = {(y1, y2), (y1+1, y2− 1), . . .}. Other financial

instruments can be modeled similarly. For simplicity, we assume that y ∈ fi(y) and we do

not consider financial technologies with stochastic returns, such as stocks. Abusing notation,

let fi
((

j k
y1 y2

))
≡
{( j k

y′
1
y′
2

)
: (y′1, y

′
2) ∈ fi((y1, y2))

}

be the set of attainable plans at
(

j k
y1 y2

)
.

To model decision making, define the fi-adaptation of the preference ≻i as

(
j k
y1 y2

)
≻fi

i

(
j′ k′

y′
1
y′
2

)
⇐⇒ ∃

(
j k
ỹ1 ỹ2

)
∈ fi

((
j k
y1 y2

))
such that

∀
(

j′ k′

ỹ′
1
ỹ′
2

)
∈ fi

((
j′ k′

y′
1
y′
2

))

,
(

j k
ỹ1 ỹ2

)
≻i

(
j′ k′

ỹ′
1
ỹ′
2

)
.

If x ≻fi
i x′, then x gives agent i access to a better plan than x′. If x 6≻fi

i x′ and x′ 6≻fi
i x,

then x and x′ are fi-equivalent and we write x ∼fi
i x′.33 This equivalence formalizes the

32The discrete set of feasible transfers may be denominated in the smallest practical unit, such as dollars
or pennies. The integer restriction is without loss of generality.

33Lemma A.4 shows that ∼fi
i is an equivalence relation. As usual, x %

fi
i x′ if x ≻fi

i x′ or x ∼fi
i x′.
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observation from the motivating discussion above.

Despite the expanded domain, the definitions of blocking and stability retain their prior

form with fi-adapted preferences guiding behavior. Agent i can period-1 block ρ if
(

i i
0 0

)
≻fi

i

ρ(i) and he can period-2 block ρ if
(
µ1(i) i

σ1(i) 0

)
≻fi

i ρ(i). Blocking by a pair generalizes similarly.

The pair (m,w) can period-1 block ρ if there exist y1, y2 ∈ Y such that

1.
(
m m
y1 y2

)
≻fw

w ρ(w) and
(

w w
−y1 −y2

)
≻fm

m ρ(m);

2.
(
w m
0 y2

)
≻fw

w ρ(w) and
(
m w
0 −y2

)
≻fm

m ρ(m);

3.
(
m w
y1 0

)
≻fw

w ρ(w) and
(

w m
−y1 0

)
≻fm

m ρ(m); or,

4.
(
w w
0 0

)
≻fw

w ρ(w) and
(
m m
0 0

)
≻fm

m ρ(m).

They can period-2 block ρ if there exists y2 ∈ Y such that

1.
(
µ1(w) m

σ1(w) y2

)
≻fw

w ρ(w) and
(
µ1(m) w

σ1(m) −y2

)
≻fm

m ρ(m); or,

2.
(
µ1(w) w

σ1(w) 0

)
≻fw

w ρ(w) and
(
µ1(m) m

σ1(m) 0

)
≻fm

m ρ(m).

The outcome ρ is ex ante stable if it cannot be period-1 blocked by any agent or pair. It is

dynamically stable if it cannot be period-t blocked by any agent or pair in any period.

Like in our original model, ex ante stable outcomes exist without further qualifications

(Lemma A.5), but a restriction is required to ensure the existence of a dynamically sta-

ble outcome. However, as illustrated by the next example, transfers and financial access

introduce additional complications due to their impact on dynamic incentives.

Example 7. Consider an economy with one employer (m) and one worker (w) with prefer-

ences given by (4) and (5), respectively.

· · · ≻m

(
w w
−1 −2

)
≻m

(
w w
−2 −2

)
≻m

(
m m
0 0

)
≻m · · · ≻m

(
w w
−1 −3

)
≻m

(
w w
−3 −1

)
≻m · · · (4)

· · · ≻w

(
m w
1 1

)
≻w

(
m m
2 2

)
≻w

(
m m
3 1

)
≻w

(
m m
1 3

)
≻w

(
w w
0 0

)
≻w · · · ≻w

(
m w
2 0

)
≻w · · · (5)

In this situation, the employer must hire the worker for two periods to produce output, but

is unable to pay more than 2 dollars in wages per period. To work in both periods, the

worker demands a lifetime income of 4 dollars. However, her most preferred outcome is to

work for one period and then retire, provided she gets some income in retirement. Consider

the following three possibilities:
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1. Suppose neither party can save or borrow. In this case there is a unique dynamically

stable outcome. The worker is employed for both periods at a wage of 2 per period:

ρ∗(m) =
(

w w
−2 −2

)
and ρ∗(w) =

(
m m
2 2

)
.

2. Suppose w gains access to savings, fw(y) = {(y1, y2), (y1 − 1, y1 + 1), . . .}, but m does

not. Thus,
(
m w
1 1

)
∼fw

w

(
m w
2 0

)
≻fw

w

(
m m
2 2

)
and w will period-2 block any plan where

she receives 2 in period 1. Thus, there is no dynamically stable outcome.

3. Suppose, additionally, that fm(y) = {(y1, y2), (y1 − 1, y1 + 1), . . .} and m can delay

payments to w. Therefore,
(

w w
−1 −3

)
∼fm

m

(
w w
−2 −2

)
. Now the outcome where ρ∗(m) =

(
w w
−1 −3

)
and ρ∗(w) =

(
m m
1 3

)
is dynamically stable. The employer prevents the worker

from quitting prematurely by backloading her compensation.

As apparent in Example 7, transfers and finance have cross-cutting implications for mar-

ket stability and welfare. Generally, credit or savings should improve welfare as they expand

an agent’s consumption possibilities. However, once we focus on stable outcomes, matters

may be different. Stable outcomes may fail to exist. And, even if they do exist, welfare may

decline. The dynamically stable outcome in the absence of savings (case 1) Pareto-dominates

the outcome when saving is possible (case 3).

To ensure the existence of a dynamically stable outcome, and to resolve the complications

highlighted by Example 7, we can mirror our original analysis. First, we generalize SIC.

Definition 2 (G-SIC). The fi-adapted preference ≻fi
i satisfies generalized sequential im-

provement complementarity if

1.
(
j k

y ỹ′

)
≻fi

i

(
j j

y y′

)
%

fi
i

(
i i
0 0

)
=⇒

(
k k
ỹ′ ỹ′

)
≻fi

i

(
j j

y y′

)
;

2.
(
j k

y ỹ′

)
≻fi

i

(
j i
y 0

)
≻fi

i

(
i i
0 0

)
=⇒

(
k k
ỹ′ ỹ′

)
≻fi

i

(
j i
y 0

)
; and,

3.
(

i k
0 ỹ′

)
≻fi

i

(
i j

0 y′

)
≻fi

i

(
i i
0 0

)
=⇒

(
k k
ỹ′ ỹ′

)
≻fi

i

(
i j

0 y′

)
.

G-SIC and SIC share a common underlying intuition and the former reduces to the latter

when transfers are not possible (Y = {0}). Unlike SIC, however, G-SIC is a joint restriction

on both preferences (≻i) and the financial technology (fi). When fi-adapted preferences

satisfy G-SIC, the existence of a dynamically stable outcome follows from a generalized P-

DAA procedure. We define this procedure in Appendix A and its operation parallels that of

the original P-DAA with transfers incorporated into proposals (Crawford and Knoer, 1981;

Kelso and Crawford, 1982). Verifying stability mimics the proof of Theorem 3.
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Theorem 9. If agents’ preferences satisfy G-SIC, a dynamically stable outcome exists.

An alternative route to ensure the existence of a dynamically stable matching is to specify

collective preference/financial restrictions. Preferring to focus on agent-level assumptions,

we do not pursue this reasoning here, though a reexamination of cases two and three in

Example 7 points toward the argument involved. Once m gains access to savings, he can

provide w adequate incentives given her financial technology. A collective restriction on

{≻fi
i } ensuring such flexibility would again ensure existence. Backloaded compensation, end

of contract bonuses, and vesting periods reflect this type of solution in practice.

5 Concluding Remarks

We have proposed a conservative, portable, multi-period generalization of the classic model

of one-to-one matching. Our analysis shifts focus away from a one-shot interaction toward

a long-term appraisal of a market’s operation and of agents’ welfare. Such a focus is the

natural one since many bilateral interactions, such as marriage, employment, or schooling,

are far from fleeting, though often impermanent. The conditions supporting stable outcomes

are behaviorally-plausible and, we contend, quite common. Sequential improvement comple-

mentarity allows for complementarities among distinct partners and status-quo bias. While

common attitudes, such as those featuring inertia, seemingly tilt preferences toward persis-

tent plans, preferred stable outcomes may in fact be volatile. Though our discussion focuses

on two periods, these conclusions generalize. Our model readily accommodates monetary

transfers, credit and finance, and the common case where agents are uncertain about their

future preferences. These extensions provide subtle qualifications of our primary analysis.

For brevity we have suppressed many natural embellishments. For example, we have not

addressed the arrival or departure of agents nor the many-to-one nature of some matching

problems. While such extensions introduce novel concerns, the motivations and essence of

our stability definitions carry over naturally. Similarly, we have only sketched the strategic

nuances of multi-period markets. We consider these questions as promising areas for future

research and we hope that our analysis provides a foundation for their investigation. Of

course, many of these features will also be central when the time-component of relationships

is incorporated into market design exercises. In that context, time can serve as a design

variable rather than a constraint. New solutions to previously challenging problems may

emerge.
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The following appendices are intended for online publication only.

