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Abstract

Telemedical Physician Triage (TPT) is an example of a Hierarchical Knowledge-Based Service System
(HKBSS), in which a second level of decision agent (telemedical physician) renders a decision on cases re-
ferred to him/her by the primary level agents (triage nurses). Managing the speed-versus-quality tradeoff in
such systems presents a unique challenge because of the interplay between agent knowledge and flow of work
between the two levels. We develop a novel model of agent knowledge, based on the beta distribution, and
deploy it in a Partially Observable Markov Decision Process (POMDP) model to describe the optimal policy for
deciding which cases (patients) to refer to the second level for further evaluation. We show that this policy has
a monotone control-limit structure that reduces the fraction of decisions made at the upper level as workload
increases. Because the optimal policy is complex, we use structural insights from it to design two practical
heuristics. These heuristics enable an HKBSS to adapt efficiently to workload shifts by adjusting the criteria for
referring decisions to the upper level based on partial real-time queue length information. Finally, we conduct
analytic and numerical analyses to derive insights into the management of a TPT system. We find that (1) the
telemedical physician should evaluate more patients as congestion in the emergency room waiting area increases,
(2) training that improves accuracy of the physician and/or nurses can be effective even if it only does so for a
single patient type, but training that improves consistency must do so for all patient types to be effective, and
(3) patient classification in triage should consider environmental and operational conditions in addition to the
patient’s medical condition.

Keywords: Decision Flow Network; Knowledge-Based Decision Making; Telemedical Triage; POMDP.

———————————————————————————————————————————————

1 Introduction

Triage is the process used by hospital Emergency Departments (EDs) to assess patient urgency,

traditionally through a short interview by a triage nurse.1 In addition to speed, accuracy is vital

in triage because errors in classification lead to errors in prioritization, which can cause dangerous

delays in treating urgent patients (see, e.g., Wiler et al. (2010), FitzGerald et al. (2010), Saghafian

et al. (2012, 2014), Traub et al. (2015), and the references therein). Seeking to improve triage

decisions, some hospitals have begun experimenting with Telemedical Physician Triage (TPT) (see,

e.g., Traub et al. (2013)).

In TPT, a triage nurse has the option after examining a patient to refer that patient to a

telemedicine booth through which a remote physician conducts a video conference and renders a

triage decision. The Telemedical Physician (TP) typically services multiple hospitals, and hence

patients referred to him/her may have to wait in a queue. Therefore, when considering referring a

1Most EDs in the U.S. use the five level Emergency Severity Index (ESI) system. ESI-1 patients are life threatening
emergencies that are routed immediately to a resuscitation area, while ESI-4 and 5 patients are simple enough to be
sent to a fast track. The patients that remain in the main ED are ESI-2 patients, who cannot wait without clinical
risk and hence are urgent, and ESI-3 patients who can wait without risk and hence are non-urgent.

1



2 Telemedical Physician Triage and Other Knowledge-Based Service Systems

patient to the TP, a triage nurse must balance the queueing delay with the benefit from a review

by the more knowledgeable physician.

We use the term Hierarchical Knowledge-Based Service System (HKBSS) to refer to a system

like TPT in which hierarchically organized agents with different knowledge levels assess cases and

must either issue a decision or refer the case to a higher level. In the TPT setting, there are only

two levels of hierarchy (i.e., triage nurses and TP) and the decisions are binary (i.e., patients are

either urgent or not). Other HKBSS examples with two levels and binary decisions include the

U.S. Department of State Bureau of Consular affairs, in which agents must decide whether or not

to grant visa applications and can refer cases to a supervisor, and the mortgage department of a

bank, in which loan officers must decide whether or not to approve mortgages and can refer cases

to a manager.

While speed versus quality tradeoffs are common in operations management, those of an HKBSS

present a unique modeling challenge to incorporate a representation of agent knowledge and de-

cisions into a queueing model. Such a model is needed to address the following questions: (1)

What is the structure of decisions at the lower and upper levels that strikes an optimal balance

between speed and quality? (2) How do environmental factors (e.g., costs of decision errors, case

mix, fluctuations in workload, etc.) affect the optimal policy? (3) What levers (e.g., agent training,

information sharing between levels, etc.) are effective for improving system performance? (4) Are

there simple methods that can be used as practical policies for managing case flow in a real-world

HKBSS?

By addressing these questions in the context of TPT we generate new insights into the effective

management of telemedical physician triage, and also provide the analytic building blocks for

evaluating any similar HKBSS.

2 Related Studies

Researchers have explored knowledge-based organizations in the context of social networks and

their effects on organizational performance (see, e.g., Albrecht and Ropp (1984), Brass (1995),

Burt (1992), and Huberman and Hogg (1995)). While promising, these knowledge management

studies only address the information flow aspect of an HKBSS.

In contrast, the field of operations management has focused predominantly on the work flow

aspect. There are only a few papers in the operations management literature that have combined

task flow and information/decision making. Among them, Shumsky and Pinker (2003) studied a

two-level system that processes tasks with different levels of complexity. Using a principal-agent

framework, they focused on the impact of performance-based incentives at the lower level, and
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investigated incentives that would lead to system-optimal referral rates. However, unlike our study

(i) they do not explicitly model knowledge-based decision making, and (ii) they do not address the

ability of workload management policies to react to workload spikes.

Motivated by call centers that provide medical advice, Wang et al. (2010) considered the analysis

of diagnosis service systems where one must strike a balance between accuracy of advice, waiting

time, and capacity/staffing costs. In their study, a longer service entails higher accuracy and a

higher congestion. They use a M/G/K model to balance these. But, because they consider only a

single level of hierarchy, they do not consider the issue of balancing quality and speed by routing

cases between levels, as we do in this paper.

In another study with a single level of hierarchy, Anand et al. (2011) examined the trade-off

between service quality and speed by modeling quality as a linearly decreasing function of service

rate. In our two-level framework, a better decision can be made by a more knowledgeable agent,

but only if the case is transferred to the upper level. Because this involves a workload-dependent

delay in the queue of the upper level agent, the relationship between quality and time is nonlinear.

Another study that considered a quality and speed trade-off is Hopp et al. (2007) which mod-

eled the ability of employees to determine how much time to allocate to customers. In their work,

an agent can decide when to terminate a “discretionary service,” and the reward is an increasing

concave function of service time. However, in their model customers are homogenous and service

providers are assumed to be perfectly knowledgeable. In contrast, in our study, agents are neither

homogenous nor perfectly knowledgeable: they differ (across tiers) in skill level, and the accu-

racy of their judgment depends on their skill levels. Another distinct feature of our study is the

consideration of a two-level hierarchy instead of a traditional single-level service system.

Alizamir et al. (2013) also considered a single-level service system in which an agent can decide

to perform more diagnostic tests to improve the quality of the customer classification but at the

expense of more delays. Similar to our work, they studied the effect of congestion, but unlike

ours, only one case can be processed at a time in their study, and there is no queue formed after

the first test is performed. Finally, their representation of knowledge via the quality of sequential

Bayesian tests is less descriptive than our beta distribution model, and hence, cannot depict decision

consistency and other decision characteristics beyond accuracy. Thus, their model is not fully

suited to studying agent training, assessment sharing, and other relevant policies to improving the

performance of an HKBSS.

