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An important contributor to the well-known problem of Emergency Department (ED) overcrowding is prolonged board-
ing of patients who are admitted through the ED. Patients admitted through the ED constitute about 50% of all non-
obstetrical hospital admissions, and may be boarded in the ED for long hours with the hope of finding an available bed in
their primary inpatient unit. We study effective ways of reducing ED boarding times by considering the trade-off between
keeping patients in the ED and assigning them to a secondary inpatient unit. The former can increase the risk of adverse
events and cause congestion in the ED, whereas the latter may adversely impact the quality of care. Further complicating
this calculus is the fact that a secondary inpatient unit for a current patient can be the primary unit for a future arriving
patient; assignments, therefore, should be made in an orchestrated way. Developing a queueing-based Markov decision
process, we first demonstrate that patience in transferring patients is a virtue, but only up to a point. We also find that,
contrary to the prevalent perception, idling inpatient beds can be beneficial. Since the optimal policy for dynamically
assigning patients to their primary and secondary inpatient units is complex and hard to implement in hospitals, we
develop a simple policy which we term penalty-adjusted Largest Expected Workload Cost (LEWC-p). Using simulation
analyses calibrated with hospital data, we find that implementing this policy could significantly help hospitals to improve
their patient safety by reducing boarding times while controlling the overflow of patients to secondary units. Using both
data analyses and various simulation experiments, we also help managers by generating insights into hospital conditions
under which achievable improvements are significant.*

Key words: Emergency Department boarding; inpatient flow management; patient safety; healthcare operations; Markov
decision process

History: December 22, 2016

“Ah, all things come to those who wait.” (Violet Fane (1843-1905))

1. Introduction
Over the last decade, hospital Emergency Department (ED) overcrowding has become a widely

recognized problem in healthcare delivery in the U.S. and around the world. In a report to congress,

the U.S. Government Accountability Office highlighted this problem, and emphasized that ED

waiting times for the emergent patients exceeds the recommended time window for 50% of visits

(GAO (2009)).

ED overcrowding may have dire consequences, including higher complication rates and even

increased mortality (Bernstein et al. (2009), CNN (2008)). As overcrowding increases, patients

are subject to higher dissatisfaction, impaired access, higher rates of leaving without being seen

(LWBS), and decreased economic performance (Hoot and Aronsky (2008)).

* This work was supported in part by Mayo Clinic through grant XSS0133.

1



 Electronic copy available at: https://ssrn.com/abstract=2889071 

Kilinc, Saghafian, and Traub: Assigning ED Patients to Inpatient Units
2

A common factor associated with ED overcrowding is prolonged boarding of patients admitted

to inpatient units (GAO (2003)). ED boarding occurs when an admitted patient waits for transfer

to an inpatient unit due to bed unavailability in such a downstream unit. Although this may cause

congestion, and may block ED resources from being assigned to newly arrived patients (see, e.g.,

Saghafian et al. (2012) and the references therein for the effect of “bed-block”), a major goal of

boarding a patient in the ED is to ensure transfer to the most appropriate inpatient unit (rather than

a secondary unit that has bed availability). This is due to a questionable yet prevalent belief that

patience in transferring admitted patients is always a virtue. This belief deserves further scrutiny,

especially because it is well understood that prolonged boarding times have several negative con-

sequences for patients, including an increased risk of adverse events (ROAE).1

The assignment of hospital beds to patients is a challenging task due to several complexities,

including limited capacity of hospital beds, time-dependencies of bed request arrivals, and unique

treatment requirements of patients (Proudlove et al. (2007)). These complexities force hospital

administrators to incorporate various aspects of the system such as the current congestion level,

time of the day, and discharge times in inpatient units in their decision-making process. Neverthe-

less, from a medical standpoint, the ideal way of assigning a bed for a specific type of patient is

directly related to the patient’s medical diagnosis and treatment needs. However, to accommodate

patient demands with the limited available hospital resources, hospital administrators may consider

alternative assignment options whenever possible. In particular, when there is no available bed in

the ideal downstream unit (i.e., the patient’s primary inpatient unit), the patient may be assigned

to an alternative, secondary inpatient unit with an acceptable (if suboptimal) service capability and

capacity. This practice of assigning patients to an alternative unit is known as “overflowing.”

Overflowing is not a new concept in hospitals; however, in practice the overflow process is often

controlled in a myopic manner without much attention to the needs of future patients. Instead,

what is needed is a reasonable balance between the risk of keeping a patient in the ED (for longer

hours with the hope of a primary unit assignment) vs. that of assigning him/her to a secondary unit

that has current bed availability. A careful consideration of these trade-offs can have a significant

impact on both patient safety and operational efficiency of hospitals. Hence, our goal in this paper

is to use a systematic approach to facilitate making better assignment decisions.

To gain insights, we explore these issues in Mayo Clinic Arizona (MCA). There are eight inpa-

tient wards (IWs) in MCA from which a bed can be requested for an admitted patient. A detailed

description of these eight IWs are shown in Table 1. Our data collected from MCA shows that the

1Patients boarded in the ED are sometimes kept on hallway beds, which raises additional concerns about whether they receive
the care that is deemed necessary for them – the inpatient unit level of care.
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Table 1 IWs and their size in MCA

IW Name Abbrev. Definition Number of Beds
2 West 2W Intensive Care Unit (ICU) 30
3 East 3E Orthopedics and Urology Surgical Services 40
3 West 3W Medical/Surgical Organ Transplant 36
4 East 4E Bone Marrow Transplant, Hematology, Oncology 30
4 West 4W Cardiology and Cardiothoracic Surgery 36
5 West 5W Neurosciences and E.N.T. 36
7 East 7E Palliative Care, General Surgery 36

7 West 7W Hematology and Oncology patients with
medical-surgical overflow 24

average ED boarding time (the average time between bed request and occupancy) at MCA is 111

minutes, with boarding times up to 150 minutes for some patients. Moreover, we observe from

our data that about 30% of the patients admitted through the MCA ED wait two hours or more.

An average delay of 111 minutes is significant, especially when we consider that the average ED

length of stay (LOS) for admitted patients in MCA is about 5 hours. This suggests that, on average,

almost 37% of ED LOS is caused by boarding.2 Furthermore, as we show in Figure 1(a), boarding

duration is highly time-dependent. Thus, even if the average waiting time is not extremely long,

patients admitted through the ED experience different levels of delay based on the hour in which

their inpatient bed is requested.

As Figure 1(a) illustrates, boarding delays consists of two parts: Pre-Assignment and Post-

Assignment. Pre-Assignment delay is the time between bed request and assignment of a suitable

inpatient bed to the patient. Post-assignment delay is the time between the bed assignment and bed

occupancy. Our analyses of MCA data reveal that post-assignment delays are higher on average

than the pre-assignment delays (see Figure 1(a)). Additionally, as we show in Figure 1(b), there

exists a significant mismatch (i.e., a time lag) between the hourly bed request pattern and the ED

departure pattern (see, e.g., Shi et al. (2015), Armony et al. (2015), and Powell et al. (2012) for

related results reported for other hospitals). The time between ED arrivals and ED departures in

Figure 1(b) is considered as the total ED LOS, and the time between bed requests and ED depar-

tures represents the ED boarding time. As can be seen from this figure, the ratio of ED boarding

time to ED LOS can be as high as 48% for some patients.

Effective assignment policies to primary and secondary inpatient units can significantly help

hospitals such as MCA to improve their prolonged ED boarding times. In this study, we utilize a

variety of analytical and simulation analyses calibrated with hospital data to gain insights into the

structure of such policies as well as their achievable improvement magnitudes. In particular, we

seek to answer the following questions:

2See also, Carr et al. (2010) who report that 17% of the ED total LOS is caused by the ED boarding.
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(b) Non-stationary arrival, bed request, and departure rates

Figure 1 ED boarding times based on collected data from MCA

• Structure: When should a patient be kept in the ED until a bed becomes available in his/her

primary inpatient unit instead of being quickly assigned to a secondary unity with current bed

availability?

• Magnitude: How much improvement can be achieved if a hospital adopts an effective policy

for dynamically assigning ED admitted patients to their primary or secondary inpatient units?

To gain insights and answer these questions, we start by utilizing a Markov decision process

(MDP) and modeling the flow process as a Markovian multi-class queueing network problem with

“flexible” servers. In this model, the servers are defined as the downstream inpatient unit beds

that are “flexible,” in that they can serve different classes of patients. The literature on hospital-

like multi-class queueing systems with flexible servers that can address the appropriateness of bed

assignment decisions is not vast. We contribute to this literature by considering (a) a penalty cost

that reflects the reduction in service quality when a patient is assigned to a secondary inpatient unit,

and (b) risk of adverse events that can occur due to prolonged ED boarding times. By analyzing

our MDP setting, we find that the optimal assignment policy is a state-dependent threshold-type

policy: keeping patients in the ED for their primary inpatient unit to become available pays off,

but only up to a certain threshold that depends on the number and status of outstanding ED bed

requests. That is, patience is a virtue, but only up to a point.