A Proofs and Omitted Lemmas

Proof of Theorem 2. Let µ∗ be the matching identified by the P-DA procedure. According

to the procedure, no agent will be assigned to a plan that is worse than being unmatched

in both periods. Thus, ii 6≻i µ
∗(i). Also, no pair {m,w} can block µ∗. If not, then there

exists a plan x ∈ {wm,mw,ww} for m and a corresponding plan for w that both prefer. If

x ≻m µ∗(m), then m must have proposed that arrangement to w at some round before he

made his proposal defined in µ∗(m). w must have rejected that original proposal; thus, she

must prefer µ∗(w). However, this is a contradiction.

Proof of Theorem 3. Let µ∗ be the matching identified by the P-DAA procedure. Let µ̃1

be the interim matching identified by the P-DAA’s first step. As a preliminary observation,

note that µ∗(i) %i µ̃
1(i) for all i.34

Hence, µ∗ cannot be period-1 blocked. If this was not the case, then the same blocking

agent/pair can period-1 block µ̃1, which is not possible. (The P-DA procedure identifies an

ex ante stable matching.)

Suppose agent i can period-2 block µ∗, i.e. (µ∗
1(i), i) ≻i µ

∗(i). If µ∗
1(i) = i, then ii ≻i

µ∗(i), which is a contradiction. Therefore, µ∗
1(i) = j 6= i. There are two cases. If µ̃1(i) = jj,

then by SIC(1) ji ≻i µ
∗(i) %i µ̃

1(i) = jj =⇒ ii ≻i jj = µ̃1(i), which is a contradiction.

If instead µ̃1(i) = ji, then ji ≻i µ
∗(i) %i µ̃

1(i) = ji, which is also contradiction. Therefore,

agent i cannot period-2 block µ∗.

If m and w can period-2 block µ∗, then (µ∗
1(m), w) ≻m µ∗(m) %m µ̃1(m) %m mm and

(µ∗
1(w), m) ≻w µ∗(w) %w µ̃1(w) %w ww. If µ∗

1(m) = w and µ∗
1(w) = m, then m and w can

period-1 block µ̃1, which is not possible. The same applies when µ∗
1(m) = m and µ∗

1(w) = w.

Thus, without loss of generality, there are two cases.

First, suppose µ∗
1(m) = m and µ∗

1(w) = m′ 6= m. In this case, mw ≻m µ∗(m) %m

mj = µ̃1(m) %m mm and m′m ≻w µ∗(w) %w m′k = µ̃1(w) ≻w ww for some j ∈ Wm and

k ∈ Mw. If j = m, SIC(1) implies that ww ≻m mm = µ̃1(m). If j = w′ 6= m, SIC(3) implies

34If µ∗(i) = (µ̃1
1(i), µ̃

2
2(i)) 6= µ̃1(i), then it must be that µ̃1

2(i) = i. Since the Gale and Shapley (1962)

deferred acceptance procedure generates an individually rational (one-period) matching, µ̃2
2(i) %

µ̃1

1
(i)

i i =⇒
µ∗(i) = (µ̃1

1(i), µ̃
2
2(i)) %i (µ̃

1
1(i), i) = µ̃1(i).
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ww ≻m mw′ = µ̃1(m). Similarly, if k = w, then by SIC(2) m′m ≻w m′w ≻w ww =⇒

mm ≻w m′w = µ̃1(w). Finally, if k = m′, SIC(1) implies mm ≻w m′m′ = µ̃1(w). Whatever

the case, m and w can period-1 block µ̃1—a contradiction.

Instead, and second, suppose µ∗
1(m) = w′ 6= w and µ∗

1(w) = m′ 6= m. In this case,

w′w ≻m µ∗(m) %m w′j = µ̃1(m) ≻m mm and m′m ≻w µ∗(w) %w m′k = µ̃1(w) ≻w ww

for some j ∈ Wm and k ∈ Mw. If j = m, SIC(2) implies that ww ≻m w′m = µ̃1(m). If

j = w′ 6= m, SIC(1) implies that ww ≻m w′w′ = µ̃1(m). By the same reasoning, we conclude

that mm ≻w m′k = µ̃1(w) for k ∈ {w,m′}. Thus, m and w can period-1 block µ̃1, which is

a contradiction.

Lemma A.1. Suppose ≻i∈ S̄i.

1. jj ≻i kk =⇒ jj ≻i jk and jj ≻i kk =⇒ jj ≻i kj.

2. jk ≻i kk =⇒ jj ≻i kk and kj ≻i kk =⇒ jj ≻i kk.

3. For all l 6= j and l 6= k, jj ≻i kk ⇐⇒ lj ≻i lk and jj ≻i kk ⇐⇒ kl ≻i kl.

Proof. Let ≻′
i∈ Si be such that ≻i∈ Υ(≻′

i).

1. jj ≻i kk ⇐⇒ jj ≻′
i kk =⇒ jP≻′

i
k =⇒ jj ≻′

i jk =⇒ jj ≻i jk. The second

implication follows similarly.

2. jk ≻i kk =⇒ jk ≻′
i kk =⇒ jP≻′

i
k =⇒ jj ≻′

i kk =⇒ jj ≻i kk. The second

implication follows similarly.

3. jj ≻i kk ⇐⇒ jj ≻′
i kk ⇐⇒ jP≻i

k ⇐⇒ jP≻′

i
k =⇒ lj ≻′

i lk =⇒ lj ≻i lk since

l 6= j, k. The second implication follows similarly.

Proof of Corollary 1. By Lemma A.1, if ≻i∈ S̄i, then either jj ≻i jk or kk ≻i jk. Hence,

S̄i ⊂ Ci.

Lemma A.2. If ≻i reflects Pi, then Pi = P≻i
.
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Proof. By definition, Pi = P≻i
if and only if jPik ⇐⇒ jP≻i

k. Suppose ≻i reflects Pi.

Given ≻i, P≻i
is uniquely defined. Without loss of generality assume jP≻i

k. Suppose, for

contradiction, that kPij. Then, kPij =⇒ kk ≻i jj =⇒ kP≻i
j =⇒ ¬[jP≻k]. The first

implication is from the definition of Pi. The second follows from the definition of P≻i
. The

final implication, a contradiction, is because P≻i
is asymmetric. Therefore, jP≻i

k =⇒ jPik.

The converse case follows similarly. Therefore, Pi = P≻i
.

Proof of Theorem 4. Let µ∗ be a persistent dynamically stable matching. Suppose µ∗ is

not Pareto optimal. If it is Pareto-dominated by a persistent matching µ̃, then there must

exist m ∈ M and w ∈ W such that µ̃(m) = ww ≻m µ∗(m) and µ̃(w) = mm ≻w µ∗(w).

However, this contradicts µ∗ being dynamically stable since m and w can period-1 block µ∗.

Thus, µ∗ must be Pareto-dominated by a matching µ̃ which is volatile for some man, m1.

This implies µ̃(m1) = m1w1 or w1m or w1w2. In the first two cases, µ̃(m1) ≻m1
µ∗(m1) %m1

m1m1 and ≻m1
∈ S̄m1

imply that w1w1 ≻m1
µ̃(m1). In the third case, since ≻m1

∈ S̄m1
, (i)

w1w1 ≻m1
w1w2 or (ii) w2w2 ≻m1

w1w2. In all cases, therefore, we observe that µ̃(m1) is

dominated by a persistent plan. Without loss of generality, suppose w1w1 ≻m1
µ̃(m1) ≻m1

µ∗(m1). As ≻w1
∈ S̄w1

,

m2m2 ≻w1
m1m2 = µ̃(w1) ≻w1

µ∗(w1) ≻w1
m1m1

for some m2 ∈ M , m2 6= m1. Otherwise, m1 and w1 would be able to block µ∗. Since µ∗ is

dynamically stable and ≻m2
∈ S̄m2

,

w3w3 ≻m2
w3w1 = µ̃(m2) ≻m2

µ∗(m2) ≻m2
w1w1

for some w3 ∈ W , w3 6= w1. Continuing in this fashion we can define a sequence of distinct

men m3, m4, . . . and a sequence of distinct women w1, w3, w4, . . .. However, this is a con-

tradiction as there is but a finite number of agents in the economy. Therefore µ∗ must be

Pareto optimal.

Lemma A.3. If ≻i∈ S̄i for all i, then the E-DA and the P-DAA matchings coincide.

Proof. Let µ̃ be the interim matching identified in the P-DAA procedure’s first step. Three

facts are of note:

1. For all i 6= j, µ̃(i) 6= ji. Suppose µ̃(i) = ji. When ≻i∈ S̄i, jj ≻i µ̃(i) = ji. Likewise,

ii ≻j µ̃(j) = ij. But this implies i and j can period-1 block µ̃, which is a contradiction.
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2. For all i 6= j, µ̃(i) 6= ij. The argument parallels the preceding case.

3. If µ̃(i) = ii, then µ∗(i) = ii. Suppose that µ∗(i) = ij, j 6= i. However, ≻i∈ S̄i implies

that jj ≻i µ̃(i). Noting cases (1) and (2), it must be that µ̃(j) = jj and thus ii ≻i µ̃(j).

Therefore, i and j can period-1 block µ̃, which is a contradiction.

Facts (1)–(3) imply that µ̃(i) = ii or µ̃(i) = jj and µ̃ = µ∗. Clearly, the same matching would

be generated if in phase 1 men were restricted to proposals from the set X0
m = {ww : w ∈ W}.

This corresponds to men proposing according to P≻m
as in the E-DA mechanism.

Proof of Theorem 5. Consider the dynamically stable matching µ = (µ1, µ2) and let

µ̄ = (µ2, µ2). If µ1 = µ2, then the theorem is trivially true. Henceforth, suppose µ1 6= µ2.

We argue by contradiction.

Suppose µ̄ can be blocked by agent i alone. If ii ≻i µ̄(i) then ≻i∈ S̄i implies (µ1(i), i) ≻i

(µ1(i), µ2(i)). Thus, µ is not dynamically stable—a contradiction. If instead (µ2(i), i) ≻i

µ̄(i), ≻i∈ S̄i implies ii ≻i (µ2(i), µ2(i)), which is a contradiction.