Rajan et al. (2015) studied the speed-quality tradeoff in telemedicine for treating chronically

ill patients. We also consider the use of tele-medicine in this paper, but rather than focusing on

how to increase the use of this technology, we focus on how to maximize its effectiveness in a triage
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Reference

Hierarchical Balking Separate False Positive Assessment Knowledge-Based Workload

Decision or and False Negative Sharing Decision Fluctuations

Levels Reneging Error Costs Scenarios Making

Shumsky and Pinker (2003) X
de Véricourt and Sun (2009) X

Wang et al. (2010) X X
Anand et al. (2011) X

Alizamir et al. (2013) X X
Debo and Veeraraghavan (2014) X

Others: Hopp et al. (2007);

Kostami and Rajagopalan (2013);

Tan and Netessine (2014);

Wang et al. (2015);

Our setting X X X X X X

Table 1: Summary of related studies on speed-quality tradeoffs.

setting.

To consider the judgement accuracy/congestion tradeoff, de Véricourt and Sun (2009)2 modeled

the decision process of a service provider using binary probabilistic cues. In their framework,

customers belong to one of two possible types, and accuracy is defined as the probability that the

customer type is correctly identified assuming that only false negatives may occur. We broaden this

representation of server knowledge by (1) using beta distributions to model the knowledge level of

the decision makers, which enables consideration of consistency as well as accuracy of assessments,

(2) considering both class-based false negative and false positive errors and their costs by allowing

the assessment of the beta distributions to depend on the true class of the customer, and (3)

considering more than a single level of hierarchy in the system to explicitly connect work flows and

knowledge-based decisions.

Table 1 provides a comparative summary of the extent to which available studies on speed-

quality tradeoffs address the key features of an HKBSS. Incorporating these features is an important

part of our contribution.

Finally, we note that some of the elements of Table 1 have also appeared in studies that do

not consider speed-quality tradeoffs. For instance, similar to our work, Bassamboo et al. (2006)

studied workload spikes in queueing networks. They characterized asymptotically optimal policies

for dynamic routing in such networks with varying arrival rates. However, unlike our study, they

assumed that the customer classes/characteristics are perfectly known to decision makers. Hence,

they did not consider decision making errors, which are a key element of almost any HKBSS.

3 Modeling Hierarchical Knowledge-Based Service
Systems (HKBSSs)

We now turn to the development of a formal model to analyze the performance of HKBSSs. We

begin by summarizing common characteristics of these systems:

2This paper seems to be an earlier version of Alizamir et al. (2013).
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• Hierarchical Structure. HKBSSs have a hierarchical structure that allows a lower level

agent to pass a case to a higher level for a decision. In this paper, we focus on two-level

systems in which cases are first assessed at the lower level (e.g., triage nurses), and are then

sent to the upper level agent (e.g., the Telemedical Physician (TP)) if needed.

• Limited Capacity. Since agents at both levels require time to process cases and make

decisions, the system has a limited capacity at each level. Because of this, customers may

balk if delays are too long. In the TPT system, the ED may go on a “diversion”, which signals

ambulances to take patients to another hospital, if congestion becomes severe. Patients may

also leave without being seen if waits are too long (although typically this occurs after triage

is done and the patient is in the waiting area of the ED). Whether a patient balks due to sever

congestion at the lower or upper level, the result is costly to the hospital in both financial

and reputational terms. However, to be thorough, we also consider HKBSSs in which balking

is not an issue. We also discuss how our findings are relevant to HKBSSs in which reneging

is more prevalent than balking.

• Binary Primary Decisions. In many HKBSSs, including TPT, the primary decisions are

binary. As noted earlier, in visa processing and consumer loan evaluation, the decisions are

restricted to “yes” or “no”. In the TPT system, the key triage decision is whether the patient

is urgent or not.

• Knowledge-Based Decisions. The quality of decisions depends on the decision maker’s

knowledge level. For instance, in the TPT system, triage nurses and the TP make judgments

about whether the patient is urgent or not based on their skill and experience.

• Speed-Quality Tradeoff. Sending cases to an upper level agent (e.g., the TP) results in

higher quality decisions (i.e., fewer decision errors) but also additional delay and congestion

at the upper level agent. Because of queueing effects, this tradeoff is particularly pronounced

in systems with highly utilized servers (e.g., overcrowded EDs).

These characteristics provide us with a foundation for modeling the performance of an HKBSS.

Specifically, we consider the two-level hierarchy shown in Figure 1, in which there are K agents at

the lower level (`), labeled as agents 1, 2, . . . ,K, and one agent at the upper level (u), designated

as agent 0.

We assume that cases arrive at each of the lower level agents at rate λ`, so that each agent

has his/her own queue of cases. We consider the scenario in which each lower level agent serves a

separate queue, because it better represents a TPT setting in which triage nurses are in different

(e.g., pediatric and main) EDs within a hospital, or are in different hospitals. However, since our

focus is mainly on systems that are subject to high utilization, there is little difference between

systems with a pooled queue and a system with separate queues. Furthermore, because the time of

the upper level agent (e.g., the TP) is particularly valuable, we assume the system uses a protocol

of not sending cases to the upper level without first examining them at the lower level.
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Figure 1: Modeling network flows in a two-level knowledge-based service system.

To model the possibility of cases not being handled due to congestion, we assume there is a limit

on the agents’ queue lengths beyond which arriving cases do not enter the system. Specifically, if a

case arrives when the number of cases in a lower level agent’s queue (including the case in service)

is b`, then the case does not enter the system and leaves without a decision. When a case does

enter the system, the lower level agent either makes a final decision and releases the case from the

system, or passes it to the upper level. The upper level agent also has a queue of cases and, similar

to the lower level, if a case arrives to the upper level agent when her queue is full (i.e., there are

bu cases at the upper level including one in service), then the case does not enter the upper level

and leaves the system without a decision (e.g., a patient leaves without being seen). Otherwise, the

upper level agent processes the case, makes a final decision and releases the case from the system.3

Our model is general enough to cover HKBSSs with no congestion related rejection by setting b`

and bu to large numbers. For instance, setting bu very high represents a system like TPT in which

customers (patients) rarely balk after being referred to the upper level (telemedical physician).

Furthermore, since queue lengths are considered when making referral decisions, our main findings

can be shown for an HKBSS with reneging instead of balking. We choose balking simply because

it better represents our main motivating example.

We assume that the processing time of a case by an agent at level j (j = `, u) follows a known

distribution with a finite mean 1/µj and is independent of the agent’s decision. In most of the

paper, we assume the interarrival and service times are exponentially distributed, but we note that

generalizations are possible. Since customer satisfaction is key in service systems, we characterize

service quality via a holding cost as well as a congestion related balking cost, which might not be

symmetric across the two hierarchical levels.

3The model takes queue lengths into account, and hence, optimizing it will determine whether it is better to refer
cases to the upper level and incur congestion related rejection/balking cost there, or to make a less accurate decision
at the lower level without any referral.
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Another important aspect of HKBSSs is their ability to make correct decisions. Therefore,

we also penalize wrong decisions by incorporating decision error costs at each level. In the TPT

system, the challenge is to determine whether patients are urgent (yes) or not (no). Hence, in TPT

or any other binary HKBSS, arrivals can be divided into cases for which the correct decision is

Y = 1 (yes), and cases for which the correct decision is Y = 0 (no). We let p1
` denote the fraction of

cases arriving at the lower level for which Y = 1, and (1−p1
` ) denote the fraction of cases for which

Y = 0. We further assume that p1
` is known, and 0 < p1

` < 1. However, we assume that the correct

decision Y for an individual case is not observable by an agent when the decision is made. If the

value of Y were known, the agent would always make a correct decision and the check provided by

the upper level would be redundant. In such a scenario, the lower level would become a traditional

flow network in which the only concerns would be the congestion related balking and holding costs.