Our findings and results regarding the structure of the optimal policy can help hospitals to make

better bed assignment decisions, particularly as we shed light on the set of rules that can strike

a better balance between patient safety, quality of care, and operational efficiency. For instance,

contrary to a prevalent perception among hospital administrators, we find that idling IW beds can

be beneficial, and might occur under the optimal policy. However, we note that the optimal policy
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is complex to use in practice, since it highly depends on the system’s state. Therefore, based on the

properties of the optimal policy, we develop two heuristic policies which are simple to implement

and effective. We test these heuristic policies by comparing their performance with the optimal

policy using a detailed patient flow simulation model calibrated with hospital data. We find that

implementing our proposed assignment policy would reduce the average ED boarding time by

10 minutes per patient (a 9% improvement). Moreover, our analysis suggests that our proposed

policy would improve a combined measure of patient safety and quality of care metrics by 14%,

and would decrease the percentage of patients with more than two hours of boarding by 2%. We

also use our simulation framework to generate insights into hospital conditions under which such

improvements can be most significant. Our results suggest that hospitals with higher congestion

levels (e.g., busy teaching hospitals) benefit more than other hospitals (e.g., less busy community

hospitals) from utilizing our proposed policy as a way to strike a better balance between patient

safety, quality of care, and operational efficiency.

The main contributions of this paper are three-fold: (1) We generate insights into effective bed

assignment policies by developing a model that considers the trade-offs between risk of adverse

events that may occur while a patient is boarded in ED, and a lower quality of care that might be

gained when a patient is routed to a secondary unit. (2) We develop an easy to implement and yet

effective policy for bed assignment in hospitals that considers multiple inpatient units, multiple

patient types, time-dependent bed request arrivals, and dynamic ED and inpatient unit congestion

levels. (3) By making use of some laboratory findings, and testing our proposed bed assignment

policy via a detailed simulation model calibrated with hospital data, we generate various insights

for hospitals. For instance, we find that our proposed policy is more effective in reducing ED

boarding times for patients that are less sensitive to assignment to a secondary inpatient unit (e.g.,

those without an elevated serum troponin (Tn) level among chest pain (CP) patients, or those with

a B-type natriuretic peptide (BNP) less than 4,000 pg/ml among congestive heart failure (CHF)

patients). We also shed light on various hospital-dependent conditions under which our proposed

policy is effective, thereby discussing the suitability of our proposed policy for a wide-range of

hospitals.

The rest of this paper is organized as follows. Section 2 reviews the related studies on patient

flow and dynamic assignment policies. Section 3 presents a model of patient flow, and develops

an MDP framework that captures the trade-offs in the model. Section 4 identifies the structure of

the optimal policy. In Section 5, we describe our proposed heuristic bed assignment policy, and

compare its performance with the optimal policy. In Section 6, we describe our detailed simulation
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model of patient flow, and use it to perform various sensitivity analyses. Finally, we present our

concluding remarks in Section 7. All proofs are provided in Online Appendix B.

2. Literature Review
In this section, we briefly review studies that are related to our work. We divide such studies to two

categories: (a) related studies on ED patient flow, and (b) related studies on dynamic assignment

and routing in queueing systems.

2.1. Related Studies on ED Patient Flow

ED patient flow studies can be found in both medical and operations research/management sci-

ence literature. Such studies typically focus on patient flow either into the ED, within the ED, or

out of the ED. An extensive review of operations research/management science contributions to

these three elements can be found in Saghafian et al. (2015). Our work in this paper focuses on

patient flow out of the ED. Research on this last part of flow includes studies on effective ways for

improving the process for those who are admitted to the hospital through the ED as well as those

discharged to go home. Our study contributes to the former, and we discuss the relevant studies

within that literature.

Harrison et al. (2005) use discrete-event simulation to analyze the effect of bed capacity of

the hospital on overflow rates. The authors indicate that seasonality of arrivals is one of the main

triggers of the overflows in hospitals. Thompson et al. (2009) study a capacity utilization-based

patient allocation problem. In their model, patients are allowed to be transferred between different

units to minimize the total cost under a preemptive service policy assumption, where assignment to

each unit is accompanied with a reward/cost. Similar to Thompson et al. (2009), we consider dif-

ferent levels of quality of care that can be provided in different inpatient units. However, unlike that

study, we also model the risk of adverse events (ROAE) that can occur because of prolonged wait-

ing in ED. This allows us to provide a system-wide view that, in addition to operational efficiency,

considers both patient safety and quality of care concerns.

Teow et al. (2012) use data mining techniques to identify factors that are associated with over-

flows in the hospitals. They implement statistical analyses, and find that the leading factors in

overflow decisions are the medical specialty and time. In Teow et al. (2012), the authors make

use of historical data on the inpatient admissions as well as patient demographics data to identify

factors that trigger overflow decisions. However, unlike their work, our study attempts to identify

conditions under which it is optimal to overflow a patient to a secondary inpatient unit. Another

related study is Mandelbaum et al. (2012), which considers the fair routing of patients to inpa-

tient units, where fair routing means targeting the same level of idleness among all servers. Unlike
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Mandelbaum et al. (2012), we consider patient routing as a mechanism to eliminate prolonged

ED boarding times. Furthermore, the study of Mandelbaum et al. (2012) analyzes a model with

a single customer class, but in order to gain insights into the questions we raised in Section 1, we

focus on two heterogeneous patient classes with different primary inpatient units.

Shi et al. (2015) focus on patient flow from ED to inpatient units, and propose early discharge

policies in inpatients units as a mechanism to reduce and flatten ED boarding times. In addition

to primary performance measures, such as boarding time and 6-hour service level, they also study

the overflow rate by considering the time dependency in bed request times and trigger times for

overflowing patients. Our study focuses on a similar patient flow from the ED to inpatient units.

However, unlike the predetermined trigger times in Shi et al. (2015), we (a) optimize bed assign-

ment decisions based on the number of boarded patients in the ED, and (b) consider both patient

safety and quality of care metrics. Furthermore, changing physician discharge routines that is con-

sidered in Shi et al. (2015) might be hard to implement in many hospitals. Our study provides

guidelines on alternative ways of improving the patient flow.

Similar to our study, Griffin et al. (2012) develop a patient flow model to improve bed assign-

ment by maximizing the suitability of patient assignments and minimizing ED boarding times.

The authors evaluate five dynamic bed assignment algorithms to aid the decision makers. To do

so, they consider a system in which a patient can be assigned to several alternative units and earn

different “rewards” based on the assigned unit. Due to the large dimension of the state and action

spaces, the authors in Griffin et al. (2012) cannot identify the exact structure of the optimal assign-

ment policy. In order to generate insights into the questions that we raised in Section 1, we study

a different setting for which we are able to characterize the structure of the optimal assignment

policy. In addition, instead of assuming that all inpatient units can serve as a potential secondary

unit, by using historical hospital data, laboratory findings, and physicians’ opinion, we are able to

determine specific secondary inpatient units based on medical characteristics of patients.

To the best of our knowledge, none of the above-mentioned studies have generated insights

into effective ways of improving patient flow by considering the number of boarded ED patients,

risk of adverse events, and potential reduction of quality of care due assignment to an alternative

unit. Furthermore, we propose an easy to implement but effective heuristic policy for dynamically

assigning ED admitted patients to primary and secondary inpatient units. In various simulation

experiments calibrated with hospital data, we observe that implementing our proposed policy can

significantly help hospitals to improve their ED boarding times without affecting quality of care.

Finally, unlike the above-mentioned studies, we shed light on various hospital conditions (e.g., size,
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congestion level, etc.) under which significant improvements in performance measures such as

percentage of patients with more than 2-hour boarding time or risk of adverse events are achievable.

2.2. Related Studies on Dynamic Assignment and Routing in Queueing Systems

Our model captures the system characteristics as a multi-class queueing system where the bed

requests for ED admitted patients are considered as arrivals, and inpatient unit beds are considered

as servers. In multi-class queueing systems, the customers can be differentiated based on service

rates, holding costs, arrival rates, or service requirements. Under an average holding cost objective,

Cox and Smith (1961) demonstrate that the widely-used cµ policy is optimal for both preemptive

and non-preemptive cases service protocols. The cµ policy is also shown to be the optimal policy

in various more complex queueing networks (see, e.g., Kakalik and Little (1971), Buyukkoc et al.

(1985), and Walrand (1988)). A version of the cµ rule, generalized cµ , is proved to be the optimal

policy for different queueing structures under heavy traffic (see, e.g.,Van Mieghem (1995), Man-

delbaum and Stolyar (2004)). Saghafian and Veatch (2016) establish the optimality of the cµ rule

for queueing systems with flexible servers and two tier structures, where one tier is served by one

server while the second tier can be served by all the servers. In Lin and Kumar (1984), the authors

show that when two types of servers with different service speeds are available (a setting termed

“slow server problem”), the optimal assignment policy is a threshold-type policy: customers/jobs

are assigned to the slow server whenever the queue length reaches a certain threshold. Walrand

(1984) and Koole (1995) also prove the optimality of a threshold-type policy using sample path

coupling as well as value iteration arguments. Our model resembles similar characteristics to the

“slow server problem” because (a) patient service times in inpatient units are not identical, and

(b) there is some flexibility in assignments (for some patients). However, instead of heterogeneous

servers, we consider heterogeneous patient types with different service rates, since it better matches

the hospital patient flow we study.3

Dynamic assignment problems in queueing networks are extensively analyzed in the literature

(see, e.g., Mandelbaum et al. (2012), Meyn (2001, 2003), and Palmer and Mitrani (2004)).