Suppose m and w can block µ̄. There are four relevant cases:

1. Suppose ww ≻m µ̄(m) and mm ≻w µ̄(w). This implies that wP≻m
µ2(m) and mP≻w

µ2(w).

Hence, (µ1(m), w) ≻m (µ1(m), µ2(m)) and (µ1(w), m) ≻w (µ1(w), µ2(w)). But this im-

plies m and w can period-2 block µ—a contradiction.

2. Suppose wm ≻m µ̄(m) and mw ≻w µ̄(w). From above, we know that µ̄ is dynamically

individually rational. Hence, µ̄(m) %m mm and µ̄(w) %w ww. Noting case (a) above,

we may assume that µ̄(m) ≻m mm and µ̄(w) ≻w ww. But this implies ww ≻m wm ≻m

µ̄(m) and mm ≻w mw ≻w µ̄(w). Hence, case 1 applies.

3. Suppose mw ≻m µ̄(m) and wm ≻w µ̄(w). An analogous argument to the preceding

case applies.

4. Suppose m and w can period-2 block µ̄. Then (µ2(m), w) ≻m (µ2(m), µ2(m)) =⇒

ww ≻m µ̄(m) and (µ2(w), m) ≻w (µ2(w), µ2(w)) =⇒ mm ≻w µ̄(w). Hence, case 1

applies.

In each case above we are led to a contradiction. Hence, µ̄2 is dynamically stable.

Proof of Theorem 6. Fix a profile of reported preferences for all agents i 6= m1. Let µ∗ be

the P-DAA matching when m1 truthfully reveals his preference ≻m1
. Let µ̂ be the P-DAA

matching when m1 states his preference as ≻̂m1
6= ≻m1

. Assume that µ̂(m1) ≻m1
µ∗(m1).
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Suppose that all other agents report preferences ≻i, i 6= m1, that satisfy SIC. First, the

same argument verifying that the one-period deferred acceptance algorithm is strategyproof

for m1 leads us to conclude that µ̂(m1) /∈ {w1w1, w1m1, m1w1, m1m1} for some w1 ∈ W .

Thus, µ̂(m1) = w1w2 for w1 6= w2. To attain this volatile final matching in the P-DAA, m1

must have announced a preference where w1w2 ≻̂m1
w1m1 ≻̂m1

m1m1. Since the announced

preference must satisfy SIC, SIC(2) implies that w2w2 ≻̂m1
w1m1. Note that w1m1 is m1’s

(interim) matching after step 1 of the P-DAA procedure given his report of ≻̂m1
.

Now consider w2. Since she participates in step 2 of the P-DAA, µ̂(w2) = jm1 ≻w2

jw2 %w2
w2w2 where jw2 is her (interim) matching after the procedure’s first step and

j 6= m1. Since ≻w2
satisfies SIC, SIC(2) implies that m1m1 ≻w2

jw2. Since w2w2 ≻̂m1
w1m1

and m1m1 ≻w2
jw2, the interim matching following step 1 of the P-DAA procedure is not

ex ante stable with respect to the stated preferences, which is a contradiction.

Proof of Theorem 7. Recall that A(e) = µ = (µ1, µ2) and µ̄ = (µ1, µ1). Suppose µ1 6= µ2.

Else, the theorem is trivially true. First, we verify that µ̄ is dynamically individually rational.

Suppose for some m ∈ M , mm ≻m µ̄(m). This implies µ1(m) = w1 ∈ W . If µ2(m) = m,

then w1m ≻m mm ≻m w1w1 = µ̄(m), which is a contradiction as ≻m∈ S̄m. Therefore,

µ2(m) = w2 6= w1 and hence

w2w2 ≻m w1w2 = µ(m) ≻m mm ≻m w1w1.

Now consider an alternative economy, e′, with the same agents and where the preferences

of all i 6= m are exactly as in e, i.e. ≻i=≻′
i for all i 6= m. However, the preferences of agent m,

≻′
m, are defined as follows: (i) ≻′

m has the same ex ante spot ranking as ≻m, i.e. P≻′

m
= P≻m

;

(ii) for all j 6= k, ii ≻′
m jk; and, (iii) if i 6= j and k 6= l, ij ≻m kl ⇐⇒ ij ≻m kl. Clearly,

≻m∈ S̄m. Given these preferences, it follows that mm ≻′
m w1w1 ≻

′
m w1i for all i ∈ Wm\{w1}.

As the procedure A is non-prophetic, A1(e) = A1(e
′). This implies that in the matching

A1(e
′), agent m is matched to w1 in period 1. But this contradicts A always generating

a dynamically stable matching when agents’ preferences are in S̄i. Thus, µ̄(m) %m mm.

Noting this fact, it follows that µ̄(m) %m (µ1(m), m) as well. Hence, µ̄ is dynamically

individually rational.

Suppose some pair, m and w, can period-1 block µ̄. Since µ̄ is dynamically individually

rational, there are three possible cases:

1. Suppose ww ≻m (µ1(m), µ1(m)) and mm ≻w (µ1(w), µ1(w)). Clearly, w 6= µ1(m) and
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m 6= µ1(w). Now consider an alternative economy e′ where the preferences of all agents

other than m and w are identical to those in e. However, the preferences of m, ≻′
m,

are identical to ≻m except that all persistent partnership plans are shifted to the very

top of the preference ranking and P≻′

m
= P≻m

. (This is analogous to the definition of

≻′
m above.) Define ≻′

w similarly. In this alternative economy, matching mechanism A

must assign agent m to µ1(m) in period 1. However ww ≻′
m (µ1(m), i) for all i ∈ Wm.

Likewise, w must be assigned to µ1(w), but mm ≻′
w (µ1(w), j) for all j ∈ Mw. Hence,

m and w would be able to period-1 block the matching generated by A in the economy

e′, contradicting that A always generates a dynamically stable matching when agents’

preferences are in S̄i.

2. Suppose mw ≻m (µ1(m), µ1(m)) and wm ≻w (µ1(w), µ1(w)). Since ≻i∈ S̄i, ww ≻m

mw ≻m (µ1(m), µ1(m)) and mm ≻w wm ≻w (µ1(w), µ1(w)). Thus, case (1) applies.

3. Suppose wm ≻m (µ1(m), µ1(m)) and mw ≻w (µ1(w), µ1(w)). The same reasoning as

case (2) and (1) applies.

Therefore, no pair wishes to period-1 block µ̄.

Finally, suppose m and w can period-2 block µ̄. Then (µ1(m), w) ≻m µ̄(m) =⇒ ww ≻m

(µ1(m), w) ≻m µ̄(m). Likewise, (µ1(w), m) ≻w µ̄(w) =⇒ mm ≻w (µ1(w), m) ≻w µ̄(w1).

But this implies m and w could period-1 block µ̄, which by the previous argument is not

possible. Thus, no pair wishes to period-2 block µ̄.

Proof of Theorem 8. Suppose µ(i) = (µ1(i), µ2(i)) ≻i (µ1(i), µ1(i)) = µ̄(i). Since ≻i∈ S̄i,

(µ2(i), µ2(i)) ≻i µ(i) ≻i µ̄(i). Clearly, this implies µ2(i) = j 6= i. Thus, jj ≻i µ(i) ≻i µ̄(i).

Since µ is dynamically stable, µ(j) = (µ1(j), i) ≻j ii. However, ≻j∈ S̄j, which implies

µ̄(j) = (µ1(j), µ1(j)) ≻j (µ1(j), i) = µ(j).

Lemma A.4. ∼fi
i is an equivalence relation.

Proof. We must verify three properties: reflexivity, symmetry, and transitivity.

1. ∼fi
i is reflexive. x ∼fi

i x′ =⇒ [x 6≻fi
i x′ & x′ 6≻fi

i x] =⇒ [x′ 6≻fi
i x & x 6≻fi

i x′] =⇒

x′ ∼fi
i x.

2. ∼fi
i is symmetric. Suppose x 6∼fi

i x. Then x ≻fi
i x. Hence, ∃x̃ ∈ fi(x) such that

∀x̃′ ∈ fi(x), x̃ ≻i x̃
′. However, x̃ ∈ fi(x). Thus, x̃ ≻i x̃—a contradiction.
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3. ∼fi
i is transitive. Suppose x ∼fi

i x′ and x′ ∼fi
i x′′. To arrive at a contradiction, suppose

x ≻fi
i x′′. Thus, ∃x̃ ∈ fi(x) such that ∀x̃′′ ∈ fi(x

′′), x̃ ≻i x̃
′′. Since x ∼fi

i x′, ∃x̃′ ∈ fi(x
′)

such that x̃ 6≻i x̃
′. This implies x̃′ %i x̃. But then x̃′ %i x̃ ≻i x̃

′′ for all x̃′′ ∈ fi(x
′′),

which implies x′ ≻fi
i x′′—a contradiction. The same argument applies if instead we

assume x′′ ≻fi
i x. Hence, x ∼fi

i x′′.

Remark A.1. The proof of Theorem 9 proceeds similarly to the proof of Theorem 3. The

argument is constructive using a generalization of the P-DAA procedure. An analogous

generalization of Gale and Shapley’s (1962) deferred acceptance algorithm incorporating

transfers is the salary-adjustment process of Crawford and Knoer (1981). We apply their

intuition to our problem. Therefore, the argument should be familiar.

Definition A.1. The conditional preference induced by ≻fi
i at (j, y1) is defined as (k, y2) ≻

(fi)(j,y1)
i

(l, y′2) ⇐⇒
(

j k
y1 y2

)
≻fi

i

( j l

y1 y′
2

)
.