However, because the correct decisions are not known in our framework, agents must examine each

case and, based on their knowledge and judgement, make a (possibly incorrect) decision. Moreover,

since lower level agents may elect to route cases to the upper level, decisions can significantly affect

the flow of cases.

After processing a case, the agent at level j (j = `, u) makes a decision aj , where the lower level

decision a` ∈ {0, 1, UP} and the upper level decision au ∈ {0, 1}. When an UP decision is made,

the case is passed on to the upper level. Hence, the final decision for a case is always 0 or 1 (as

long as it is not balked due to system congestion). To consider the cost of decision errors, we let c1

(c0) denote the error cost when a case’s correct decision is Y = 1 (Y = 0) but the agent’s decision

is aj = 0 (aj = 1). In TPT, c1 is the cost of misclassifying an urgent patient as non-urgent (which

leads to a longer downstream wait and hence more risks), while c0 is the cost of misclassifying a

non-urgent patient as urgent (which may put him/her ahead of urgent patients who arrive later

and increase their downstream wait and risks). We represent the vector of decision error costs

by ce , (c0, c1).4 Similarly, we let cb , (cb,`, cb,u), and h , (h`, hu) denote the vector of balking

and holding costs, respectively, where for generality we allow for asymmetric costs at the lower and

upper levels. Since the total cost in our setting considers both the network flow component (holding

and rejection/balking costs) and the decision making component (decision error costs), these two

aspects are linked in our model; an optimal decision rule is one that strikes a speed-versus-quality

balance between these two components.

To formalize the optimization model, we make use of the following notation. We represent by

π =
(
π`, πu

)
a control policy that jointly prescribes the agents’ actions at the lower and upper

levels at any time. With K , {1, 2, · · · ,K} denoting the set of all lower level agents, we represent

4We use a bold font to denote vectors and matrices.
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the vector of queue lengths at the lower level at time t by N`(t) ,
(
Nk(t) : k ∈ K

)
. Similarly,

we let Nπ`
u (t) denote the queue length at the upper level at time t, which depends on the control

policy adopted at the lower level, π`. We also let Eπ`
` (t) ,

(
E π`
`,0(t),E π`

`,1(t)
)

and Eπ`,πu
u (t) ,(

E π`,πu
u,0 (t),E π`,πu

u,1 (t)
)

denote the vector of cumulative number of decision errors up to time t at the

lower level and upper level, respectively, where E
πj
j,y (t) denotes the cumulative number of decision

errors made up to time t under policy πj for cases with correct decision y ∈ {0, 1}. Also, let Bl(t)

and Bπl
u (t) be the cumulative number of customers who balked up to time t at the lower and upper

level, respectively.

Using the notation above, the long-run average total cost of the system under a control policy(
π`, πu

)
is:

ϕ(π`, πu) , lim inf
t→∞

1

t
E
[
ce
(
Eπ`
` (t) + Eπ`,πu

u (t)
)T

+ cb
(
Bl(t), B

πl
u (t)

)T
+

∫ t

0
h
(
Nl(s)(1K)T , Nπ`

u (s)
)T
ds
]
, (1)

where “T ” represents the transpose operator, and 1K is a K-dimensional vector with all elements

equal to 1. Finally, with Π` and Πu denoting the set of all admissible (non-anticipative) policies at

the lower and upper levels, respectively, we seek to find

(π∗` , π
∗
u) = argmin

π`∈Π`, πu∈Πu

ϕ(π`, πu), (2)

and refer to ϕ∗ , ϕ(π∗` , π
∗
u) as the optimal long-run average cost.

3.1 Modeling Knowledge

The decision-making in an HKBSS is based on agent “assessments” which in turn depend on their

knowledge/experience level. An agent at level j makes an assessment Xj = x, where x ∈ [0, 1]. The

value of Xj may be explicit (e.g., a normalized credit score) or implicit (e.g., an estimate of agent’s

confidence that the correct decision is Y = 1). In either case, the value of x depends on the agent’s

knowledge. We use the beta distribution to model the knowledge level of an agent as follows. If the

correct decision for a case is Y = y (y = 0, 1), then the assessment by an agent at level j will be a

random variable Xy
j with a beta probability density function fyj (x) with parameters αyj and βyj :

fyj (x) =
1

B(αyj , β
y
j )
xα

y
j−1(1− x)β

y
j−1,

where B(αyj , β
y
j ) =

∫ 1
0 v

αyj−1(1 − v)β
y
j−1dv is the beta function. When needed, we assume αyj ≥

1, βyj ≥ 1 to ensure that f is bounded, which also implies that assessments are continuous on the

interval [0, 1]. Examples of such beta distributions are shown in Figure 2. Notice that assessment
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Xj is equal to X1
j (to X0

j ) with probability p1
j (with probability 1−p1

j ). Hence, the density function

of Xj is fj(x) = p1
jf

1
j (x) + (1− p1

j )f
0
j (x), where p1

j denotes the fraction of cases entering level j for

which the correct decision is Y = 1.5 We denote by F yj (x) and Fj(x) the cumulative distribution

functions corresponding to densities fyj (x) and fj(x), respectively.6

The relationship between the parameters of the beta distribution and an agent’s knowledge

becomes clearer when we consider the mean and variance of the beta distribution. The mean of the

above beta distribution, E[Xy
j ], is an indication of how close, on average, a level j agent assessment

is to the correct decision y. We refer to this mean as the accuracy of the agent. In contrast,

V ar(Xy
j ) is an indication of the consistency of agent k’s assessments of cases for which the correct

decision is y (y = 0, 1). Accuracy and consistency together describe the knowledge of the agent.

A more knowledgeable agent typically has a better accuracy (i.e., E[Xy
j ] closer to y) and better

consistency (i.e., lower V ar(Xy
j )) regardless of whether y = 0 or y = 1, although we do not restrict

our framework to such an assumption.

Using our notation, the mean and variance formulations of the beta distribution can be written

as:

E[Xy
j ] =

αyj
αyj + βyj

; V ar(Xy
j ) =

αyjβ
y
j

(αyj + βyj )2(αyj + βyj + 1)
.

From these it is apparent that as α0
j decreases (or β0

j increases), the mean becomes closer to 0, so

the agent has more accuracy when Y = 0. Similarly, as α1
j increases (or β1

j decreases), the agent

has more accuracy when Y = 1. Moreover, when αyj and βyj increase proportionally, the variance

is reduced, implying that the agent is more consistent in his/her assessments.

This flexible framework enables us to model a wide range of agent knowledge scenarios including:

• Perfect Knowledge: When α0
j = 1, β0

j →∞, β1
j = 1, and α1

j →∞, we have X0
j

a.s.−−→ 0 and

X1
j

a.s.−−→ 1, which implies that the agent at level j has perfect knowledge about both cases

with correct assessment value Y = 1 and Y = 0, and therefore will never make a mistake.

• No Knowledge: When αyj = βyj = 1 (y = 0, 1), the beta distribution becomes a uniform

distribution on [0, 1], regardless of the correct decisions. This implies that a level j agent has

no ability to diagnose cases beyond a random guess.