Armony and Bambos (2003) and Dai and Lin (2005) study dynamic assignment problems consid-

ering a throughput maximization objective. Andradóttir et al. (2007) and Saghafian et al. (2011)

allow for server disruptions and repairs in systems with heterogeneous flexible servers, and De

Véricourt and Zhou (2005) study a call center setting where agents are heterogeneous in terms of

both service rate and quality of service. Zhan and Ward (2013) study a customer routing problem

in a call center setting under a heavy-traffic regime using diffusion approximation. In their set-

3See, e.g., Section 6 where from our data analysis we find that service durations in primary and secondary inpatient units are
not statistically significantly different for patients of same type.
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ting servers are heterogeneous, and the goal is to optimize performance with respect to both cost

and quality. Unlike the vast literature on heavy traffic settings, we seek to provide answer to the

questions we raised in Section 1 under various hospital congestion levels.

3. The Model
A general representation of patient flow through the ED and hospital inpatient wards (IWs) is pre-

sented in Figure 2. A patient that arrives to the ED goes through the triage stage, and is assigned

an Emergency Severity Index (ESI). If there is an examination room available, the patient imme-

diately starts the ED service; otherwise, he/she will have to wait in a designated ED waiting area.

Once the ED treatment is done, the patient is either discharged home or is admitted to the hospital.

For an admitted patient, if there is a bed available in his/her primary IW (or the secondary IW if

applicable), the patient is transferred out of the ED; otherwise, he/she is kept in the ED until a bed

becomes available. In this study, we focus on the patient flow within the dashed area of Figure 2.

To gain insights into the questions we raised in Section 1, we start by modeling the patient flow

as a multi-class queueing system with IWs as flexible servers, and analyze it by using an MDP.

The patients in the system are classified based on their primary IW, i.e., where they can be best

served from the medical stand point. The ward-level placement is typically determined by a bed

placement coordinator, sometimes in consultation with the ED or the admitting physician. Once a

patient is moved to an IW, the IW bed is considered as unavailable until the patient is done with

the inpatient unit service, and hence, the service processes in IWs are typically non-preemptive.

To gain some high level insights, we start by considering each of the IWs as a single “super

server.” This allows us to keep track of availability of capacity in each of the IWs in a computation-

ally tractable way. However, we relax this assumption in Section 6 in order to gain further insights.

Similarly, we start by considering the arrival process as a stationary Poisson Process, and assume

IW service times are exponential. In Section 6, we will relax these simplifying assumptions by

using empirical distributions estimated based on our hospital data.

Figure 3 illustrates the patient flow under consideration as a queueing system. We let Np and

Ns denote the set of patient classes and servers (IWs), respectively. Also, for i ∈ Np, we denote by

λi the arrival (i.e., bed request) rate of class i patients. We model the service process in IWs with

class-dependent service rates µi where i ∈ Np.

Let Xi(t) denote the number of class i patients boarded in the ED at time t, and define vector

X(t) = (Xi(t) : i ∈ Np) as the vector of the number of all such patients. Moreover, for i ∈ Np

and j ∈ Ns, let ai j(t) = 1 if IW j is serving a class i patient at time t, and ai j(t) = 0 otherwise.

Also, let θ̄i denotes the per unit of time risk of adverse events that can occur for a class i patient

because of boarding in the ED, ci be the associated cost per adverse event, and define θi = ciθ̄i, and
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ED Arrival Triage ED Waiting ED Service

Discharge

Admission

IW 1

IW 2

IW N

Figure 2 General flow of patients with the dotted area representing the focus of this paper (IW: Inpatient Ward)

θ = (θi : i ∈ Np). In this setting, θi plays the role of a “holding cost” for a patient of class i, and is

accrued per unit of time boarding in the ED. Similarly, let pi j be a non-negative penalty cost that

is accrued due to a lower-than-desired quality of care when a patient of class i is assigned to IW j

(pi j = 0 if i = j).4

The objective is to find an optimal assignment policy to control the patient flow in order to

minimize the total long-run average cost of (a) adverse events (a patient safety concern), and (b)

the penalty cost (a quality of care concern). This optimal cost can be calculated as:

Z∗ = inf
π∈Π

Zπ = inf
π∈Π

[
∑

i∈Np

∑
j∈Ns

pi jOπ
i j + ∑

i∈Np

θiLπ
i

]
, (1)

where Π is the set of admissible (non-preemptive, non-collaborative, and non-anticipative) poli-

cies, Zπ is the long-run average cost under policy π ∈Π, Lπ
i denotes the long-run average number

of class i patients in the queue (i.e., boarded in the ED) under policy π ∈ Π, and Oπ
i j denotes the

long-run average number of class i patients overflowed to IW j under policy π ∈Π. In this setting:

Lπ
i = limsup

T→∞

1
T

∫ T

0
E [Xπ

i (s)]ds, (2)

Oπ
i j = limsup

T→∞

Aπ
i j(T )

T
, (3)

where Aπ
i j(T ) is the cumulative number of times up to time T that IW j has been assigned to a class

i patient under policy π ∈Π (i.e., a counting process associated with ai j(t) = 1).

4In Section 6, we will discuss how we have used a year of data on patients with chest pain (CP) or congestive heart failure
(CHF) to estimate all the parameters required for our model.
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Figure 3 A queueing representation of the patient flow

3.1. A Markov Decision Process Formulation

As mentioned earlier, MCA has eight main IWs (see Table 1), and hence, |Np|= |Ns|= 8. However,

to gain some clear insights into effective patient flow control policies, we start by considering the

simplest case where Np = Ns = {1,2}. We let a1 = (a11,a21) and a2 = (a12,a22), where ai j =

1 if server j is busy with a patient of class i. We assume that all the underlying processes are

memoryless, and require that at any point in time ∑i∈Np ai j ≤ 1 (∀ j ∈ Ns). With these, we define

the system state as X̃ = (X ,a1,a2) with state space S = Z
2
+×{0,1}2×{0,1}2. 5 We then use

uniformization to transfer the underlying continuous-time Markov chain (CTMC) to a discrete-

time Markov chain (DTMC). Let ψ = λ1+λ2+2max{µ1,µ2} be the uniformization factor. Then,

the long-run average cost optimality equation for the DTMC can be written as:

J(X̃)+ Ẑ∗ =
1
ψ

[
θ XT + min

u=ui j∈U (X̃)

{
∑

i∈Np

∑
j∈Ns

λiT
ui jJ(X + ei,a j)

+ ∑
i∈Np

∑
j∈Ns

∑
k∈Np

ak jµkT ui jJ(X ,a j− ek)

+

(
ψ− ∑

i∈Np

λi− ∑
k∈Np

∑
j∈Ns

ak jµk

)
J(X̃)

}]
, (4)

where J(X̃) is a relative cost function defined as the difference between the total expected cost of

starting from state X̃ and a reference state (state 0), Ẑ∗ is the optimal average cost per uniformized

period, the notation “T ” represents the transpose operator, and T ui j is a functional operator that

depends on action vector ui j, and is defined in Online Appendix A. In optimality equation (4), ei

is a vector with the same dimensions as X containing a one in the ith position and zeros elsewhere.

5Since we do not allow preemptions to better reflect the actual practice, it is necessary to keep track of the IWs’ availabilities
(a1,a2) as a part of the state.
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Thus, the first line inside the minimization in (4) is due to inpatient bed request arrivals from the

ED, which occur with rate λi for patients of class i. Similarly, the second line in (4) is due to

discharges of patients IWs, and the last line in (4) is due to the self-loop in the underlying DTMC.

The control actions ui j in (4) are taken so as to minimize the long-run average cost, where the set

of admissible actions is:

U (X̃) =

{
u = (ui j)i∈Np, j∈Ns s.t. : ui j ∈ {0,1},∑i∈Np ui j ≤ (1−∑i∈Np ai j) ∀ j ∈ Ns,∑ j∈Ns ui j ≤ Xi ∀i ∈ Np

}
. (5)

That is, a patient cannot be assigned to IW j, if IW j is busy or if the number of patients boarded

in the ED is insufficient.

4. The Optimal Patient Assignment Policy
In Online Appendix B, we show that we can restrict our attention to the policies that do not allow

idling an IW j ∈ Ns when there is a patient of class j ∈ Np boarded in ED (See Proposition EC.1 in

Online Appendix B).6 Although this is an expected result in service systems in which preemption

is allowed, we note that in non-preemptive services such as the one we model, this insight can be

counter intuitive. To establish this non-idling result under our non-preemptive assumption, we first

demonstrate the monotonicity property discussed in Lemma EC.1 in Online Appendix B.