Algorithm A.1 (GP-DAA). The (man-proposing) generalized plan deferred acceptance pro-

cedure with adjustment identifies an outcome ρ∗ as follows. First, for each m define

X0
m ≡

{(
w w
y1 y2

)
,
(

w m
y1 0

)
,
(
m w
0 y2

)
: w ∈ W ; y1, y2 ∈ Y

}
.

Initially, no element of X0
m has been rejected. In round τ ≥ 1:

1. Let Xτ
m ⊂ X0

m be the set of plans that have not been rejected in some round τ ′ < τ . If

Xτ
m = ∅ or

(
m m
0 0

)
≻fm

m x for all x ∈ Xτ
m, then m does not make any proposals. In this

case, set ρ̃1(m) =
(
m m
0 0

)
. Otherwise, let

(
i j
y1 y2

)
be ≻fm

m -maximal in Xτ
m.35 If there are

several ≻fm
m -maximal elements in Xτ

m, choose a fixed ordering of these elements and

propose the first one. (This ordering is maintained through all subsequent rounds, if

necessary.) Let
(

i j
y1 y2

)
be that plan. It can assume one of three forms:

(a) If
(

i j
y1 y2

)
=
(

w w
y1 y2

)
then m proposes to w a two-period partnership along with the

transfer payments (y1, y2). From w’s perspective, this corresponds to
(

m m
−y1 −y2

)
.

(b) If
(

i j
y1 y2

)
=
(

w m
y1 0

)
then m proposes to w a period-1 partnership along with the

transfer payments (y1, 0). From w’s perspective, this plan corresponds to
(

m w
−y1 0

)
.

35All ≻fm
m -maximal elements involve the same potential partner, but may differ in the profile of transfer

payments. They are fm-equivalent.
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(c) If
(

i j
y1 y2

)
=
(
m w
0 y2

)
then m proposes to w a period-2 partnership along with the

transfer payments (0, y2). From w’s perspective, this plan corresponds to
(
w m
0 −y2

)
.

2. Let Xτ
w be the set of plans made available to w. If

(
w w
0 0

)
≻fw

w x for all x ∈ Xτ
m, w

rejects all proposals. Otherwise, if m made the ≻fw
w -maximal in Xτ

w proposal to w, w

(tentatively) accepts his proposal and rejects the others.

The above process continues until no further rejections occur. Let ρ̃1 be the resulting (in-

terim) matching. If ρ̃12(i) 6= (i, 0), set ρ∗(i) = ρ̃1(i), and remove i from the market.

Let M̂2 and Ŵ2 be the sets of men and women who were not removed from the market

in the preceding step. Thus, ρ̃12(i) = (i, 0) for all i ∈ M̂2 ∪ Ŵ2. For these agents define a

new period-2 outcome, ρ̃22, as follows. For all m ∈ M̂2, let X̂0
m = {(w, y2) : w ∈ Ŵ2, y2 ∈ Y }.

Initially no element in X̂0
m has been rejected. In round τ ≥ 1:

1. Let X̂τ
m ⊂ X̂0

m be the set of period-2 outcomes that have not been rejected in any

round τ ′ < τ . If X̂τ
m = ∅ or (m, 0) ≻

(fm)(ρ̃1
1
(m))

m x for all x ∈ X̂τ
m, then m does not make

any proposals. In this case, set ρ̃22(m) = (m, 0).

Otherwise, let (w, y2) be ≻
(fm)(ρ̃1

1
(m))

m -maximal in X̂ t
m. If there are several ≻(fm)(ρ̃1

1
(m))

m -

maximal elements in X̂τ
m, choose a fixed ordering of these elements and propose the

first one. (This ordering is maintained through all subsequent rounds, if necessary.) In

this case, m proposes to w a partnership for period 2 along with a period-2 transfer

payment of y2. From w’s perspective, that period-2 outcome corresponds to (m,−y2).

2. Let X̂τ
w be the set of period-2 outcomes made available to w. If (w, 0) ≻(fw)(ρ̃1

1
(w))

w x for

all x ∈ X̂τ
w, w rejects all proposals. Otherwise, if m made the ≻

(fw)(ρ̃1
1
(w))

w -maximal in

X̂τ
w proposal to w, w (tentatively) accepts his proposal and rejects the others.

The above process continues until no further rejections occur. At this point all tentatively-

accepted proposals are confirmed. Let ρ̃22 be the resulting (one-period) matching among the

agents in M̂2 ∪ Ŵ2. For all i ∈ M̂2 ∪ Ŵ2, set ρ∗(i) = (ρ̃11(i), ρ̃
2
2(i)).

Lemma A.5. The interim GP-DAA outcome, ρ̃1, is ex ante stable.

Proof. This lemma generalizes Theorem 2. From Definition A.1, it is clear that ρ̃1(i) %fi
i

(
i i
0 0

)
. Hence, no agent can period-1 block ρ̃1. If a pair m and w can period-1 block ρ̃1

then there must exist a plan for m and a corresponding plan for w, that both m and w

strictly prefer (given fi) to their assignment under ρ̃1. However, this implies that m must

have proposed that plan to w at some stage of the procedure and she must have rejected it.

Hence, she must prefer her assignment under ρ̃1 to that proposal, which is a contradiction.
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Proof of Theorem 9. We show that the GP-DAA outcome, ρ∗, is dynamically stable.

Let ρ̃1 be the interim matching from the procedure’s first step. By standard reasoning,

ρ∗(i) %fi
i ρ̃1(i) for all i. Step 2 in the GP-DAA weakly improves agents’ assignment. Since

ρ̃1 is ex ante stable (Lemma A.5), ρ∗ must also be ex ante stable. Therefore, it cannot be

period-1 blocked by any agent or by any pair.

Suppose agent i can period-2 block ρ∗, i.e. (ρ∗1(i), (i, 0)) ≻
fi
i ρ∗(i). Thus, ρ∗1(i) 6= (i, 0)

and ρ∗2(i) 6= (i, 0); else, we would arrive at a contradiction. Let ρ∗1(i) = (j, y1) for some

j 6= i. There are two cases. First, if ρ̃1(i) =
(

j j
y1 y2

)
, then by G-SIC(1),

(
j i
y1 0

)
≻fi

i ρ∗(i) %fi
i

ρ̃1(i) =
(

j j
y1 y2

)
=⇒

(
i i
0 0

)
≻fi

i ρ̃1(i), which is also a contradiction. If instead, and second,

ρ̃1(i) =
(

j i
y1 0

)
, then

(
j i
y1 0

)
≻fi

i ρ∗(i) %fi
i ρ̃1(i) =

(
j i
y1 0

)
, which is a contradiction. Therefore,

agent i cannot period-2 block ρ∗.

Suppose m and w can period-2 block ρ∗. This implies that there exists y′2 ∈ Y such that
( µ∗

1
(m) w

σ∗

1
(m) y′

2

)
≻fm

m ρ∗(m) %fm
m ρ̃1(m) and

( µ∗

1
(w) m

σ∗

1
(w) −y′

2

)
≻fw

w ρ∗(w) %fw
w ρ̃1(w). If µ∗

1(m) = w or

µ∗
1(m) = m and µ∗

1(w) = w, then m and w can period-1 block ρ̃1, which is not possible.

Thus, without loss of generality, there are two cases to consider.

1. Suppose ρ∗1(m) = (m, 0) and ρ∗1(w) = (m′, y′1), m
′ 6= m. Thus,

(m w
0 y′

2

)
≻fm

m ρ∗(m) %fm
m

(
m j
0 y2

)
= ρ̃1(m) for some (j, y2). If (j, y2) = (m, 0), then G-SIC(1) implies that

( w w
y′
2
y′
2

)
≻fm

m

(
m m
0 0

)
= ρ̃1(m). If instead (j, y2) = (w′, y′′2), w′ 6= m then G-SIC(3)

implies that
( w w
y′
2
y′
2

)
≻fm

m

(
m w′

0 y′′
2

)
= ρ̃1(m).

Similarly,
(
m′ m
y′
1

−y′
2

)
≻fw

w ρ∗(w) %fw
w

(
m′ k
y′
1

y′′
2

)
= ρ̃1(m) for some (k, y′′2). If (k, y′′2) = (w, 0),

then G-SIC(2) implies that
( m m,

−y′
2
−y′

2

)
≻fw

w

(
m′ w
y′
1

0

)
= ρ̃1(w). If instead (k, y′′2) = (m′, y′′2),

then G-SIC(1) implies that
( m m,

−y′
2
−y′

2

)
≻fw

w

(
m′ m′

y′
1

y′′
2

)
= ρ̃1(w). In each case, m and w

can period-1 block ρ̃1, which is a contradiction.

2. Suppose ρ∗1(m) = (w′, y1), w 6= w′, and ρ∗1(w) = (m′, y′1), m
′ 6= m. Thus,

(
w′ w
y1 y′

2

)
≻fm

m

ρ∗(m) %fm
m

(
w′ j
y1 y2

)
= ρ̃1(m) for some (j, y2). If (j, y2) = (m, 0), then G-SIC(2) implies

that
( w w
y′
2
y′
2

)
≻fm

m

(
w′ m
y1 0

)
= ρ̃1(m). If instead (j, y2) = (w′, y′′′2 ), then G-SIC(1) implies

that
( w w
y′
2
y′
2

)
≻fm

m

(
w′ w′

y1 y′′′
2

)
= ρ̃1(m). Analogously, we conclude that

( m m
−y′

2
−y′

2

)
≻fw

w

ρ̃1(w). Thus, m and w can period-1 block ρ̃1, which is a contradiction.
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B A T -Period Matching Market

This appendix presents a T -period version of Theorem 3. Kadam and Kotowski (2015) study

a special case of the model below.