• Biased Knowledge: When α0
j is very close to α1

j and β0
j is very close to β1

j , the assessments

have essentially the same distribution regardless of the correct decision. Hence, in this case,

5Using our model in real-world settings requires estimation of the model parameters p1
` and the beta distribution

coefficients. These can be estimated using historical data or expert judgments (through test cases). For instance,
once we have evaluated the correct decisions Y for a sample of cases, we can estimate p1

` , and estimate the density
function fyj (x). A more detailed explanation of this procedure is given in Online Appendix C.

6We assume these densities are tier-dependent but are the same among the agents within each tier (e.g., among
lower level agents). This assumption is made for tractability, and also represents the fact that in practice knowledge
levels vary significantly across tiers (e.g., between nurses and physicians) but only moderately within each tier (e.g.,
among nurses). However, extending our model and analyses to cases where these densities are different even within
each tier is relatively straightforward.
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Figure 2: Examples of beta distributions for modeling agents’ assessments.

the agent is providing stochastically the same assessment for both cases with Y = 1 and

Y = 0 regardless of the signals he/she receives from cases. This enables us to model the

cognitive biases of the decision makers (see, e.g., Hogarth (1980) pp. 166-170 for a complete

list of such biases). For instance, the agent might consistently be biased towards approving

(a positive bias) or rejecting (a negative bias) the cases (or in the triage example, towards

assigning to a specific urgency/ESI level).

• General Knowledge: Adjusting parameters αyj and βyj alters the shape of the density

function and hence the knowledge structure of an agent. For example, we can choose αyj and

βyj for two agents such that they have the same consistency, but one agent has higher accuracy

for cases with Y = y. To do this, we reduce α0
j and increase β0

j (increase α1
j and reduce β1

j )

so that E[X0
j ] decreases (E[X1

j ] increases) while V ar(Xy
j ) remains constant. Alternatively, we

can increase both αyj and βyj proportionally, so that E[Xy
j ] remains unchanged but V ar(Xy

j )

is decreased, to model a second agent that has the same accuracy, but better consistency.

3.2 Modeling Assessment Sharing

Our framework also allows us to represent settings in which lower level agents share their assess-

ments with their upper level agent, and settings in which they do not. For instance, in TPT, the

lower level agents (triage nurses) transfer patients to the upper level agent (TP) who examines

them and makes a decision based solely on his/her own assessment. In some other systems (e.g.,

bank loan processing) the upper level agent uses the assessment of the lower level agent as part of

his/her decision process. We study both scenarios in order to shed light on the value of sharing

assessments in HKBSSs. To this end, we consider the following scenarios.

• Independent Assessments (IA). Under this scenario, the upper level agent makes an

independent assessment of the case referred to him/her. However, based on our motivating

examples, we assume the upper level agent knows lower agent’s referral policy (but not the

lower level’s assessment), and note that in this case p1
u (and hence, p0

u = 1− p1
u) is a function

of the lower level’s referral policy. For instance, if the policy of the lower level agent is to refer

the cases to the upper level only when his/her assessment is in set A (for some set A ⊂ [0, 1])
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then using the Bayes’ rule:

p1
u(A) = Pr{Y = 1|X` ∈ A} =

( ∫
A f

1
` (x`)dx`

)
p1
`( ∫

A f
1
` (x`)dx`

)
p1
` +

( ∫
A f

0
` (x`)dx`

)
(1− p1

` )
. (3)

• Shared Assessment (SA): Under this scenario, the assessment made at the upper level is

a function of both the upper and the lower level agents’ assessments. Specifically, using the

Bayes’ rule:

p1
u(x`) = Pr{Y = 1|X` = x`} =

f1
` (x`)p

1
`

f1
` (x`)p

1
` + f0

` (x`)(1− p1
` )
. (4)

Thus, under the SA (IA) structure, the density function of the upper level agent’s assessment is

not only a function of the upper level agent’s assessments, but also the lower level’s assessment

(referral policy). For instance, under the SA structure:

fu(xu, x`) = p1
u(x`)f

1
u(xu) + (1− p1

u(x`))f
0
u(xu).7

Finally, we note that from an assessment sharing perspective, the SA scenario can be viewed

as a special case of IA: in IA, the upper level agent only knows that x` ∈ A (for cases referred

to him/her), while in SA, he/she knows the exact value of x`. If A = (0, 1) then no information

is shared, and if A = {xl} the exact assessment is shared. However, the upper level agent can

consider a middle case A to take advantage of the filtering made at the lower level, when sharing

the exact assessment is not possible. Ideally, such filtering should take into account the queue

length information (for all queues) at the time the case was referred to the upper level. However,

the information technology infrastructure to allow reporting of the queue length information for

each case routed to the upper level would also allow sharing of the full lower assessments. Since

the latter makes the former superfluous, we do not consider the scenario in which queue lengths are

shared without sharing assessments. Hence, for the IA scenario, we assume A is either (0, 1) or a

fixed strict subset of it that is calculated for a given queue length (e.g., the average queue length).

3.3 Modeling Rationality

In order for our model to represent reality, we must ensure that the agents’ assessments are “ra-

tional” in the sense that their assessments, xj , are positively (or at least not negatively) correlated

with the correct type of the case, y. We believe with some minimum training, agent assessments

should possess this property. We formalize rationality in the following definition.

Definition 1 (Rational Assessments) Agents’ assessments are said to be rational if, and only

if, Pr{Y = 1|Xj = x} is (weakly) increasing in x (for x ∈ (0, 1), j ∈ {`, u}).

7For notational simplicity, however, we may suppress the dependency of fu to x` (or set A), and use fu(x) whenever
it is clear from the context.



12 Telemedical Physician Triage and Other Knowledge-Based Service Systems

The following result connects the rational assessments to the stochastic likelihood ratio ordering

(denoted by “≤lr”).8 All proofs are provided in the appendix.

Lemma 1 (Rationality and Likelihood Ordering) In both assessment sharing scenarios (IA

and SA), the agents’ assessments are rational if, and only if, X0
j ≤lr X1

j (j ∈ {`, u}).

We note that since ≤lr is stronger than the usual stochastic ordering (which yields ordering in

expectation), the above lemma also implies an ordering in agents’ accuracy: when assessments are

rational, we have E[X0
j ] ≤ E[X1

j ].

We define rational assessments in the context of the beta distribution model of agent knowledge

as follows.

Definition 2 (Rationality Condition (RC)) The Rationality Condition (RC) is said to hold if

either (a) β0
j ≥ β1

j and α0
j < α1

j , or (b) β0
j > β1

j and α0
j ≤ α1

j (j ∈ {`, u}).

We note that the RC is not restrictive, and holds for a wide range of beta distributions. It can be

viewed as a minimum knowledge requirement for agents working in a real-world setting.

Lemma 2 (Rationality) In both assessment sharing scenarios (IA and SA), the agents’ assess-

ments are rational if, and only if, the RC holds.

3.4 Optimal Knowledge-Based Decisions: A POMDP Model

In order to address the first of the four fundamental questions raised in the Introduction and

characterize the structure of the optimal decisions, we now model the dynamics of the system.