Here, we seek to answer the questions we raised in Section 1, and generate insights into condi-

tions under which patients should be forced to wait in the ED until a bed in their primary inpatient

unit becomes available (rather than being transferred to a secondary unit with current bed availabil-

ity). We start by establishing the following result, which states the optimality of a cµ-type priority

rule.

PROPOSITION 1 (Optimality of a cµ-type Priority). If pi j = 0 for all i ∈ Np and j ∈ Ns, it is

optimal for each IW to give strict priority to the patient class that has the highest θiµi except to

avoid idling, regardless of the status or allocation of other IW.

Proposition 1 implies that inpatient units should give strict priority to serving the patient class

with the highest θ µ value, when reduction in quality of care is not a main concern, or when the

differences in service qualities between primarily and second inpatient units is negligible. Labeling

the class with the highest value of θ µ as Class 1, this means that in order to merely minimize the

risk of adverse events IWs should always prioritize serving Class 1 patients when at least one such

patient is boarded in the ED and the inpatient unit has some available capacity. The implementation

of Proposition 1 for a hospital bed manager is as follows. If there is a Class 1 patient boarded in

6Note that this result is only on idling when a primary patient exists, and does not mean idling IW beds cannot be optimal in
general (see, e.g., Theorem 1).
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ED that will experience no reduction in quality of care from an alternative IW assignment, the bed

manager should prioritize assigning him/her as soon as a bed becomes available in either his/her

primary or secondary IW: patience is not a virtue in this case.

But what if in addition to the risk of adverse events (a patient safety perspective), the manager

is also concerned about the quality of care? Our numerical results suggest that the optimal policy

in such a situation is a state-dependent threshold-type policy, where the threshold is based on the

number of patients boarded in the ED. We will discuss this in detail in the remainder of this section.

However, by focusing on IW 1, here we first show that when we introduce non-zero penalty costs in

our model, the primary unit of Class 1 patients (IW 1) prioritizes Class 1 patients under the optimal

policy, whenever it has some available capacity, and idles when X2 < X̄2 where X̄2 is a threshold

level. Thus, Class 2 patients should be kept boarded in the ED rather than being overflowed to IW

1 when X2 < X̄2: patience is a virtue, but only up to a point.

THEOREM 1 (Threshold-Based Idling). There exists an optimal stationary policy which is of

a threshold type: IW 1 (i) serves its secondary patients when the number of such patients boarded

in the ED reaches a state-dependent threshold level and has no primary patient boarded in the

ED, (ii) serves its primary patients whenever such patients are boarded in the ED, and (iii) idles

otherwise.

As is specified in Theorem 1, it is optimal to idle IW 1 when there is no Class 1 patient available

and the number of Class 2 patients waiting for an inpatient bed is below a threshold level. This is

due the non-zero penalty costs, which represent the reduction in quality of care when a patient is

assigned to a secondary unit. In fact, when pi j� θi, the optimal policy idles IW j whenever it does

not have any primary patient boarded in the ED. For non-extreme penalty cost cases, when IW 1

does not have a primary patient boarded in the ED, it should first idle until the number of Class 2

patients boarded in the ED reaches a certain level, then prioritize Class 2 patients until either a

Class 1 patient starts to board in the ED, or the number of Class 2 patients falls below the threshold.

For hospital bed managers, Theorem 1 implies that when a bed becomes available in IW 1, Class 1

patients should be assigned to that IW if there are Class 1 patients boarded in the ED. Otherwise,

Class 2 patients should be assigned to IW 1, but only if the number of Class 2 patients boarded

in the ED is higher than a certain level. This result is important, because it sheds light on the fact

that an IW 1 bed can be left idle under the optimal policy depending on the congestion level of the

ED. By idling such a bed and asking Class 2 patients to continue boarding in the ED, the hospital

bed manager can avoid the reduction in quality of care, and also prevent a future arriving Class 1

patient from prolonged ED boarding, which in turn may have patient safety related consequences.
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4.1. A Simplified Model

To gain further insights into the structure of effective assignment policies, we now simplify our

model. In the simplified model, we focus on a single IW (IW 2) and two-patient classes (Class

1 and Class 2). Recall that IW 2 is the primary IW for Class 2 patients, and the secondary IW

for Class 1 patients, where (without loss of generality) we labeled classes such that θ1µ1 ≥ θ2µ2.

Thus, in this model, the IW (IW 2) prefers to serve Class 1 with respect to the θ µ index, but

Class 2 with respect to the penalty cost. As we will see, understanding the main trade-offs in this

simplified model is essential for answering the questions we raised in Section 1. Figure 4 illustrates

the patient flow of this simplified model as a queueing system.

In this simplified model, we also assume that the service process is preemptive.7 Under these

assumptions, the system state is Y = (Y1,Y2), where Yi represents the number of Class i patients

boarded in the ED, the state space is S = Z
2
+, and the set of admissible actions is:

U (Y ) =

{
u = (ui2)i∈{1,2} s.t. : ui2 ∈ {0,1},ui2 ≤ Yi, ∑

i∈{1,2}
ui2 ≤ 1 ∀i ∈ {1,2}

}
. (6)

The infinite-horizon optimality equation for this simplified model can be written as:

J(Y ) =θ Y T +β min
u∈U (Y )

{
∑

i∈{1,2}
λ̃i J(Y + ei)

+ ∑
i∈{1,2}

µ̃iui2 (pi2 + J(Y − ei))

+

(
1−Λ− ∑

i∈{1,2}
µ̃iui2

)
J(Y )

}
, (7)

where β is the discount factor per uniformized period, the penalty costs p12 and p22 are scaled

so that p22 = 0, and the vector θ is scaled so that θ Y T represents the expected cost per uni-

formized period when the system is at state Y . Also, in (7), the uniformization rate is ψ̄ = λ1 +

λ2 +max{µ1,µ2}, where µ̃i =
µi

ψ̄
, λ̃i =

λi

ψ̄
, and Λ = λ̃1 + λ̃2.

Next, we define the functional operators Ta,Tu and T∗ (see, e.g, Saghafian and Veatch (2016) for

the use of similar operators in a different queueing structure) as:

Tθ J(Y ) = θ Y T , (8)

TaJ(Y ) = ∑
i∈{1,2}

λ̃i J(Y + ei), (9)

7We realize that allowing service preemption lacks realism; however, this assumption is useful for model tractability and for
gaining sharp insights. We relax this assumption in Section 6, and utilize real-world data along with simulation analyses to verify
the insights gained.
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Figure 4 A queueing representation of the simplified system

TuJ(Y ) = ∑
i∈{1,2}

µ̃iui2 (pi2 + J(Y − ei)) ,

+

(
1−Λ− ∑

i∈{1,2}
µ̃iui2

)
J(Y ),

= (1−Λ)J(Y )− ∑
i∈{1,2}

µ̃iui2 (∆iJ(Y − ei)− pi2) , (10)

T∗J(Y ) = min
u∈U (Y )

TuJ(Y ), (11)

T J(Y ) = Tθ J(Y )+β (TaJ(Y )+T∗J(Y )) , (12)

where ∆iJ(Y ) = J(Y + ei)− J(Y ). Using these functional operators, we can simply write the

infinite-horizon8 optimality equation (7) as

J(Y ) = T J(Y ). (13)

We next consider the following two properties

(i) µ1∆1J(Y )−µ2∆2J(Y + e1− e2)≥ µ1∆1J(Y − e1)−µ2∆2J(Y − e2) for all Y ≥ (1,1), (14)

(ii) µ1∆1J(Y − e1)−µ2∆2J(Y − e2)≥ µ1∆1J(Y + e2− e1)−µ2∆2J(Y ) for all Y ≥ (1,1). (15)

Property (i) implies that assigning Class 1 patients to IW 2 becomes more desirable as the number

of boarded Class 1 patients increases, and property (ii) implies that assigning Class 2 patients to

IW 2 becomes more desirable as the number of boarded Class 2 patients increases. Let F be the

set of real-valued functions defined on S = Z
2
+ such that if F ∈ F then F satisfies properties

8The average cost and finite-horizon cost equations can be obtained in a similar manner. Specifically, the finite-horizon cost
satisfies Jn+1(Y ) = T Jn(Y ), and the average-cost can be calculated as limβ→1−(1−β )J(Y ).
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(14)-(15). The following lemma shows that, if θ1µ1 ≥ θ2µ2, the functional operator T defined in

(12) preserves properties (14)-(15).

LEMMA 1 (Preservation). If θ1µ1 ≥ θ2µ2 and J ∈F , then T J ∈F .

Utilizing Lemma 1, we can present the following result.

THEOREM 2 (Optimality of a Threshold-Type Policy). If θ1µ1 ≥ θ2µ2, then the optimal pol-

icy obtained from (7) is of a threshold type: IW 2 should prioritize its primary patients until the

number of Class 1 patients boarded in the ED reaches a threshold that depends on the number of

Class 2 patients still waiting for a bed assignment.