Let M and W be disjoint, finite sets of men and women, respectively. A partnership

plan for m ∈ M is a sequence of partners x = (x1, x2, . . . , xT ) ∈ W T
m. A plan for w ∈ W

is defined analogously. When confusion is unlikely, we will abbreviate a partnership plan

as x = x1x2 · · ·xT . The truncation of plan x to the first t − 1 periods is x<t = x1 · · ·xt−1.

Its continuation from period t is x≥t = xtxt+1 · · ·xT . Definitions of x≤t and x>t follow

analogously. When we write x = (x<t−1, j, k, x>t), then j is the specified period-(t−1) partner

and k is the period-t partner. We let xjk stand for a partnership plan where xt ∈ {j, k} for all

t. Of course, xi = i · · · i is a constant plan. Each agent has a strict and rational preference,

≻i, defined over partnership plans.

Definition B.1. The function µt : M ∪W → M ∪W is a one-period matching if

1. For all m ∈ M , µt(m) ∈ Wm;

2. For all w ∈ W , µt(w) ∈ Mw; and,

3. For all i, µt(i) = j =⇒ µt(j) = i.

A matching, µ : M ∪ W → (M ∪ W )T is a sequence of one-period matchings, i.e. µ =

(µ1, . . . , µT ).

To define blocking and stability, we adopt a coalition-based nomenclature, which we also

employ in our analysis of the core (Appendix C). A coalition C is a non-empty subset of

agents, C ⊂ M ∪ W . A coalition can block a matching if it can define a within-coalition

matching that its members prefer.

Definition B.2. The function µC
t : C → C is a one-period matching for coalition C if

1. For all m ∈ M ∩ C, µC
t (m) ∈ Wm ∩ C;

2. For all w ∈ W ∩ C, µC
t (w) ∈ Mw ∩ C; and,

3. For all i ∈ C, µC
t (i) = j =⇒ µC

t (j) = i.

Definition B.3. A coalition C can period-t block the matching µ if there exists a sequence of

one-period matchings for the coalition, µC
≥t = (µC

t , µ
C
t+1, . . . , µ

C
T ) such that (µ<t(i), µ

C
≥t(i)) ≻i

µ(i) for all i ∈ C.
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Definition B.4. A coalition C is admissible if (i) C = {i} for some i ∈ M ∪ W or (ii)

C = {m,w} for some m ∈ M and w ∈ W .

Definition B.5. The matching µ is ex ante stable if it cannot be period-1 blocked by any

admissible coalition.

Definition B.6. The matching µ is dynamically stable if for all t it cannot be period-t

blocked by any admissible coalition.

To prove the existence of dynamically stable matching, we rely on a constructive proof

using a generalization of the P-DAA procedure. The following mechanism reduces to the

Gale and Shapley (1962) deferred acceptance algorithm when T = 1 and to the P-DAA

procedure when T = 2.

Algorithm B.1 (TP-DAA). The T -period (man-proposing) plan deferred acceptance proce-

dure with adjustment identifies a matching µ∗ in a series of steps as follows:

Step 1. For each m let

X0
m =

⋃

w∈W

{

(i1, . . . , iT ) : it ∈ {m,w}
}

\ {xm}.

At τ = 0, no plans in X0
m have been rejected. In round τ ≥ 1:

1. Let Xτ
m ⊂ X0

m be the subset of plans that have not been rejected in some round τ ′ < τ .

If Xτ
m = ∅ or xm ≻m x for all x ∈ Xτ

m, then m does not make any proposals. Otherwise,

m proposes to the woman identified in his most preferred plan in Xτ
m. Each such plan

involves at most one distinct woman. If x is his most preferred plan and it involves

w, he proposes to w the corresponding plan. For example, if x = wwmw · · · , then m

proposes to w a plan where they are paired for periods 1 and 2, unmatched in period

3, matched together in period 4, and so on.

2. Let Xτ
w be the set of plans made available to w. If xw ≻w x for all x ∈ Xτ

w, w rejects

all proposals. Otherwise, w (tentatively) accepts her most preferred plan in Xτ
w and

rejects the others.

The above process continues until no rejections occur. If w accepts m’s proposal in the final

round, define the interim matchings µ̃1(m) and µ̃1(w) accordingly. If i does not make or

receive any proposals in the final round, set µ̃1(i) = i · · · i.
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Step s ≥ 2. If µ̃s−1
≥s (i) 6= xi

≥s, set µ̃s(i) = µ̃s−1(i). Else, let M̂s = {m ∈ M : µ̃s−1
≥s (m) =

xm
≥s} and Ŵs = {w ∈ W : µ̃s−1

≥s (w) = xw
≥s} be the sets of the remaining men and women,

respectively. Each man (woman) in M̂s (Ŵs) is unmatched in each period t ≥ s under the

interim matching µ̃s−1.

For each m ∈ M̂s let

X0
m =

⋃

w∈Ŵs

{

(is, is+1, . . . , iT ) : it ∈ {m,w}
}

\
{
xm
≥s

}
.

be a set of candidate continuation plans for m. At τ = 0, no continuation plans in X0
m have

been rejected. In round τ ≥ 1:

1. Let Xτ
m ⊂ X0

m be the subset of plans that have not been rejected in some round τ ′ < τ .

If Xτ
m = ∅ or (µ̃s−1

<s (m), xm
≥s) ≻m (µ̃s−1

<s (m), x≥s) for all x≥s ∈ Xτ
m, then m does not

make any proposals. Otherwise, let xmw
≥s ∈ Xτ

m be m’s most preferred, not yet rejected

continuation plan, i.e.

(µ̃s−1
<s (m), xmw

≥s ) ≻m (µ̃s−1
<s (m), x≥s)

for all x≥s ∈ Xτ
m \ {xmw

≥s }. This plan involves exactly one woman, in this case w. He

proposes to her a compatible continuation plan. For example, if xmw
≥s = (w,w,m,w, . . .)

then m proposes to w a continuation plan where they are paired in periods s and s+1,

unmatched in period s+ 2, matched together in period s + 3, and so on.

2. Let Xτ
w = {xmw

≥s , x
m′w
≥s , . . .} be the set of continuation plans made available to w. If

(µ̃s−1
<s (m), xw

≥s) ≻w (µ̃s−1
<s (w), x≥s) for all x≥s ∈ Xτ

w, w rejects all proposals. Otherwise,

w (tentatively) accepts her most preferred continuation plan in Xτ
w and rejects the

others.

The above process continues until no rejections occur. If w accepts m’s proposal in the

final round, say xmw
≥s , set µ̃s(w) = (µ̃s−1

<s (w), xmw
≥s ). Define µ̃s(m) in a corresponding fashion

accordingly. If i does not make or receive any proposals in the final round, set µ̃s(i) =

(µ̃s−1
<s (i), xi

≥s).

Final Assignment. Let µ̃T be the matching identified at the conclusion of step s = T . Let

this be the final matching, i.e. µ∗ = µ̃T .

Lemma B.1. There exists an ex ante stable matching.
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Proof. Step 1 of the TP-DAA procedure provides a T -period generalization of the plan

deferred acceptance procedure. It is straightforward to verify that the matching identified

by step 1 of the TP-DAA procedure, µ̃1, is ex ante stable. The argument mirrors the

reasoning of the two-period case.

In the two-period case, a restriction on agents’ preferences was required to ensure the

existence of a dynamically stable matching. The following is a T -period generalization of

that restriction.

Definition B.7 (T-SIC). The preference ≻i satisfies T-period sequential improvement com-

plementarity if for all t ≥ 2, all x = x1 · · ·xT , all xik, and all xij ,

1. (x<t−1, j, x
ik
≥t) ≻i (x<t−1, j, x

ij
≥t) %i x

i implies that

(x<t−1, k, x
ik
≥t) ≻i (x<t−1, j, x

ij
≥t).

2. xik
≥t 6= xi

≥t and (xi
<t−1, j, x

ik
≥t) ≻i (x

i
<t−1, j, x

i
≥t) ≻i x

i imply that

(xi
<t−1, k, x

ik
≥t) ≻i (x

i
<t−1, j, x

i
≥t).

3. xij
≥t 6= xi

≥t and (xi
<t−1, i, x

ik
≥t) ≻i (x

i
<t−1, i, x

ij
≥t) ≻i x

i imply that

(xi
<t−1, k, x

ik
≥t) ≻i (x

i
<t−1, i, x

ij
≥t).

Theorem B.1. If agents’ preferences satisfy T-SIC, there exists a dynamically stable match-

ing.

Proof. The following argument extends by induction the reasoning from the two-period case.

Let µ∗ be the matching identified by the TP-DAA procedure. Let (µ̃1, . . . , µ̃T ) be the se-

quence of interim matchings identified during the procedure’s operation. Each step of the

TP-DAA weakly improves the interim matching, i.e. µ∗(i) %i µ̃
t+1(i) %i µ̃

t(i) for all i and

t < T . Hence, if µ∗ can be period-t blocked by an agent or a pair, then the interim matching

µ̃t can be period-t blocked by the same agent or pair. This is because the TP-DAA ensures

that µ∗
<t = µ̃t

<t. Therefore, to verify that µ∗ is dynamically stable, it is sufficient to show

that µ̃t cannot be period-t blocked for each t.

By Lemma B.1, µ̃1 is ex ante stable and cannot be period-1 blocked by any agent or by

any pair. Proceeding by induction, suppose µ̃t′ cannot be blocked by any agent or pair in

period t′ = t− 1. We will verify that µ̃t cannot be blocked in period t.
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As a preliminary observation clarifying notation, from the TP-DAA procedure we know

that

µ̃t(i) = (µ̃t−1
<t (i), x

ij′

≥t) = (

µ̃t−1

<t
(i)

︷ ︸︸ ︷

µ̃t−1
<t−1(i), j

↑

t− 1

, xij′

≥t) (B.1)

for some j and j′.