Because the correct decision for each patient cannot be observed directly, we model the dynamics

of the system as a Partially Observable Markov Decision Process (POMDP), where in addition to

the number of cases at the lower and upper level queues, for each case in the system, we keep track

of the latest belief about the correct decision being Y = 1. This latest belief serves as a sufficient

statistic for each case in the system, and is updated in the following manner. Each case arrives

at a lower level agent with a prior probability of p1
l . Once assessed by a lower level agent, this

probability is updated to p1
u , T1 (p1

l , xl), where xl is the lower level agent’s assessment (a noisy

observation/signal), and T1(·) is a Bayesian updating operator. If the case is referred to the upper

level agent and is assessed by him/her, the probability is further updated to p̃1
u , T

ν
2 (p1

u, xu), where

ν ∈ {IA, SA} represents the assessment sharing scenario. In particular, based on Section 3.2, when

8If f and g represent the densities or probability mass functions of two random variables X and Y , respectively,
and f(ξ)/g(ξ) is increasing in ξ over the union of the supports of X and Y , then X is said to be greater than Y in
the likelihood ratio ordering (Y ≤lr X).
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ν = SA, we assume the Bayesian operator T ν2 utilizes the exact value of xl, and when ν = SA, we

assume it only utilizes the fact that xl ∈ A (even if it takes xl as an input).

Using the well-known uniformization technique, we can transfer the underlying continuous-

time Markov chain to a discrete-time equivalent one. We can also re-scale time (without loss of

generality), and assume that the event rate is Λ , K(λl+µl)+µu = 1. In this transformed system,

we define the system state to be (n`, nu,p`,pu), where n` = (nk : k ∈ K) is a K-dimensional

vector denoting the number of cases in the lower level agents’ queues, and nu denotes the number

of cases in the upper level’s agent queue. Also, p` denotes a K × bl matrix with its i, j element

being the prior probability of a case at the jth position9 in the queue of the lower level agent i

(i ∈ K, j ∈ {1, 2, · · · , bl}). Thus, each element of p` is equal to p1
l ∈ (0, 1) unless the corresponding

position in the queue is empty, in which case we assign a zero to that element (without loss of

generality). Similarly, pu is a vector with its jth element denoting the belief that a case in the jth

position of the upper level agent’s queue has a correct decision Y = 1.

To define the optimality equation, we let Z+,b , {0, 1, · · · , b}, denote the state space by S ,

ZK+,b`×Z+,bu× [0, 1]Kb`+bu , and represent by F the set of all real-valued functions defined on S. We

then consider the functional operators TA,k, TS,k, and TS,u (all from F to F) corresponding to an

arrival event at lower level agent k ∈ K, service completion at that agent, and service completion

at the upper level, respectively. For any function J ∈ F , we then define the functional operator

T̃∗ : F → F as

T̃∗J ,
∑
k∈K

(
λlTA,kJ + µlTS,kJ

)
+ µuTS,uJ. (5)

With these, the optimal long-run average cost optimality equation for any state (n`, nu,p`,pu) ∈

S can be written (in the functional form) as

ϕ∗ + J(n`, nu,p`,pu) = T∗J(n`, nu,p`,pu), (6)

where T∗J(n`, nu,p`,pu) , h
(
nl(1K)T , nu)T + T̃∗J(n`, nu,p`,pu), and ϕ∗ is the optimal long-run

average cost. In (5), the operators TA,k, TS,k, and TS,u are defined as follows.

TA,kJ(n`, nu,p`,pu) , 11{nk=b`}cb,` + 11{nk 6=b`}J(n` + ek, nu, ψk,nk+1
(p`, p

1
` ),pu), (7)

where 11 is the indicator function, ek is K-dimensional vector with a one as the kth element and

zeros elsewhere, and ψi,j(A, ξ) is a matrix operator that changes the i, j element of matrix A to ξ.

In addition,

TS,kJ(n`, nu,p`,pu) , 11{nk=0}J(n`, nu,p`,pu)

+ 11{nk 6=0}

∫ 1

0
f`(x`) min

i∈{0,1,2}

{
φi(n`, nu,p`,pu, x`)

}
dx`, (8)

9First position is the patient under service, second is the the first one in line, etc.
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where

φ0(n`, nu,p`,pu, x`) , J(n` − ek, nu, ψk,nk(p`, 0),pu) + c1T1(p1
` , x`), (9)

φ1(n`, nu,p`,pu, x`) , J(n` − ek, nu, ψk,nk(p`, 0),pu) + c0(1− T1(p1
` , x`)), (10)

and

φ2(n`, nu,p`,pu, x`) , 11{nu=bu}
(
cb,u + J(n` − ek, nu, ψk,nk(p`, 0),pu)

)
+ 11{nu 6=bu}J(n` − ek, nu + 1, ψk,nk(p`, 0), ψ1,nu+1(pu, T1(p1

` , x`))) (11)

represent the cost-to-go under decisions a = 0, a = 1, and a = UP by the lower level agent k ∈ K

(after making assessment xl), respectively. Finally,

TS,uJ(n`, nu,p`,pu) , 11{nu=0}J(n`, nu,p`,pu)

+ 11{nu 6=0}

∫ 1

0
fu(xu) min

i∈{0,1}

{
φ̃i(n`, nu,p`,pu, xu)

}
dxu, (12)

where φ̃0(n`, nu,p`,pu, xu) , J(n`, nu−1,p`, ψ
−(pu))+c1T

ν
2 (puẽ

T
1 , xu) and φ̃1(n`, nu,p`,pu, xu) ,

J(n`, nu − 1,p`, ψ
−(pu)) + c0(1 − T ν2 (puẽ

T
1 , xu)) denote the cost-to-go under decisions a = 0 and

a = 1 by the upper level agent under the assessment sharing scenario ν ∈ {IA, SA}, respectively.

In these definitions, ψ−(·) is a vector operator that takes a vector, deletes its first element, and

shifts all other elements one position to the left. Furthermore, ẽ1 is a bu-dimensional vector with

a one as its first element and zeros elsewhere.

3.5 Structure of Optimal Decisions

We start by analyzing the optimal decisions at the upper level. We define the critical fractile value

x∗u(puẽ
T
1 ) , (T ν2 )−1(puẽ

T
1 ,

c0

c0 + c1
), (13)

where for all y ∈ [0, 1]

(T ν2 )−1(puẽ
T
1 , y) , inf

{
x ∈ [0, 1] : T ν2 (puẽ

T
1 , x) ≥ y

}
. (14)

We note that this critical fractile is similar to that of a newsvendor problem with underage cost c0,

overage cost c1, and a demand distribution T ν2 that depends on puẽ
T
1 . In the following result, we

show that the minimization in (12) is fully characterized by the critical fractile x∗u(puẽ
T
1 ). This,

proves that the upper level optimal policy is a control-limit policy defined by x∗u(puẽ
T
1 ) for both

ν = IA, SA.10

10When ν = IA the critical fractile x∗u(puẽ
T
1 ) is constant in puẽ

T
1 since the Bayesian operator T ν2 does not use the

value of puẽ
T
1 . Nevertheless, for generality, we write it as x∗u(puẽ

T
1 ).
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Proposition 1 (Control-Limit Policy: Upper Level) Under the RC,

min
i∈{0,1}

{
φ̃i(·)

}
= 11{xu≤x∗u(puẽT1 )}φ̃0(·) + 11{xu>x∗u(puẽT1 )}φ̃1(·). (15)

Hence, for both ν = IA, SA, the optimal decision at the upper level is a control-limit policy defined

by the following convex policy regions: a∗u(xu) = 0 for all xu ∈
[
0, x∗u(puẽ

T
1 )
]

and a∗u(xu) = 1 for

all xu ∈
(
x∗u(puẽ

T
1 ), 1

]
. Furthermore, when the monotonicity of T ν2 (puẽ

T
1 , xu) in xu (established in

Lemma 6 in Online Appendix A) is strict, x∗u(·) is the unique solution to

f0
u(x∗u)

f1
u(x∗u)

=
p1
uc1

(1− p1
u)c0

, (16)

for both ν = IA, SA, where p1
u = puẽ

T
1 .