The policy described in Theorem 2 is a threshold-based primary then the cµ rule: IW 2 serves its

primary patients up to a point, and switches to the cµ rule (θ µ in our notation) afterwards. Note

that when p12 = 0, the optimal assignment policy is the well-known cµ rule (see, e.g., Buyukkoc

et al. (1985) and Saghafian and Veatch (2016)), because the threshold becomes zero. However,

when we consider a non-zero penalty cost in the model, under the optimal policy, IW 2 first serves

its primary patients until the marginal benefit of serving a primary patient versus a secondary one

reaches the value of the penalty cost that might be accrued due to the reduction in quality of care.

This suggests that when the number of boarded patients is low, EDs should try to match their

patients with their primary units to ensure the highest quality of care. However, once the number

of boarded patients passes a specific threshold, the focus should shift from quality of care to risk

of adverse events that can occur due to prolonged boarding. Thus, we again observe that patience

for a primary unit assignment is a virtue, but only up to a point.

Hospital bed managers can use our results in various ways when deciding on which patient class

to assign to an IW 2 bed that has just become available. For instance, when a bed becomes available

in IW 2, and they do no expect any near-term bed availability in IW 1, Theorem 2 suggests that bed

managers should consider the number of both Class 1 and 2 patients boarded in ED and prioritize

the primary patient type (Class 2) until the number of Class 1 patients boarded in ED reaches

a certain level. From then on, they should start prioritizing Class 1 patients until the number of

Class 1 patients boarded in ED drops below that certain level. However, a decision maker should

notice that this level is highly dependent on the number of patients from both classes in the ED

as well as estimations of (a) reduction in quality of care when a secondary inpatient unit is used

(pi j), (b) cost of risk of adverse events for both classes (θi), and (c) average length of stay for both

classes ( 1
µi

). Thus, the decision should be made in a systematic way and after careful analysis.

To further assist hospital bed managers in making such decisions, we utilize the insights we

gained from analyzing the optimal policy, and develop effective bed assignment heuristics in the
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next section. We then use a variety of simulation experiments calibrated with hospital data to

evaluate their effectiveness under realistic conditions, and generate more insights.

5. Heuristic Policies
When we consider non-preemptive service policies (which better represent the current practice in

most hospitals) under the general system structure discussed in Section 3, our numerical computa-

tions show that the optimal policy is complex: it has a state-dependent threshold that depends on all

the elements in the system state, including IW bed availabilities. Our numerical results also show

that the optimal policy has a structure similar to the optimal control of the “N” structure queueing

network, where one server works as a shared server while the other works as a dedicated server.

That is, the primary unit of Class 1 patients (IW 1) typically prioritizes its primary patients (i.e.,

works as a dedicated unit whenever its queue of boarded patients is not empty), and primary unit

of Class 2 patients (IW 2) typically first serves its primary patients until the number of Class 1

patients boarded in ED exceeds a threshold, then helps IW 1 by serving Class 1 patients (see Online

Appendix B for some numerical experiments supporting this observation). We take advantage of

this (and our other findings) to develop easy to implement heuristic policies for use in hospitals.

5.1. A Birth-and-Death Process to Approximate the Threshold

To develop a heuristic that is easy to implement, we start by considering the optimal policy of an

“N” queueing network by assuming that IW 2 can serve patients from both types (a shared server)

while IW 1 can only serve Class 1 patients (a dedicated server). We use a birth-and-death process

for this system to estimate the optimal threshold level on the number of Class 1 patients boarded in

the ED above which IW 2 starts helping IW 1 by serving Class 1 patients. In particular, assuming

that the threshold level is some number T , we can approximate the Class 1 queueing dynamics

via the birth-and-death process depicted in Figure 5. When the number of patients in the Class 1

queue, X1, is smaller than the threshold level, only IW 1 will serve Class 1 patients which will

occur with rate µ1. However, when X1 is larger than the threshold, both IW 1 and IW 2 will serve

Class 1 patients, and hence, the death rate becomes 2µ1.

We use a separate birth-and-death process to approximate the dynamics for Class 2 patients (see

0 T1 T+1

λ1 λ1 λ1 λ1 λ1

µ1 µ1 µ1
2µ1 2µ1

Figure 5 Birth-and-Death process approximation for Class 1 patients
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Figure 6 Birth-and-Death process approximation for Class 2 patients

Figure 6). Let P2(T ) be the steady-state fraction of time that IW 2 serves Class 2 patients. Then,

the service rate for Class 2 patients is P2(T )µ2. Let L1(T ) and L2(T ) denote the long-run average

queue length (i.e., number of patients boarded in the ED) of Class 1 and Class 2 patients, respec-

tively. Assuming that O1(T ) denotes the average number of Class 1 patients served by IW 2, and

Z(T ) denotes the long-run average system cost under threshold level T , we can calculate Z(T ) as:

Z(T ) = θ1L1(T )+θ2L2(T )+ p12O1(T ). (16)

The objective is to find the value of T that minimizes Z(T ). To calculate (16), we use the above-

mentioned birth-and-death processes to estimate L1(T ), L2(T ), and O1(T ). To this end, we first

need to obtain the steady-state probability P j
i which is the probability that the length of queue

j ∈ {1,2} equals to i≥ 0. From the balance equations, we have:

P1
i = (

λ1

µ1
)iP1

0 ∀ i≤ T, (17)

P1
i = (

λ1

µ1
)T (

λ1

2µ1
)i−T P1

0 , ∀ i > T. (18)

By using the fact that these probabilities must sum to 1, we find P1
0 as:

P1
0 (T ) =

(1−ρ1)(1−ρ2)

ρT
1 (ρ2−ρ1)+(1−ρ2)

, (19)

where ρ1 =
λ1

µ1
and ρ2 =

λ1

2µ1
. By using these probabilities, we can obtain the average queue length

for Class 1 patients, L1(T ):

L1(T ) =
T

∑
i=0

iρ i
1P1

0 (T )+
∞

∑
i=T+1

iρT
1 ρ

i−T
2 P1

0 (T ). (20)

Also, O1(T ) = 1
2 ∑

∞
i=T+1 iρT

1 ρ
i−T
2 P1

0 (T ) by assuming that Class 1 patients in the queue will be

served equally by IW 1 and IW 2 after the number of Class 1 patients boarded in ED reaches the
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threshold.9 To calculate the average queue length of Class 2 patients, L2(T ), we first calculate the

following:

P2(T ) = P(x1 ≤ T ) = P1
0 (T )

1−ρ
T+1
1

1−ρ1
. (21)

The average queue length for Class 2 patients is then:

L2(T ) =
λ2

P2(T )µ2−λ2
. (22)

These allow us to calculate Z(T ) via (16), and find the optimal threshold value T ∗ = argminZ(T ).

However, the threshold level T ∗ does not have a closed-form solution, and the function Z(T ) can be

non-convex in general. Nevertheless, we can utilize numerical approaches (e.g., bisection search)

to find the value that minimizes (16). We term the heuristic policy that controls the patient flow

based on this threshold as the birth-death threshold (BDT) policy.

5.2. Penalty-Adjusted Largest Expected Workload Cost Policy

The second heuristic policy that we develop is a modified version of the Largest Expected Work-

load Cost (LEWC) policy proposed by Saghafian et al. (2011) for general parallel queueing sys-

tems. The LEWC policy dynamically balances the expected workload cost of queues by prioritizing

the queue with the largest expected workload cost (ROAE in our setting). LEWC is a dynamic

policy, because it prescribes different actions based on the system state (number of patients in each

queue) at each decision epoch.

In order to also incorporate the additional penalty cost of serving patients in their secondary IW,

we propose a penalty-adjusted version of LEWC, which we term LEWC-p. To this end, similar to

Saghafian et al. (2011), we first use the following Linear Program (LP). In this LP, the objective is

to find the optimal server allocations to maximize the minimum percentage excess capacity among

all patient types.

Max τ (23)

Subject to:

∑
j∈Ns

yi jµi ≥ λi(1+ τ) ∀i ∈ Np, (24)

∑
i∈Np

yi j ≤ 1 ∀ j ∈ Ns, (25)

yi j ≥ 0 ∀i ∈ Np,∀ j ∈ Ns. (26)

9This is not a strong assumption, because the service rates are patient class dependent not IW dependent.
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In this LP, yi j is the decision variable that represents the long-run proportion of time that IW j

serves patient class i. Constraint (24) ensures that the objective function maximize the minimum

excess capacity among all patient classes. Constraint (25) guarantees that the total proportion of

time for each IW does not exceed 1, and Constraint (26) enforces the proportions to be non-

negative.