Suppose agent i can period-t block µ̃t. Then

(µ̃t−1
<t−1(i), j, x

i
≥t) ≻i µ̃

t(i) %i µ̃
t−1(i) %i x

i. (B.2)

First, note that j 6= i. Otherwise, (µ̃t−1
<t (i), i, x

i
≥t) ≻i µ̃

t(i) %i µ̃
t−1(i). This implies that µ̃t−1

can be period-(t − 1) blocked by i, contradicting the induction hypothesis. Since j 6= i, it

follows that µ̃t−1(i) = (µ̃t−1
<t−1(i), x

ij
≥t−1) = (µ̃t−1

<t−1(i), j, x
ij
≥t) for some j. Applying T-SIC(1)

with k = i gives

(µ̃t−1
<t−1(i), j, x

i
≥t) ≻i (µ̃

t−1
<t−1(i), j, x

ij
≥t) %i x

i

=⇒ (µ̃t−1
<t−1(i), i, x

i
≥t) ≻i (µ̃

t−1
<t−1(i), j, x

ij
≥t) = µ̃t−1(i).

Hence, µ̃t−1 can be period-(t− 1) blocked by i, which is a contradiction.

Suppose instead that m and w can period-t block µ̃t. Then there exists a sequence of

matchings among m and w,

µmw
≥t = (µmw

t , . . . , µmw
T ) (B.3)

such that

(µ̃t−1
<t−1(m), µ̃t−1

t−1(m), µmw
≥t (m)) ≻m µ̃t(m) %m µ̃t−1(m) %m xm (B.4)

and

(µ̃t−1
<t−1(w), µ̃

t−1
t−1(w), µ

mw
≥t (w)) ≻w µ̃t(w) %w µ̃t−1(w) %w xw. (B.5)

If µ̃t−1
t−1(m) = m and µ̃t−1

t−1(w) = w, then m and w can period-(t − 1) block µ̃t−1, which

is a contradiction. The same conclusion applies if µ̃t−1
t−1(m) = w and µ̃t−1

t−1(m) = m. Thus,

without loss of generality, there are two cases.

1. Suppose µ̃t−1
t−1(m) = m and µ̃t−1

t−1(w) = m′ 6= w. Consider first agent m. It follows that

(µ̃t−1
<t−1(m), m, µmw

≥t (m)) ≻m µ̃t−1(m) = (µ̃t−1
<t−1(m), m, xmj

≥t ) %i x
m
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for some j ∈ {m,w′}. If j = m, then xmj
≥t = xm

≥t. T-SIC(1) implies that

(µ̃t−1
<t−1(m), w, µmw

≥t (m)) ≻m µ̃t−1(m) = (µ̃t−1
<t−1(m), m, xm

≥t). (B.6)

If j = w′ ∈ Wm, then xmj
≥t 6= xm

≥t. T-SIC(3) implies that

(µ̃t−1
<t−1(m), w, µmw

≥t (m)) ≻m µ̃t−1(m) = (µ̃t−1
<t−1(m), m, xmw′

≥t ). (B.7)

For w,

(µ̃t−1
<t−1(w), m

′, µmw
≥t (w)) ≻w µ̃t−1(w) = (µ̃t−1

<t−1(w), m
′, xwk

≥t ) %i x
w

for k ∈ {w,m′}. If k = w, then T-SIC(2) implies that

(µ̃t−1
<t−1(w), w, µ

mw
≥t (w)) ≻w µ̃t−1(w) = (µ̃t−1

<t−1(w), m
′, xw

≥t). (B.8)

If instead k = m′, then T-SIC(1) implies that

(µ̃t−1
<t−1(w), w, µ

mw
≥t (w)) ≻w µ̃t−1(w) = (µ̃t−1

<t−1(w), m
′, xwm′

≥t ). (B.9)

Together, (B.6)–(B.9) imply that m and w can period-(t− 1) block the matching µ̃t−1

with the continuation plan where m and w are matched together in period t − 1 and

µmw
≥t as defined in (B.3) is implemented in periods t′ ≥ t. This is a contradiction since,

by the induction hypothesis, µ̃t−1 cannot be period-(t− 1) blocked.

2. Suppose µ̃t−1
t−1(m) = w′ 6= w and µ̃t−1

t−1(w) = m′ 6= m. Arguments parallel to cases (B.8)

and (B.9) above show that m and w will be able to define a continuation plan to block

µ̃t−1 in period t− 1, which is a contradiction.

Therefore, µ̃t cannot be period-t blocked by m and w.

Remark B.1. Though the intuition is suggestive, the above analysis does not apply when

T = ∞. For example, the TP-DAA procedure may fail to terminate. The T = ∞ case can

be accommodated with further restrictions on preferences.
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C The Core

In this appendix we investigate stronger versions of our stability concepts by allowing col-

lective blocking actions. A coalition C is a non-empty subset of agents, C ⊂ M ∪ W . A

coalition can block a matching if it can define a within-coalition matching that its members

prefer. A core matching is immune to such collective deviations. More formally, we have the

following analogues of previously introduced ideas.

Definition C.1. The function µC
t : C → C is a one-period matching for coalition C if

1. For all m ∈ M ∩ C, µC
t (m) ∈ Wm ∩ C;

2. For all w ∈ W ∩ C, µC
t (w) ∈ Mw ∩ C; and,

3. For all i ∈ C, µC
t (i) = j =⇒ µC

t (j) = i.

Definition C.2. A coalition C can period-1 block the matching µ if there exist one-period

matchings for the coalition C, µC
1 and µC

2 , such that (µC
1 (i), µ

C
2 (i)) ≻i µ(i) for all i ∈ C.

Definition C.3. A coalition C can period-2 block the matching µ if there exists a one-period

matching for coalition C, µC
2 , such that (µ1(i), µ

C
2 (i)) ≻i µ(i) for all i ∈ C.

Definition C.4. The matching µ is in the ex ante core if it cannot be period-1 blocked by

any coalition.

Definition C.5. The matching µ is in the dynamic core if for all t it cannot be period-t

blocked by any coalition.

The definitions of the ex ante core and of the dynamic core reduce to those of ex ante

and dynamic stability, respectively, when only one-agent or couple coalitions are allowed.

The ex ante core corresponds to the “core” in Damiano and Lam (2005, Definition 3). What

we call the dynamic core is sometimes called the “recursive core” (Damiano and Lam, 2005,

Definition 4; Becker and Chakrabarti, 1995). The dynamic core differs from “dynamic group-

stability,” studied by Kurino (2009), which allows deviating agents to be matched with non-

coalition members.

In a one-period market, the core is not empty and corresponds to the set of pairwise

stable matchings (Gale and Shapley, 1962). Several studies of dynamic matching markets

have noted the core’s emptiness (Damiano and Lam, 2005; Kurino, 2009). Similarly, the core

may be empty in static many-to-many matching models (Blair, 1988). In our setting, both

the ex ante core and the dynamic core can be empty, even when ≻i∈ S̄i for all i. We define

the class of preferences S̄i in the main text.
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Example C.1. Consider the following economy with three men and three women:

≻m1
: w2w2, w3w3, w3w2, m1w2, w1w2, w1w3, m1m1

≻m2
: w3w3, w1w1, w1w3, m2w3, w2w3, w2w1, m2m2

≻m3
: w1w1, w2w2, w2w1, m3w1, w3w1, w3w2, m3m3

≻w1
: m1m1, m1w1, m1m2, m1m3, w1w1

≻w2
: m2m2, m2w2, m2m3, m2m1, w2w2

≻w3
: m3m3, m3w3, m3m1, m3m2, w3w3

In this case, ≻i∈ S̄i for all i. There are four ex ante stable matchings (Table C.1). Each

can be blocked by some coalition. Since all matchings in the ex ante and the dynamic cores

must be ex ante stable, the ex ante and dynamic cores are empty.

Table C.1: All ex ante stable matchings in Example C.1 and blocking coalitions.

Matching m1 m2 m3 w1 w2 w3 Blocking Coalition
µ1 w1w2 w2w1 m3m3 m1m2 m2m1 w3w3 {m2, m3, w2, w3}
µ2 m1m1 w2w3 w3w2 w1w1 m2m3 m3m2 {m1, m3, w1, w3}
µ3 w1w3 m2m2 w3w1 m1m3 w2w2 w3w1 {m1, m2, w1, w2}
µ4 m1m1 m2m2 m3m3 w1w1 w2w2 w3w3 {m2, m3, w2, w3}

To ensure the core’s non-emptiness, we introduce several new classes of preferences. Not-

ing that core and stable matchings coincide in Gale and Shapley’s (1962) model, our first

restriction moves our dynamic economy closer to their static setting by strengthening the

degree of inertia in agents’ preferences.

Definition C.6. Let ≻i be a preference for agent i.

1. ≻i exhibits strong inertia if for all j, k, j 6= k, jj ≻i jk and jj ≻i kj. Let Ii denote

the set of preferences for i that exhibit strong inertia.

2. ≻i exhibits very strong inertia if jj ≻i kl for all j, k, l, k 6= l. Let I∗
i denote the set of

preferences for i that exhibit very strong inertia.
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C∗
i

Ii

I∗
i

S̄i

Ci

Si

Figure C.1: Preference domains. Si – preferences that reflect a spot ranking; S̄i – preferences
that exhibit inertia relative to Si; Ii – preferences with strong inertia; I∗

i – preferences with
very strong inertia; C∗

i – preferences that exhibit sequential local improvement complemen-
tarity; Ci – preferences that exhibit sequential improvement complementarity.

As clear from Definition C.6 when ≻i∈ I∗
i for all i, our model reduces to an essentially

static setting. Similarly, when ≻i∈ Ii for all i, all stable matchings are persistent. In both

cases the set of stable matchings will coincide with the core.