We now turn our attention to the optimal policy at the lower level. We start by establishing

Proposition 2, which states that the cost of adding a case with updated belief p1
u , T1 (p1

l , xl) to

the upper level agent’s queue is concave in p1
u. The proof of this result is established via Lemmas

3 and 4, which demonstrate that (i) the functional operator T∗ preserves this concavity property,

and (ii) the function J(·) can be viewed as the limit (as the discount rate goes to zero) of a relative

cost difference, where costs are calculated in an infinite-horizon discounted cost setting. Moreover,

the proof of point (i) itself is based on the fact that the integration and minimization operators in

(8) and (12) preserve concavity, which we show in Lemma 5.

Proposition 2 (Concavity in Updated Belief) J(n`, nu,p`, ψ1,nu+1(pu, p
1
u)) is concave in p1

u ∈

[0, 1] for all states with nu < bu.

Lemma 3 (Concavity Preservation) Let Fc ⊆ F be the set of all real-valued functions defined

on S that satisfy the concavity property of Proposition 2, and denote by Jn ∈ F the optimal

discounted cost function over n periods. If Jn ∈ Fc then Jn+1 = T∗Jn ∈ Fc.

Lemma 4 (Limiting Behavior) There exists a sequence of discount rates ζi∈N → 0 such that

J(n`, nu,p`, ψ1,nu+1(pu, p
1
u)) = lim

i→∞

[
Jζi∞(n`, nu,p`, ψ1,nu+1(pu, p

1
u))− Jζi∞(0, 0,0,0)

]
, (17)

where Jζi∞(·) is the infinite-horizon discounted cost when the discount rate is ζi.

Lemma 5 (Concavity Preservation Operation) Let g1(y, x), g2(y, x), · · · , gm(y, x) be m real-

valued concave functions in y. Then the function

g(y) , EX∼f(x)

[
min

i∈{1,2,··· ,m}
gi(y,X)

]
=

∫
x

[
min

i∈{1,2,··· ,m}
gi(y, x)

]
f(x)dx (18)

is also concave in y.
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The concavity property established by Proposition 2 significantly simplifies characterizing the

optimal policy. We first note that, because of this result and the fact that functions φ0(·) and

φ1(·) are affine in p1
u , T1 (p1

` , x`), the minimization in (8) is pointwise minimum of three concave

functions (which is itself concave). To characterize this minimization, similar to (13), we define the

critical fractile value

x∗` (p
1
` ) , (T1)−1(p1

` ,
c0

c0 + c1
), (19)

where for all y ∈ [0, 1]

(T1)−1(p1
` , y) , inf

{
x ∈ [0, 1] : T1(p1

` , x) ≥ y
}
. (20)

The critical fractile x∗` (p
1
` ) defined above is the lower level agent’s assessment for which he/she

would be indifferent between decisions a = 0 and a = 1, had he/she not have the option of referring

the case to the upper level. With these, we can now establish the optimal policy of the lower level

as a double control-limit policy, where only cases with assessments that fall between the two control

limits11 enter the queue of the upper level. The main intuition behind the proof of this result is

shown in Figure 3, which depicts the behavior of functions φi(·) for i ∈ {0, 1, 2} in terms of the

lower level’s updated belief p1
u , T1 (p1

` , x`). Due to this specific structure, it is first shown that all

the policy regions must be convex sets, which in turn results in the double control-limit structure.

Proposition 3 (Double Control-Limit Policy: Lower Level) Under the RC, there exist

x∗` (n`, nu,p`,pu) and x∗` (n`, nu,p`,pu), where 0 ≤ x∗` (n`, nu,p`,pu) ≤ x∗` (p1
` ) ≤ x∗` (n`, nu,p`,pu) ≤

1, such that

min
i∈{0,1,2}

{
φi(·)

}
= 11{x`≤x∗` (·)}φ0(·) + 11{x`≥x∗` (·)}φ1(·) + 11{x∗` (·)<x`<x∗` (·)}φ2(·). (21)

Hence, for both assessment sharing scenarios ν = IA, SA, the optimal decision at the lower level

is a double control-limit policy defined by the following convex policy regions: a∗u(xu) = 0 for

all x` ∈
[
0, x∗` (n`, nu,p`,pu)

]
, a∗` (xu) = 1 for all x` ∈

[
x∗` (n`, nu,p`,pu), 1

]
, and a∗` (xu) = UP

otherwise.

3.6 Sensitivity of Optimal Policy

In this section, we delve into the second question posed in the Introduction: How do environmental

factors affect the optimal policy? This is a vital question from a managerial standpoint because

it raises the issue of what characteristics must be considered when designing an effective system.

11These cases can be thought of as more complex ones for which the agent has a less clear judgement.
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0 1 𝑝𝑝𝑢𝑢∗1 𝑝𝑝𝑢𝑢
∗1𝑝𝑝𝑢𝑢∗1 𝑝𝑝𝑢𝑢1 

𝜙𝜙0(. ) 𝜙𝜙1(. ) 𝜙𝜙2(. ) 

Figure 3: The structure of decision-making at the lower level as a function of the updated belief p1u ,
T1 (p1` , x`) [p∗1u ,

c0
c0+c1

].

By understanding how various factors affect the optimal policy, we can also gain insights into how

different HKBSSs should be managed differently. Here we explore the impact of: (i) decision error

costs (c0, c1), (ii) the population mix entering the system (p1
` ), and (iii) system workloads (n`, nu,

λl).

3.6.1 The Effect of Decision Error Costs

The source of decision error costs c0 and c1 differ among HKBSSs. In the TPT system, these costs

are influenced by downstream conditions—notably, the number and type of patients waiting in the

waiting area of the ED to be treated following the triage stage. If the waiting area is empty, then c1

is close to zero, because the patient will move immediately into treatment regardless of whether or

not he/she is classified correctly as urgent. But if the waiting area is full of non-urgent patients, then

c1 is high because misclassifying an urgent patient will result in a long, and potentially dangerous,

wait. Similarly, c0 is close to zero if the waiting area is empty, because no one will be forced to wait

longer due to misclassifying a non-urgent patient as urgent. However, if the waiting area has many

non-urgent patients, then each of them will incur a delay cost by jumping the misclassified patient

ahead of them. Worse, an urgent patient who arrives after the misclassified non-urgent patient has

entered treatment may have to wait. So c0 increases in both the number of non-urgent patients in

the waiting area and the arrival rate of urgent patients. These observations imply that c0 and c1

will vary in both magnitude and ratio over the course of a day for exogenous reasons.

In contrast, in a visa processing system, c0 and c1 are typically independent of the downstream

conditions, and are relatively stable over long periods of time. The cost of granting someone a

visa who should not receive one, c0, might change as attitudes toward terrorism or international

students change. But such changes would be on a time scale of months or years rather than hours.

The following result describes the effect of decision error costs on the control-limit structure

established in Section 3.5.

Proposition 4 (The Effect of Decision Error Costs) x∗` (·) is non-increasing in c1, x∗` (·) is
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non-decreasing in c0, and x∗u(·) is non-decreasing (non-increasing) in c0 (c1) for both assessment

sharing scenarios ν = IA, SA. Furthermore, (i) x∗` (·) − x∗` (·) → 0+ as c0, c1 → 0+, and (ii)

x∗` (·)− x∗` (·)→ 1− as c0, c1 →∞.