Next, when a bed in IW j becomes available, we calculate an index, Ii j(xi), for each queue i∈Np

(class of patients boarded in the ED) to approximate the penalty-adjusted expected workload cost

of that queue given that its current length is xi:

Ii j(xi) =
θixi

∑ j∈Ns y∗i jµi
− pi j

xiy∗i j

∑ j∈Ns y∗i j
, (27)

where y∗i j’s are the solution to LP (23)-(26). The first part of the index approximates the cost

associated with risk of adverse events for class i patients: since there are xi patients in the queue, it

will take approximately xi
∑ j∈Ns y∗i jµi

units of time to serve them, and the cost due to adverse events is

θi per unit of time per patient boarded. The second part of the index approximates the associated

penalty cost. In this term,
y∗i j

∑ j∈Ns y∗i j
represents the proportion of patients of class i served by IW j.

With these, the penalty-adjusted LEWC policy (LEWC-p) is as follows:

The LEWC-p Policy for Bed Assignment:
Step 1. Solve LP (23)-(26) to derive optimal allocations y∗i j.

Step 2. Whenever a bed becomes available in IW j, compute indices Ii j(xi) for all patient

classes (i ∈ Np), then assign the bed to patient class k = argmaxi∈Np Ii j(xi). If the pri-

mary and secondary queues of IW j have the same index, break the tie by assigning

the bed to the primary queue. If the primary queue of IW j is empty, and its secondary

queue has a negative index, keep the bed in IW j idle.

5.3. Comparison of the Proposed Heuristic Policies

We now compare the performance of the proposed BDT and LEWC-p heuristic policies with the

optimal policy. As a benchmark, we also use the generalized cµ (Gcµ) rule by assuming a quadratic

holding cost function (Ci(xi) = θix2
i ), and assign the available bed in IW j to patient class k where

k = argmaxi µiC
′
i(xi). That is, under the Gcµ policy, the available bed in IW j is assigned to the

class that has the highest θiµixi value.

To compare these policies (BDT, LEWC-p, and Gcµ), we create a large test suite which covers

various combinations of parameters (cost associated with risk of adverse events, penalty costs

associated with reduction in quality of care, arrival rates, and service rates). Tables EC.4-EC.6

in Online Appendix C summarize the parameter combinations in this test suite, which generate a
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total of 216 problem instances. To find the optimal policy for each problem instance, we use the

well-known value-iteration algorithm to solve our MDP formulation.

Figure 7 illustrates our computational results over the test suite by constructing the empirical

Cumulative Distribution Function (CDF) for the percentage optimality gap of each of the non-

optimal policies (BDT, LEWC-p, and Gcµ). The results presented in this figure show that LEWC-p

and BDT policies can both be considered as “nearly-optimal” policies. However, the mean and

standard deviation of LEWC-p optimality gap is smaller than that of the BDT policy, so we can

conclude that it is the better policy. Performance of Gcµ is, however, significantly worse than both

the LEWC-p and BDT policies. This is mainly because Gcµ does not consider the effect of penalty

costs. However, even when the penalty cost is zero, we observe that Gcµ is not the best policy for

all cases. When the penalty cost is zero, both of the proposed heuristic policies (BDT and LEWC-

p) perform close to each other while BDT performs slightly better due to the assumption that IW 1

only serves Class 1 patients (under the cµ policy both of the IWs serve Class 1 whenever feasible).

Table 2 compares the optimality gap of LEWC-p, BDT, and Gcµ policies for various congestion

levels in the system. In this table, low traffic implies a congestion level of 50%, moderate represents

70%, and high indicates a 90% congestion level. All of the policies show a smaller mean optimality

gap in moderate to high congestions levels than in the low congestion level. This observation

suggests that implementing them in crowded systems (e.g., in busy teaching hospitals) is better

than doing so in less crowded systems (e.g., in less busy urban hospitals).

Finally, Table 3 compares the policies based on various penalty cost settings and shows that all

policies perform best when the underlying penalty cost is high. Moreover, LEWC-p is more robust

than the BDT policy to changes in the penalty cost, since in the BDT policy only one threshold

level is considered while the LEWC-p policy dynamically adjusts the assignments based on the

number of patients of different classes that are boarded in the ED.

6. Simulation Analysis Using Hospital Data
To gain more insights into effective policies for assigning ED patients to their primary or secondary

inpatient units, we use a discrete-event simulation model of ED patient flow, and calibrate it with

a year of hospital data collected from MCA. This enables us to relax some of the assumptions

we made earlier (e.g., exponential service times, Poisson arrivals, etc.), and also shed light on the

magnitude of achievable benefits for EDs as well as hospital conditions under which our proposed

assignment policy (LEWC-p) will work well. To this end, we first describe the admission sources

in MCA. We then describe the arrival process from such sources. Finally, we discuss the service

process as well as the empirical length of stay (LOS) distributions we have estimated from our data

set.
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Table 2 Optimality gap of policies for various congestion levels

Congestion Level Policy Mean Min Max

Low: ρ ≤ 0.5
LEWC-p 7.01 % 0.00 % 14.03 %

BDT 8.66 % 0.00 % 13.38 %
Gcµ 16.90 % 11.90 % 23.97 %

Moderate: ρ = 0.7
LEWC-p 5.83 % 1.29 % 16.54 %

BDT 8.34 % 2.61% 15.47 %
Gcµ 13.47 % 8.66 % 17.17 %

High: ρ ≥ 0.9
LEWC-p 5.68 % 1.74 % 9.20 %

BDT 7.07 % 3.82 % 14.42 %
Gcµ 10.49 % 0.09 % 15.28 %

Table 3 Optimality gap of policies for various penalty costs

Penalty Cost Policy Mean Min Max

Low: p12 = p21=1
LEWC-p 7.02 % 1.29 % 16.19 %

BDT 9.87 % 6.00 % 25.65%
Gcµ 14.37 % 8.85 % 21.78 %

Moderate: p12 = p21=10
LEWC-p 5.82 % 0.00 % 15.06 %

BDT 6.17 % 0.00% 15.73 %
Gcµ 12.92 % 0.09 % 22.40 %

High: p12 = p21=100
LEWC-p 4.68 % 0.00 % 13.24 %

BDT 4.68 % 0.00 % 13.92 %
Gcµ 11.73 % 0.44 % 23.97 %

6.1. Patient Flow and IWs in MCA

Admission Sources. Patients are admitted to IWs from three sources. We categorize admitted

patients based on their source of admission in three groups: ED admits, direct admits, and Oper-

ating Room (OR) admits. ED admits are patients who finish their treatment with ED and receive

an admit decision from an ED physician. Direct admits are the ones directly admitted to an IW
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without any preceding visits. OR admits are the patients who initially receive a surgery from the

hospital and are subsequently admitted to an IW.

IWs. Patients from the three admission sources described above require a bed from one of the eight

inpatient units based on their diagnosis. The name of IWs, their descriptions, and number of beds

in each of them in MCA can be found in Table 1 (see Section 1).

Patient Types. To gain more insights into effective assignment policies, we focus on patients that

arrived to MCA ED and had an admission diagnosis of either chest pain (CP) or congestive heart

failure (CHF). These patients are often assigned to a secondary IW; the primary IW for both CP

and CHF patients is 4 West (4W), and their secondary IW is 5 West (5W) (see Table 1 for more

information regarding these IWs). There are two types of CP and CHF patients: Type 1 patients

are those considered to be more sensitive to a secondary bed assignment (i.e., are subject to higher

reduction in quality of care if assigned to a secondary inpatient unit). Type 2 patients are those who

are less sensitive to a secondary bed assignment. We develop a classification scheme using simple

laboratory findings. We define Type 1 CP patients as those who have an elevated serum troponin

(Tn) level, and Type 2 CP patients as those who have a normal troponin level. We define Type 1

CHF patients as those who have a B-type natriuretic peptide (BNP) level of 4,000 pg/ml or greater,

and Type 2 CHF patients as those with BNP levels below 4,000 pg/ml. Although there are many

other factors that may determine illness severity for both CP and CHF patients, this serves as a

useful estimation for modeling purposes. Importantly, our empirical analyses show that there is no

statistically significant difference in the mean IW service time between patients that are assigned

to primary and secondary units for both CP and CHF patients for each type (see Table EC.7 in

Online Appendix D).

Arrival Process. We use bed-request times as the “arrival” time of each patient to our system. We

observe from our data set that, for each of the three arrival sources (ED admit, direct admit, OR

admit), the arrival rate is highly time-dependent. Furthermore, we observe that the arrival process

for each arrival source and for each IW can be modeled as a nonhomogeneous Poisson Process with

a rate that is constant during one-hour time blocks. In addition to hour-of-day dependent arrival

rates, we observe day-of-week dependency in arrival rates for ED admits. However, we do not

observe day-of-week dependency for direct admits or OR admits in our data set. We simulate the

patient flow assuming that the arrival process is cyclo-stationary with one week as the cycle. We

do not consider the occasional transfers between inpatient units, since (a) our focus in this paper is

on the patient flow between ED and IWs, and (b) the rate of such transfers is negligible compare

to the arrival rate of ED admits, direct admits, and OR admits.
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Service Process. In our simulation model, we consider the beds in IWs as servers. Based on our

data, the service rates depend on patient type and admission source but not the IW (see Table

EC.7 in Online Appendix D for p-values on the equality of means of service times for primary and

secondary IWs for different patient types). Table EC.8 in Online Appendix D shows the average

service time (in days) for each IW based on the admission source. Our statistical analyses sug-

gest that we can use lognormal distributions as service time distributions (plots of service time

distributions are shown in Figures EC.6-EC.8 in Online Appendix D).10

Costs. Penalty costs are assigned based on the patient type (Type 1 and Type 2 discussed above).