While preferences with strong and very strong inertia offer a simple route to positive

results, they may be too strong for applications. Even if the preferences of one side of the

market exhibit strong inertia, it may be possible to place fewer restrictions on the preferences

of agents on the market’s other side. We propose the following condition.

Definition C.7 (SLIC). The preference ≻i satisfies sequential local improvement comple-

mentarity if

1. jk ≻i ll
′ %i jj %i ii =⇒ kk %i ll

′

2. jk ≻i ji ≻i ii =⇒ kk ≻i ji; and,

3. ik ≻i ij ≻i ii =⇒ kk ≻i ij.

Sequential local improvement complementarity resembles sequential improvement com-

plementarity with the exception of its first restriction.36 If j and k are complements,

i.e. jk ≻i {jj, kk}, then sequential local improvement complementarity requires that (i)

jk ≻i kk ≻i . . . ≻i jj and (ii) i does not rank any other plans “in between” jk and kk.

36Condition 1 implies conditions 2 and 3. We include these conditions in the definition of SLIC to emphasize
the parallel with SIC.

55



If Ci is the set of preferences satisfying SIC, we let C∗
i be the set of preferences satisfying

SLIC. It follows that S̄i ∪ Ii ⊂ C∗
i ⊂ Ci. Figure C.1 illustrates the relationships among the

introduced preference domains.

Theorem C.1. Suppose ≻m∈ C∗
m for all m ∈ M and ≻w∈ Iw for all w ∈ W . The dynamic

core is not empty and coincides with the set of (pairwise) dynamically stable matchings.

Proof. Since C∗
i ⊂ Ci and Ii ⊂ Ci, there exists a dynamically stable matching, say µ∗. Suppose

µ∗ can be blocked by coalition C in period 1. Let w ∈ C. Suppose µC
t (w) = w for some

t. Since ≻w∈ Iw, ww %w µC
t (w) ≻w µ∗(w), which is a contradiction. Thus, µC(w) = m′m,

which implies {mm,m′m′} %w µC(w) ≻w µ∗(w).

Consider agent m ∈ M . Since mm ≻w µ∗(w) and µ∗ is dynamically stable, µ∗(m) ≻m ww.

If µC(m) = mw, then mw ≻m µ∗(m) ≻m mm implies that ww ≻m µ∗(m). But then m

and w can period-1 block µ∗, which is not possible. If instead µC(m) = w′w, then since

mm ≻w′ µC(w′) ≻w′ µ∗(w′), it follows that w′w ≻m µ∗(m) ≻m w′w′. But since ≻m∈ C∗
m,

this implies that ww ≻m µ∗(m). Again, this is a contradiction. Therefore, no coalition can

period-1 block µ∗.

Suppose µ∗ can be blocked by coalition C in period 2. Let w ∈ C. If µC
2 (w) = w, then

ww ≻w µ∗(w), which is a contradiction. Thus, there exists m ∈ C ∩M such that µC
2 (w) =

m and mm %w (µ∗
1(w), µ

C
2 (w)) ≻w µ∗(w). This implies (µ∗

1(m), w) ≻m µ∗(m) ≻m ww.

There are two cases. If µ∗
1(m) = m, then ≻m∈ C∗

m implies that ww ≻m µ∗(m), which is a

contradiction. If instead µ∗
1(m) = w′, then w′w ≻m µ∗(m) ≻m w′w′, which again implies

that ww ≻m µ∗(m)—a contradiction.

Thus, no coalition can block µ∗ in period 1 or period 2 and µ∗ is in the dynamic core.

The following example shows that Theorem C.1 does not obtain if the restriction on

men’s preference is relaxed to ≻m∈ Cm for all m ∈ M .

Example C.2. Consider a market with two men and two women whose preferences are

≻m1
: w1w2, w3w1, m1m1

≻m2
: w3w2, w2w1, m2m2

≻m3
: w1w3, w2w3, m3m3

≻w1
: m1m1, m2m2, m3m3, m1m2, m3m1, w1w1

≻w2
: m1m1, m2m2, m3m3, m3m2, m2m1, w2w2

≻w3
: m1m1, m2m2, m3m3, m1m3, m2m3, w3w3

For all men, ≻m∈ Cm. For all women, ≻w∈ Iw. All ex ante stable matchings are summarized

in Table C.2. Each can be blocked by a coalition of two men and two women.
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Table C.2: All ex ante stable matchings in Example C.2 and blocking coalitions.

Matching m1 m2 m3 w1 w2 w3 Blocking Coalition
µ1 w1w2 w2w1 m3m3 m1m2 m2m1 w3w3 {m2, m3, w2, w3}
µ2 m1m1 w3w2 w2w3 w1w1 m3m2 m2m3 {m1, m3, w1, w3}
µ3 w3w1 m2m2 w1w3 m3m2 w2w2 m1m3 {m1, m2, w1, w2}
µ4 m1m1 m2m2 m3m3 w1w1 w2w2 w3w3 {m1, m2, w1, w2}

Even when one side of the market has preferences with strong inertia, volatile matchings

can be in the dynamic core.

Example C.3. Consider a market with two men and two women whose preferences are

≻m1
: w1w2, w2w2, w1w1, m1m1

≻m2
: w2w1, w1w1, w2w2, m1m1

≻w1
: m1m1, m2m2, m1m2, w1w1

≻w2
: m2m2, m1m1, m2m1, w2w2

For all men, ≻m∈ C∗
m. For all women, ≻w∈ Iw ∩ S̄w. All three dynamically stable matchings

(Table C.3) are in the dynamic core.

Table C.3: All dynamically stable and core matchings in Example C.3.

Matching m1 m2 w1 w2

µ1 w1w2 w2w1 m1m2 m2m1

µ2 w2w2 w1w1 m2m2 m1m1

µ3 w1w1 w2w2 m1m1 m2m2

In our main analysis both sides of the market were ex ante symmetric. In contrast,

Theorem C.1 accommodates an asymmetry concerning admissible preference domains. The

type of asymmetry considered may apply in some applications. For example, in a school-

assignment application, it may be appropriate to assume that the priority structure (schools’

“preferences”) satisfies the strong inertia requirement (Kennes et al., 2014a). Once enrolled

at a school, the student can stay enrolled in future years without fear of being “bumped”

by a new student. Students’ preferences can satisfy the weaker condition accommodating a

taste for variety. A consequence of this asymmetry is that a volatile matching may be a core

outcome and preferred by some agents. In Example C.3, for instance, both men prefer the

volatile core matching µ1 to every other dynamically stable outcome.

57



D Additional Examples

Example D.1 (Kadam and Kotowski (2015)). This example illustrates that there may not

exist an optimal dynamically stable matching for all agents on one side of the market. A

stable matching is said to be optimal for the men if all men prefer their assignment in

that matching to every other stable matching. A woman-optimal stable matching is defined

analogously. In Example 4 there does not exist a woman-optimal stable matching. This

example employs a more restrictive class of preferences.

There are three men and three women. Their preferences are:

≻m1
: w2w2, w2w1, w2w3, w1w1, w3w3, m1m1

≻m2
: w3w3, w3w2, w3w1, w2w2, w1w1, m2m2

≻m3
: w1w1, w1w3, w3w3, w1w2, w2w2, m3m3

≻w1
: m2m2, m1m1, m2m1, m1m2, w1m2, m3m2, w1w1, m3m3

≻w2
: m3m3, m2m2, m3m2, m2m3, w2m3, m1m3, w2w2, m1m1

≻w3
: m1m1, m1m3, m3m1, w3m1, m2m1, m3m3, w3w3, m2m2

All preferences satisfy the ≻i∈ S̄i condition. There are three dynamically stable matchings

(Table D.1). m1 and m2 like their assigned plans in µ3 the most. m3 prefers his assignment

under µ1.

Table D.1: All dynamically stable matchings in Example D.1.

Matching m1 m2 m3 w1 w2 w3

µ1 w1w1 w2w2 w3w3 m1m1 m2m2 m3m3

µ2 w3w3 w1w1 w2w2 m2m2 m3m3 m1m1

µ3 w2w3 w3w1 w1w2 m3m2 m1m3 m2m1

This example also shows that dynamically stable matchings do not form a lattice under

the “common-preference” partial order (cf. Knuth (1976), Roth (1985b), and Blair (1988)).

Kadam and Kotowski (2015) identify sufficient conditions for the set of dynamically stable

matchings to exhibit a lattice structure, albeit under an alternative ordering.

Example D.2. This example exhibits ex ante and dynamically stable matchings that are not

Pareto optimal. Consider the following economy with two men and women whose preferences
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are
≻m1

: w1w2, w2w2, w1w1, m1m1

≻m2
: w2w1, w1w1, w2w2, m2m2

≻w1
: m1m2, m2m2, m1m1, w1w1

≻w2
: m2m1, m1m1, m2m2, w2w2

The agents’ preferences satisfy sequential improvement complementarity. There are exactly

two ex ante and dynamically stable matchings as summarized in Table D.2. The matching

µ1 Pareto-dominates µ2. The P-DA and the P-DAA procedure identify the µ2 matching.

Table D.2: All ex ante and dynamically stable matchings in Example D.2.

Matching m1 m2 w1 w2

µ1 w1w2 w2w1 m1m2 m2m1

µ2 w2w2 w1w1 m2m2 m1m1

Example D.3. Consider a market with two men and women. Their preferences are:

≻m1
: w1w2, w1m1, w2w2, w2m1, m1m1

≻m2
: w2w2, m2m2

≻w1
: m1m1, m1w1, w1w1

≻w2
: m1m1, m2m1, m2m2, w2w2

The preferences of m1 do not satisfy SIC(2). Otherwise, SIC is satisfied. This economy does

not have a dynamically stable matching. There are five possible cases.