The implication of Proposition 4 for the TPT system is as follows. When the waiting area of the

ED is relatively empty, decision error costs c0 and c1 are both negligible, so Proposition 4 suggests

that cases should not be routed to the TP. Thus, utilizing a TP during such hours may not be

economical. In contrast, when the waiting area is crowded and the ED expects a high near-term

arrival rate of urgent patients, c0 and c1 are both high, and Proposition 4 suggests that most cases

should be routed to the TP. This may require the ED to hire additional TPs or implement other

capacity management mechanisms to avoid overloading the TP. Of note, when the waiting area

is crowded but the ED does not expect a high near-term arrival rate of urgent patients, c1 might

be high while c0 might be in a middle range, because c0 is less sensitive (compared to c1) to the

current situation of the waiting area, and is more sensitive to the delay of future arrivals who are

truly urgent. Proposition 4 suggests that in such circumstances x∗` (·) will be close to zero but x∗` (·)

may be in a middle range, implying that not all cases should be routed to the TP. This can limit

the need for hiring additional TPs or implementing other capacity management mechanisms.

3.6.2 The Effect of Population Mix

The mix of cases served by an HKBSS may depend on many factors including geographical location,

type of service provided, and various economic factors. In the TPT system, for instance, the ratio

of urgent to non-urgent patients varies among EDs, with Level 1 trauma centers on one side of the

spectrum and small community level EDs on the other. The following result provides some insights

into the impact of case mix on the optimal control policy.

Proposition 5 (The Effect of Population Mix) The control-limits x∗` (·), x∗` (·), and x∗u(·) are

all non-increasing in p1
` for both assessment sharing scenarios ν = IA, SA.

Proposition 5 establishes that, regardless of the assessment sharing scenario, an HKBSS that

sees a higher percentage of Y=1 type cases should impose lower control-limits for making a 0 or

1 decision at both the lower and upper levels. This means that an increase in the percentage of

Y=1 type cases translates to a decrease (increase) in the size of the region for which a∗j (x) = 0

(a∗j (x) = 1). Interestingly, however, the effect of an increase in percentage of Y=1 type cases on

the size of the region for which the cases are routed to the upper level (i.e., the region for which

a∗` (x) = UP ) is not necessarily monotone. For the TPT system, it means that a level 1 trauma

center may or may not need to route more cases to the TP compared to a community hospital ED.
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Moreover, Proposition 5 implies differences in how patients could be classified in the two EDs. For

example, it suggests that a TP that serves EDs in both a level 1 trauma center and a community

hospital should assess some patients in the level 1 trauma center as urgent but assess identical

patients as non-urgent in the community hospital. This is in sharp contrast with the prevailing

belief that triage classification should depend only on the medical conditions of a patient. Because

triage classifications are used for prioritization, they need to be viewed as relative rather than

absolute ratings, which implies that environmental conditions also matter.12

3.6.3 The Effect of Workload

Workload obviously impacts the performance of an HKBSS. Understanding this impact and how

it can be managed by using information about workload can help managers respond efficiently

to fluctuations (e.g., spikes) in workload. Clearly, if the workload increase is large enough, more

capacity (e.g., triage nurses) will be needed. But, since capacity is expensive, it might be essential

to look for more cost-effective alternatives for helping the system to cope with workload spikes. In

this section, we investigate how the optimal control-limit policy reacts to changes in the workload.13

In Section 4, we will use the resulting insights to design effective heuristic workload unbalancing

policies that alter the criteria for directing/referring cases from the lower level to the upper level

in response to shifts in workload levels.

We start by presenting the following result.

Proposition 6 (Inverted V-Shape: Queue Lengths) The control-limits x∗` (n`, nu,p`,pu) and

x∗` (n`, nu,p`,pu) are non-increasing and non-decreasing in nk (∀k ∈ K : nk < bl) for both assess-

ment sharing scenarios ν = IA, SA, respectively. Therefore, the optimal policy has the following

property at the lower level in both SA and IA scenarios:

a∗` (x) = 1 (0) at queue length n` =⇒ a∗` (x) = 1 (0) at queue length n` + ek (∀k ∈ K : nk < bl).

Proposition 6 implies that the optimal decision rule for any lower level agent follows an inverted

V-shape structure in his/her queue length, a typical pattern of which is shown in Figure 4 (right).

A similar but rather intuitive fact—that the “UP” region shrinks as the upper level queue length

12Other environmental factors that might vary across hospitals are the decision error costs, which may in turn
be affected by the case mix. For instance, as mentioned in Section 3.6.1, if the waiting area is full of non-urgent
patients (which is more likely to occur in a community hospital ED than in a level 1 trauma center, assuming that
they operate at an equal level of congestion), then c1 is high. This in turn will affect the optimal threshold levels (in
the direction implied by Proportion 4). Thus, differences in decision error costs caused by the difference in case mix
will further differentiate optimal decisions in level 1 trauma centres from those in community hospital EDs.

13As noted in Section 3.6.1, the decision error costs may also vary based on the system’s downstream congestion.
To provide clear insights, we focus here on the role of workload by keeping all else (e.g., the decision error costs)
equal.
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Figure 4: Typical inverted V-shape structure of a lower level agent optimal decision, where x represents the
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Figure 5: Typical Inverted V-shape structure of a lower level agent optimal decision in (x, λ`) space, where
x represents the lower level agent’s assessment.

increases—is shown in Figure 4 (left). Similarly, corresponding to an increase in the arrival rate,

we have the following property at the lower level:

Proposition 7 (Inverted V-Shape: Arrival Rate) The control-limits x∗` (n`, nu,p`,pu) and

x∗` (n`, nu,p`,pu) are non-increasing and non-decreasing in λl for both assessment sharing scenarios

ν = IA, SA, respectively. Therefore, the optimal policy has the following property at the lower level

in both SA and IA scenarios:

a∗` (x) = 1 (0) at arrival rate λ` =⇒ a∗` (x) = 1 (0) at arrival rate λ` + ε,

for any ε > 0.

Proposition 7 implies that the optimal decision rule for any lower level agent also follows an

inverted V-shape structure in the arrival rate, a typical pattern of which is shown in Figure 5.

Returning to the workload rebalancing policies, Propositions 6 and 7 suggest that, to be effective,

any decision under an optimal workload rebalancing policy that uses queue length but not arrival

rate information (arrival information but not queue lengths) must mimic to the extent possible the

property described by Proposition 6 (7). Moreover, the decisions under an optimal policy (which

uses both queue length and arrival rate information) are described by both Propositions 6 and 7,

a typical pattern of which is shown in Figure 6.

3.7 Levers for Improving Performance

To address the third question raised in the Introduction, about which levers are effective for im-

proving system performance, we examine two options that address the knowledge-based decision
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lower level agent’s assessment. Left: in (x, nu, λ`) space; Right: in (x, nk, λ`) space.

making that is central to any HKBSS. These are (i) agent training, and (ii) information sharing

between levels.