The penalty cost for Type 1 patients are always higher than Type 2 patients, since Type 1 patients

are more sensitive to a secondary bed assignment. We consider a wide range of cases for both

penalty costs and costs associated with risk of adverse events (see Online Appendix E for more

information). As we will discuss, we perform various sensitivity analyses on these cost parameters

to better understand their effect.

Performance Measures. In addition to the overall cost objective we introduced in Section 3, we

use the overflow proportion (the ratio of patients assigned to a secondary IW to the total number

of patients of same type served) and the average ED boarding time (the average time between a

request and bed occupancy) as other performance measures. We also use the 2-hour boarding rate

(the fraction of patients that are boarded for two hours or more)11 as another performance measure,

since in addition to the average boarding time reducing excessive boarding times is also important

for most EDs.

Priorities and Runs. We use the first-in-first-out (FIFO) priority rule for each IW regardless of

the admission source of patients. Each simulation observation is obtained for 1,000 replications

with a replication length of one year. The number of replications is chosen so as to enforce tight

confidence intervals, enabling us to represent simulation confidence intervals with their mid point

in all of our graphs. This warm-up period is determined through the Welch method (see, e.g., Welch

(1983)).

Base Case Scenario. We consider the base case scenario to be a reflection of the current system in

MCA based on a year of data we have collected from the hospital. We use this scenario as a bench-

mark to analyze the potential changes that may occur due to implementing our proposed policies.

Thus, we use the level of performance measures in the base case scenario (e.g., 2-hour boarding

rate, average boarding time in the ED, etc.) for CP and CHF patients as a point of reference, and

compare the results of our proposed policy with those metrics. However, in order to validate our

10Lognormal distribution as a service time distribution is not unique to hospitals. For instance, Brown et al. (2005) show similar
characteristic of the service time distribution in call centers.

11As we discussed in Section 1, the current 2-hour boarding rate at MCA based on our data set is around 30%.
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base case scenario based on the collected data, we first simulate the patient flow from three arrival

sources (ED, direct admit, OR admit) to eight IWs (see Table 1). Then, we focus on patient flow

from ED to the two IWs that can serve CP and CHF patients: 4 West and 5 West. In our simulation

model, in addition to CP and CHF patients, we simulate the flow of other patients that require a

bed from 4 West or 5 West (other than CP and CHF patients), but note that these patients are not

eligible for overflows, and can only be assigned to their primary inpatient units. We include these

patients in our simulation model to represent the capacity utilization in 4 West and 5 West more

accurately, thereby increasing the fidelity of our simulations.

Figure 8 illustrates the patient flow under consideration. This figure shows that after the admis-

sion decision is made by the ED physician (left-hand side of the figure), ED boarding starts (middle

part of the figure which is labeled as “ED Boarding”). In the base case scenario, there is no specific

rule for bed assignments. Thus, we use the FIFO rule for the primary bed assignments, and model

the overflows to secondary IWs by using the proportions that are obtained from our data analyses.

The dashed lines in Figure 8 show assignments of patients to secondary IWs (overflows that incur

a penalty cost) while the solid lines show assignments to primary IWs.

6.2. Validating the Simulation Model

To validate our simulation model, we compare our empirical results obtained directly from our

data set with those obtained from our simulation model. Figures 9(a) and 9(b) compare the resulted

time-dependent boarding time of patients as well as the resulted overflow rates of the simulation

model with that of the empirical data. Using the t-test for the equality of means, we observe no

statistical difference between outputs of our simulation model and those from empirical data (p-

value = 0.412). Our results suggest that our simulation model is of high fidelity, and accurately

matches the current practice.

6.3. Performance of the Proposed LEWC-p Policy

We now use our simulation model for CP and CHF patients to investigate the impact of implement-

ing our proposed LEWC-p policy. Based on our results, we can make the following:

OBSERVATION 1 (Benefits of LEWC-p). Implementing LEWC-p for assigning CP and CHF

patients to their IWs improves the total average cost by 14%, the 2-hour boarding rate by 2%,

and the average boarding time by 9% (10 minutes/patient). Also, compared to current practice,

these improvements due to implementing LEWC-p are all statistically significant (the p-value on

the difference is 0.00018, 0.022, and 0.001, respectively).

We next test the sensitivity of the gained benefits to the penalty costs and costs associated with

adverse events. As we increase the latter, the improvement in the 2-hour boarding rate and the aver-
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Figure 8 Patient flow in the simulation model

 

0

20

40

60

80

100

120

140

160

1
2

:0
0

 A
M

1
:0

0
 A

M

2
:0

0
 A

M

3
:0

0
 A

M

4
:0

0
 A

M

5
:0

0
 A

M

6
:0

0
 A

M

7
:0

0
 A

M

8
:0

0
 A

M

9
:0

0
 A

M

1
0

:0
0

 A
M

1
1

:0
0

 A
M

1
2

:0
0

 P
M

1
:0

0
 P

M

2
:0

0
 P

M

3
:0

0
 P

M

4
:0

0
 P

M

5
:0

0
 P

M

6
:0

0
 P

M

7
:0

0
 P

M

8
:0

0
 P

M

9
:0

0
 P

M

1
0

:0
0

 P
M

1
1

:0
0

 P
MA

ve
ra

ge
 B

o
ar

d
in

g 
Ti

m
e(

m
in

s)

Bed Request Time

Empirical Simulation

(a) Hourly average ED boarding time

 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Type1-CP Type2-CP Type1-CHF Type2-CHF

O
ve

rf
lo

w
 P

ro
p

o
rt

io
n

 (
%

)

Patient Type

Empirical Simulation

(b) Overflow proportion

Figure 9 Validating the simulation model

age ED boarding time increases (see Figures 10(a) and 10(b)). Furthermore, we observe that as we

increase the penalty cost, IWs start to work as dedicated units: they tend to only serve their primary

patients. Hence, after increasing the penalty cost, we observe improvements in overflow propor-

tions, but the average ED boarding time and the costs associated with adverse events increase.

This result is similar to what we observed from the optimal policy of the analytical model (see,

e.g., Figure EC.2 in Appendix B): as we increase (decrease) the penalty cost, the LEWC-p policy

mimics the optimal policy by decreasing (increasing) the assignments to secondary IWs. Similarly,

as we increase (decrease) costs associated with adverse events that may occur during ED board-

ing, the LEWC-p policy mimics the optimal policy by increasing (decreasing) the assignments to

secondary IWs.

Figures 11(a) and 11(b) illustrate the change in total number of boarded patients in the ED

and overflow proportion as ROAE and penalty cost parameters change under the LEWC-p policy.

As the ROAE cost increases, the proposed policy starts to assign patients to their secondary IW
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more aggressively. This leads to lower average ED boarding times, and suggests that utilizing a

secondary IW is a more attractive option for patients who are under a higher ROAE (e.g., those in

need of timely care following their ED service). Another implication of Figures 11(a) and 11(b) is

that assigning patients to their secondary IWs has a minimal effect on average ED boarding time

when the penalty cost parameter is high. This suggests that hospital administrators should be more

patient in assigning beds for patients who are more sensitive to a secondary IW assignment (e.g.

Type 1 patients as opposed to Type 2 patients): the virtue of patience is patient type dependent.

6.3.1. Effect of Idling Beds Our proposed policy allows idling IW beds (in anticipation of future

needs) even when there are patients boarded in the ED who need them. However, hospital beds are

valuable assets, and keeping them idle while patients are waiting for them might not be perceived

as attractive by hospital administrators. To gain some insights into the impact of idling, we modify

our policy by assigning 4 West patients to 5 West when there is no 5 West patient boarded in the

ED (disallowing idling of 5 West beds). From our results on the performance of LEWC-p policy

with and without idling, we can make the following observation:

OBSERVATION 2 (Nonidling Policy). Non-idling flow policies increase the number of patients

overflowed, but does not significantly change the average number of patients boarded in the ED,

the average boarding time, and the 2-hour boarding rate.

The above observation captures one of the most fundamental trade-offs in our study. Prohibiting

idling 5 West beds increases the number of 4 West patients assigned to 5 West while reducing

the number of 4 West patients boarded in ED who are eligible for a secondary unit assignment.

However, these assignments result in blocking the access of future arriving 5 West patients to 5

West beds, which increases the number of 5 West patients boarded in ED. As a result, the aver-

age number of patients boarded in ED, the average boarding time, and the 2-hour boarding rate

do not change significantly. These outcomes contradict the prevalent perception among hospital

administrators that beds should not be idled intentionally. We note that this perception might be

correct when the ROAE among different patient groups (in our case, 4 West and 5 West patients) is

significantly different.12 However, our results suggest that hospitals should typically refrain from

prohibiting idling: idling IW beds can be beneficial.