1. If µ(m1) = w1w2, then µ(w1) = m1w1 and µ(w2) = m2m1. However, this implies that

m2m2 ≻m2
µ(m2).

2. If µ(m1) = w1m1, then µ(w1) = m1w1. Furthermore, µ(m2) = w2w2 and µ(w2) =

m2m2. However, m1 and w2 can period-2 block µ.

3. If µ(m1) = w2w2, then µ(w1) = w1w1. However, m1 and w1 can period-1 block this

matching.

4. If µ(m1) = w2m1, then w2w2 ≻w2
µ(w2).

5. If µ(m1) = m1m1, then µ(w1) = w1w1. However, m1 and w1 can period 1 block µ.

The preceding cases exhaust all individually rational matchings for m1. Therefore, there

does not exist a dynamically stable matching.
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Example D.4. Consider a market with two men and women. Their preferences are:

≻m1
: m1w2, m1w1, w1w1, w2w2, m1m1

≻m2
: w2w2, m2m2

≻w1
: w1m1, m1m1, w1w1

≻w2
: m2m1, m1m1, m2m2, w2m1, w2w2

The preferences of m1 do not satisfy SIC(3). Otherwise, SIC is satisfied. This economy does

not have a dynamically stable matching. There are five possible cases.

1. If µ(m1) = m1w2, then µ(w2) = w2m1. However, m2 and w2 can period-1 block this

matching.

2. If µ(m1) = m1w1, then µ(w1) = w1m1. It follows that µ(m2) = w2w2 and µ(w2) =

m2m2. However, now m1 and w2 can period-2 block the resulting matching.

3. If µ(m1) = w1w1, then m1 and w1 can period-1 block this matching.

4. If µ(m1) = w2w2, then µ(w1) = w1w1. However, this implies m1 and w1 can period-1

block this matching.

5. If µ(m1) = m1m1, then m1 will period-1 block with either w1 or w2.

The preceding cases exhaust all individually rational matchings for m1. Therefore, there

does not exist a dynamically stable matching.

Example D.5. This example shows that if agents’ preferences satisfy sequential improve-

ment complementarity, then every matching mechanism that identifies a dynamically stable

outcome (if one exists) can be manipulated by at least one man and at least one woman

when agents are unrestricted in the preferences that they report.

Consider the following market with three men and three women:

≻m1
: w1w2 , w2w2, m1m1

≻m2
: w2w2, w1w3, w2w3 , m2m2

≻m3
: w2w2, w3w1 , w1w1, m3m3

≻w1
: m1m1, m2m3, m1m3 , w1w1

≻w2
: m2m1 , m1m1, w2w2

≻w3
: m1m1, m3m2 , m2m2, w3w3
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Table D.3: All dynamically stable matchings in Example D.5.

Matching m1 m2 m3 w1 w2 w3

µ1 w1w2 w2w3 w3w1 m1m3 m2m1 m3m2

µ2 w2w2 w1w3 w3w1 m2m3 m1m1 m3m2

µ3 w2w2 m2m2 m3m3 w1w1 m1m1 w3w3

There are three dynamically stable matchings as summarized in Table D.3. Matching µ1

is boxed in the preference list. Matching µ2 is underlined. Matching µ3, which corresponds

to the P-DAA matching, is not highlighted. Thus, there are three cases to consider.

1. Consider a matching mechanism that selects the matching µ1 if all agents truthfully

report their preferences.

(a) If m2 claims the preference profile

≻̂m2
: w1w3, w3m2, w3w3, m2m2

and all others truthfully report their preferences, then the economy’s only dynam-

ically stable matching coincides with µ2, which m2 prefers.

(b) If w1 claims the preference profile

≻̂w1
: m2m3, m1w1, m1m1, w1w1

and all others truthfully report their preferences, then the economy’s only dynam-

ically stable matching coincides with µ2, which w1 prefers.

2. Consider a matching mechanism that selects the matching µ2 if all agents truthfully

report their preferences.

(a) If m1 claims the preference profile

≻̂m1
: w1w2, w1m1, w1w1, w2m1, w2w2, w3m1, w3w3, m1m1

and all others truthfully report their preferences, then the economy’s only dynam-

ically stable matching coincides with µ1, which m1 prefers.

61



(b) If w2 claims the preference profile

≻̂w2
: m2m1, m1w2, m1m1, m2w2, m2m2, m3w2, m3m3, w2w2

and all others truthfully report their preferences, then the economy’s only dynam-

ically stable matching coincides with µ1, which w2 prefers.

3. Consider a matching mechanism that selects the matching µ3 if all agents truthfully

report their preferences. In this case, any of the above manipulations benefit the

responsible agent.

Every matching mechanism that selects a dynamically stable matching must select one of

the above three matchings in the economy above. In every case there exists one man and

one woman who can successfully manipulate the mechanism for their advantage by commu-

nicating a preference that does not satisfy sequential improvement complementarity.
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E The Deferred Acceptance Algorithm

We often reference the deferred acceptance algorithm of Gale and Shapley (1962). Though

well-known, we review this procedure below as it applies to a one-period market. Each man

m (woman w) has a strict preference ranking, Pm (Pw), over potential partners in Wm (Mw).

If iPmj, then m strictly prefers i to j.

Definition E.1. The (man-proposing) deferred acceptance algorithm constructs a (one-

period) matching µ as follows:

1. In round 1, each man proposes to his most preferred partner as defined by Pm. (If

mPmw for all w ∈ W , he does not make any proposals.) Given all received proposals,

each woman engages her most preferred partner as defined by Pw and rejects the others.

All proposals from unacceptable partners (i.e. ranked below w by Pw) are rejected.

2. More generally, in round t, each man whose proposal was rejected in the previous

round proposes to his most preferred partner who has not yet rejected him. If all

such partners are unacceptable, he does not make any proposals. Out of the set of new

proposals and her current engagement (if any), each woman engages her most preferred

partner and rejects the others. If all proposals are unacceptable, she rejects them all.

The above process stops once no further rejections occur. At that time all engaged pairs are

matched and agents without a partner remain single (i.e. are matched to themselves).

The woman-proposing deferred acceptance algorithm is identical to the procedure de-

scribed above with the roles of men and women reversed. The next example illustrates the

algorithm’s operation.

Example E.1. Let M = {m1, m2, m3} and W = {w1, w2, w3}. The agents’ preferences are:

Pm1
: w2, w1, m1

Pm2
: w1, w3, m2

Pm3
: w1, w2, m3

Pw1
: m1, m2, m3, w1

Pw2
: m3, m1, w2

Pw3
: m2, w3

That is, m1 prefers w2 to w1. He prefers either to being single. w3 is not acceptable.

Table E.1 summarizes the round-by-round operation of the man-proposing deferred ac-

ceptance algorithm. To read the table, in round 1, m2 and m3 propose to w1. She engages
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m2, who is underlined, and m3 is rejected. m1 proposes to w2 and is engaged. No one

proposes to w3. Eventually we arrive at the final matching:

µ(m1) = w1 µ(m2) = w3 µ(m3) = w2

µ(w1) = m1 µ(w2) = m3 µ(w3) = m2

.

Table E.1: Round-by-round operation of the deferred acceptance algorithm in Example E.1.
Engaged partners are underlined.

Proposals Received
Round w1 w2 w3

1 m2, m3 m1 -
2 m2 m1, m3 -
3 m1, m2 m3 -
4 m1 m3 m2

E.1 The Spot-Market Deferred Acceptance Procedure (Example 5)

Example 5 identifies a case where the spot-market deferred acceptance procedure generates

an unstable outcome. Here we provide details concerning that market’s operation.

Let M = {m1, m2, m3} and W = {w1, w2, w3}. The agents’ preferences are:

≻m1
: w2w2, w1w2, w1w1, . . .

≻m2
: w1w1, w3w3, w3w1, . . .

≻m3
: w1w1, w2w1, w2w2, . . .

≻w1
: m1m1, m2m2, m3m3, m1m2, m1m3, . . .

≻w2
: m3m3, m1m1, m3m1, . . .

≻w3
: m2m2, . . .

Given ≻i we can define each agent’s ex ante spot ranking:

P≻m1
: w2, w1, . . .

P≻m2
: w1, w3, . . .

P≻m3
: w1, w2, . . .

P≻w1
: m1, m2, m3, . . .

P≻w2
: m3, m1, . . .

P≻w3
: m2, . . .

These same preferences appear in Example E.1. Constructing µ̃1 via the man-proposing

deferred acceptance algorithm gives:

µ̃1(m1) = w1 µ̃1(m2) = w3 µ̃1(m3) = w2

µ̃1(w1) = m1 µ̃1(w2) = m3 µ̃1(w3) = m2
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At µ̃1(·), agents’ conditional spot rankings are:

Pw1

≻m1
: w2, w1, . . .

Pw3

≻m2
: w3, w1, . . .

Pw2

≻m3
: w1, w2, . . .

Pm1

≻w1
: m1, m2, m3, . . .

Pm3

≻w2
: m3, m1, . . .

Pm2

≻w3
: m2, . . .

Using the above spot rankings we can construct µ̃2 via the man-proposing deferred acceptance

algorithm. In this case, the resulting period 2 assignment is:

µ̃2(m1) = w2 µ̃2(m2) = w3 µ̃2(m3) = w1

µ̃2(w1) = m3 µ̃2(w2) = m1 µ̃2(w3) = m2

And the resulting multi-period matching is:

µ̃(m1) = w1w2 µ̃(m2) = w3w3 µ̃(m3) = w2w1

µ̃(w1) = m1m3 µ̃(w2) = m3m1 µ̃(w3) = m2m2

This matching is neither ex ante nor dynamically stable. For example, m1 and w2 can

period-1 block µ̃ since w2w2 ≻m1
µ̃(m1) and m1m1 ≻w2

µ̃(w2).
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