6.3.2. Effect of Inpatient Bed Capacity In our previous simulation experiments, we used the

current bed capacity of IWs in MCA (see, Table 1). To gain more insights for other hospitals which

might have higher or lower capacities compared to MCA, we now provide sensitivity analysis by

12If the ROAE for eligible 4 West patients is much larger than that of the 5 West patients, prohibiting idling can be beneficial in
terms of the total average cost metric and average boarding time for 4 West patients.
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Figure 10 Improvement due to LEWC-p compared to current practice for various penalty and ROAE parameters
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Figure 11 The effect of ROAE and penalty cost parameters on the average number of patients boarded and overflow proportion

due to LEWC-p

altering the number of beds in IWs (both 4 West and 5 West). Figure 12 illustrates the results, and

enables us to make the following:

OBSERVATION 3 (Effect of Inpatient Bed Capacity). The achievable improvements due to

implementing LEWC-p (on the average boarding time, the 2-hour boarding rate, and the total cost)

is greater in hospitals with lower inpatient bed capacity (all else equal).
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Figure 12 Effect of inpatient bed capacity on the improvements due to LEWC-p

This observation suggests that hospitals that lack enough inpatient bed capacity (e.g., busy teach-

ing hospitals) will benefit more from implementing the LEWC-p policy. Thus, instead of investing

in increasing their capacity – a challenging task that often requires a certification of need – they

can benefit from better bed assignment policies such as LEWC-p, which requires only a minimal

investment.

Another related issue in understanding the effect of inpatient bed capacity is the practice of “bed

reservation.” Unlike MCA, some hospitals reserve a portion of their IW capacity for their primary

patients so as to reduce the effect of overflows on those patients. It is clear that as the number of

beds usable for overflows decreases, the number of patients that are assigned to a secondary IW

decreases, which in turn results in a lower total penalty cost. However, the impact of this practice

on other performance measures such as the average boarding time, the average number of patients

boarded, and the 2-hour boarding is not obvious. To observe the effect of this practice, we consider

three cases by assuming that only 25% (9 beds), 50% (18 beds), and 75% (27 beds) of the beds

in 5 West can be used for accommodating CP and CHF patients. From this analysis, we make the

following:

OBSERVATION 4 (Effect of Restricting Bed Capacity). Under the proposed LEWC-p policy,

restricting the bed capacity for overflow patients significantly increases the average boarding time,

the average number of patients boarded, and the 2-hour boarding rate, while decreasing the num-

ber of overflows. However, the relative impact of this practice is not statistically significant between

cases with 25% and 50% restriction, or with 50% and 75% restriction.

Our results suggest that, when the number of beds usable for overflows decreases, the number

of overflows decreases (as expected). Since our proposed policy captures the trade-off between
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the ROAE and the quality of care, reduction in overflows leads to an increase in the number of

patients boarded in the ED. However, the changes in performance measures are not significant

when we either drop to 25% bed capacity from 50% bed capacity, or drop to 50% bed capacity

from 75% bed capacity. For hospitals with similar characteristics to MCA (in terms of bed request

arrivals, inpatient LOS, etc.) this suggests that, to make a statistically significant impact on the

performance measures, managers should consider dramatic changes in the number of beds to be

used for overflows.

6.3.3. Effect of Overflow Trigger Times Overflow trigger times are often used in practice (see,

e.g., Shi et al. (2015)) where a patient is overflowed to a secondary IW only when the boarding

time of the patient exceeds a predetermined trigger time. We now investigate how our proposed

policy performs when the hospital employs an overflow trigger time. To this end, we assume that a

patient can be overflowed either when his/her boarding time exceeds the trigger time, or when the

LEWC-p policy assigns him/her to a secondary IW. We analyze the performance of this modified

policy by considering various trigger times.

OBSERVATION 5 (Overflow Trigger Time). Imposing overflow trigger times typically

increases the penalty costs accrued due to lower levels of quality of care. However, regardless of

the level of the trigger time, the relative improvement in the costs associated with adverse events

is not high enough to yield an overall improvement in the aggregate cost measure. In addition, the

impact of imposing a trigger time on the average boarding time and the 2-hour boarding rate is

significant only when the trigger time is no more than two hours.

This observation suggests that imposing an overflow trigger time that is higher than two hours

does not change the performance of our proposed LEWC-p policy. In fact, using a trigger time that

is more than two hours typically adds complexity in assignment decisions without any significant

change in performance measures. As discussed earlier, our proposed LEWC-p policy improves the

average boarding time by approximately 10 minutes per patient compared to the current practice.

This results in approximately 100 minutes of average boarding time and 29% of 2-hour boarding

rate in the improved system. Setting a trigger time that is lower than two hours can affect more than

70% of the patient population (since 2-hour boarding rate is 29%), which may result in improve-

ments in the average boarding time and the 2-hour boarding rate. However, we find that adding

trigger times to LEWC-p does not lead to improvements in the aggregate cost measure, regardless

of the level of the trigger time (see Figure EC.9 in Online Appendix E). This further confirms

that the proposed LEWC-p policy already strikes a strong balance between concerns related to

prolonged ED boarding times and those related to overflows.
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7. Conclusion
We study the dynamic assignment of ED admitted patients to hospital IWs. We utilize a queueing

framework and an MDP model to gain insights into effective mechanisms to minimize the risk of

adverse events (a patient safety concern) while reducing the number of secondary inpatient unit

assignments (a quality of care concern).

Our results for a simplified model with two patient classes and two IWs suggest that the optimal

policy is a threshold-type policy whereby the threshold depends on the number of patients boarded

in the ED. Under this policy, the primary unit of Class 1 patients (i.e., patients that have a higher θ µ

value) typically works as a dedicated unit that serves its primary patients whenever such a patient

is boarded in the ED. Moreover, the primary unit of Class 2 patients serves them before helping IW

1 on Class 1 patients, and switches to serving Class 1 patients once the number of Class 1 patients

boarded in the ED reaches a threshold. These suggest that patience in transferring ED admitted

patients to IWs is a virtue, but only up to a point. Contrary to the prevalent perception among

hospital administrators, we also find that idling IW beds can be beneficial. We also show that, when

the penalty costs that represent the reduction in quality of care are negligible, the optimal policy is

the well-know cµ rule: both IWs serve Class 1 patients in order to myopically decrease the risk of

adverse of events.

Our analyses show that the optimal policy is complex in general, and may not be suitable for

implementation in hospitals. Therefore, we develop two heuristic policies that are easy to imple-

ment. We first use a birth-and-death process to approximate the threshold level that minimizes an

aggregate measure of both patient safety and quality of care. Then, we propose a modified version

of the LEWC heuristic termed LEWC-p that enables us to dynamically strike a balance between

concerns of patient safety and quality of care. The results show that LEWC-p significantly outper-

forms other policies, and is also more robust than them in that it has a lower standard deviation of

optimality gap. Thus, an important contribution of this study is to introduce LEWC-p as a simple

but effective policy that can be implemented in hospitals.

We then investigate the achievable gains due to implementing LEWC-p by using a simulation

model that we calibrated with a year of data collected from MCA. By using this simulation model,

we are able to reflect the realistic features of the hospital patient flow. To gain clear insights, we

focus on chest pain (CP) and congestive heart failure (CHF) patients. Furthermore, by utilizing

laboratory findings, and separating patients based on the level of B-type natriuretic peptide (BNP)

for CP patients and troponin for CHF patients, we classify these patients to Type 1 and Type 2.

Our analyses on CP and CHF patients indicate that LEWC-p can yield significant improvements

compared to the current practice by striking a better balance between patient safety and quality of
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care metrics. We also shed light on various hospital characteristics that will make the use of our

proposed policy more beneficial.

The proposed model and policy on patient flow from the ED to IWs can be extended to other

areas of hospitals. Similar to the bed-block phenomenon in the ED, operating rooms (ORs) expe-

rience problems due to bed shortages in the post-anesthesia care unit (PACU). Our model and

analyses can be used in those areas of a hospital to provide insights into the trade-off between

waiting to be assigned to an appropriate bed versus a quick overflow to a less appropriate bed.

Our model can be also extended in various other ways. First, our model focuses on the patient

flow between the ED to IWs without including the transfer between IWs (the requirements for

such a flow would be different from our focus in this paper). However, an extension of our model

can be used to study patient flow between the IWs, and find other ways to further reduce the ED

boarding times. Second, our model considers IW beds as servers, although in the actual system

the transfer process from ED to IWs is more complicated. For instance, in many hospitals, the

nurses’ availabilities often affect the patient flow, since nurses are responsible for transferring

patients from ED to IWs. Future research can expand our study by considering such more complex

scenarios. Finally, in our objective function, we focus on the risk of adverse events and quality

of care of patients admitted through the ED. Future research can extend our objective function by

incorporating other concerns such as the LOS and waiting times for ED patients who are discharged

home after their ED visit.
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