3.7.1 Agent Training

Agent training can improve performance by increasing agent knowledge (accuracy and/or con-

sistency) and/or reducing cognitive biases. We find that, regardless of the assessment sharing

structure, the impact of a one-sided training program (which helps agents to make better assess-

ments about either “yes” or “no” cases but not both) relative to a two-sided program (which helps

agents to make better assessments about both type of cases) depends on whether the implemented

training program targets improving an agent’s consistency or accuracy. Figure 7 illustrates this for

an upper level agent by depicting his/her optimal control-limits and percentage reduction in error

cost under two training strategies: Strategy 1 (highly effective one-sided training) and Strategy 2

(moderately effective two-sided training)14. In Figure 7 (left column) the training is assumed to

improve the agent’s consistency (variance) while keeping the accuracy (mean) constant. It does so

by assuming α0
u = f(ξ0), β0

u = 2f(ξ0), α1
u = 3g(ξ1), and β1

u = g(ξ1), where f(ξ0) = (2 − 9ξ0)/27ξ0

and g(ξ1) = (3− 16ξ1)/64ξ1. In this setting, V ar(X0
u) = ξ0 and V ar(X1

u) = ξ1 while the accuracy

levels are constant: E[X0
u] = 1/3 and E[X1

u] = 3/4. We further assume ξ0, ξ1 ∈ (0, 3/80] so that

variances are positive and various suitable conditions (RC, boundedness, etc.) hold. To capture

the effect of Strategy 1, we fix ξ0 = 3/80 and let ξ1 = (3 − γ)/80, where γ ∈ {0, 1, 2} represents

the agent’s training level. Under Strategy 2, we let ξ0 = ξ1 = (3− γ/2)/80. Thus, in Figure 7 (left

column), Strategy 1 represents a highly effective one-sided consistency improvement, and Strategy

2 represents a moderately effective two-sided consistency improvement.

In Figure 7 (right), the effect of training is captured by improving the agent’s accuracy while

keeping the consistency constant. We do this by finding the appropriate values of α and β pa-

14Note that keeping the effectiveness (i.e., the magnitudes of improvement in assessments’ accuracy and/or consis-
tency) the same, a two-sided training program is clearly better than a one-sided one. Thus, it is sufficient to consider
these two strategies.
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Figure 7: Effect of training programs on optimal decision thresholds (top row) and cost improvements
(bottom row). Left column: consistency training; Right column: accuracy training. [Strategy 1: highly
effective one-sided training; Strategy 2: moderately effective two-sided training] [Main parameters: c0 = 2,
c1 = 1, p1u = 0.5].

rameters such that the variances are fixed at the base level of 3/80 while means are improved

through training. In particular, under Strategy 1, we set α0
u = f(ξ0) and β0

u = 2f(ξ0) for a fixed

ξ0 = 3/80, and find α1
u and β1

u such that V ar(X1
u) is fixed at 3/80 but the mean (for cases with

y=1) varies according to E[X1
u] = 3/4 + 0.1γ, where γ ∈ {0, 1, 2} represents the agent’s training

level. Under Strategy 2, we find α and β parameters such that V ar(X0
u) = V ar(X1

u) = 3/80 while

E[X0
u] = 1/3− 0.1γ/2 and E[X1

u] = 3/4 + 0.1γ/2 (γ ∈ {0, 1, 2}). Thus, in Figure 7 (right column),

Strategy 1 represents a substantial one-sided accuracy improvement, and Strategy 2 represents a

moderate two-sided accuracy improvement. We can summarize our insights about agent training

(from this and many similar experiments we performed) as follows:

Observation 1 (Agent Training) The impact of training programs depends on whether the train-

ing program targets improving an agent’s consistency or accuracy. When training targets consis-

tency, a moderately effective two-sided strategy typically has a stronger impact than a highly effective

one-sided strategy, but for training programs that target an agent’s accuracy, the result is reversed.
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In practice, training programs may affect both accuracy and consistency of assessments. Nev-

ertheless, Observation 1 can guide decision makers in deciding whether they should focus more on

(a) accuracy or consistency, and (b) two-sided or one-sided training strategies. For instance, in the

TPT setting, triage nurses can be trained via presenting them with a balanced mix of urgent and

non-urgent patients, or with a mix that emphasizes one of these two types. Furthermore, training

techniques may put their main emphasis on nurses’ accuracy or on their consistency. Improving

consistency typically requires presenting nurses with a wide range of cases that cover the whole

spectrum of patients who truly fall in one category (urgent or non-urgent), while improving ac-

curacy requires considering the most likely assessments of a nurse and shift it towards 0 (1) for

patients who are truly non-urgent (urgent). Observation 1 suggests that training nurses to be more

consistent in their assessments requires improving consistency for both urgent and non-urgent pa-

tients. However, training nurses to be more accurate in their assessments can achieve a substantial

improvement in performance even if the accuracy applies only to urgent or to non-urgent patients.

3.7.2 Assessment Sharing

Passing the lower level assessment to the upper level can improve the performance of an HKBSS by

improving upper level decisions. For example, triage assessments made by nurses can be commu-

nicated to the telemedical physician via electronic forms. While it is not surprising that additional

information improves decision-making, the magnitude of the benefit and the conditions under which

sharing is most valuable are not obvious. For example, consider two scenarios: one in which the

knowledge gap between the upper level and lower level agents is primarily caused by higher accu-

racy of the upper level agent (labeled HA gap), and one in which this gap is caused primarily by

higher consistency of the upper level agent (labeled HC gap). Knowing which of these scenarios

benefit more from assessment sharing is of potential value in managing and designing an HKBSS,

since implementing assessment sharing will typically involve a cost.

To provide insights, we fix the knowledge of the lower level agent and vary the gap between

consistency and/or accuracy of the upper and lower level. We do so by assuming α0
` = 1, β0

` = 2,

α1
` = 3, and β0

` = 1 so that E[X0
` ] = 1/3, V ar[X0

` ] = 1/18, E[X1
` ] = 3/4, and V ar[X1

` ] = 3/80. We

then consider a low gap ηL = 5% and a high gap ηH = 20%, and find the upper level agent’s beta

distributions parameters separately for each scenarios so that (a) under the HA gap scenario: (i)

E[X0
u] = (1 − ηH)E[X0

` ], (ii) V ar[X0
u] = (1 − ηL)V ar[X0

` ], (iii) E[X1
u] = (1 + ηH)E[X1

` ], and (iv)

V ar[X1
u] = (1− ηL)V ar[X1

` ], and (b) under the HC gap scenario: (i) E[X0
u] = (1− ηL)E[X0

` ], (ii)

V ar[X0
u] = (1− ηH)V ar[X0

` ], (iii) E[X1
u] = (1 + ηL)E[X1

` ], and (iv) V ar[X1
u] = (1− ηH)V ar[X1

` ].

Next, we consider a case entering the system for which the lower agent makes an assessment x` ∈ A,
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and routes the case to the upper level. We assume P` = 0.5 (in the base case), A = [0.4, 0.6], and

assessment sharing follows the IA and SA settings introduced in Section 3.2.

To capture the impact of assessment sharing, we consider the cost improvement due to assess-

ment sharing (i.e., cost difference in the IA and SA settings) under scenario i ∈ {HA,HC}, and

denote it by ∆i(SA||IA). Figure 8 compares the impact of assessment sharing under HA and HC

gap scenarios. From this figure, we observe that the impact depends on the ratio of error costs

c0/c1. In particular, when c0/c1 is low, assessment sharing is more impactful when it yields better

decisions for cases that are of true type Y = 1. Hence, when upper level knowledge for such cases

is not much better than that of the lower level, the upper level can significantly benefit from the

lower level assessment. Interestingly, we observe that this occurs more under the HA scenario than

under the HC scenario. That is, when c0/c1 is low, assessment sharing has a higher impact under

the HA scenario than under the HC scenario. However, the result is flipped when c0/c1 is high.

Based on Figure 8 and similar experiments we performed, we make the following:

Observation 2 (Assessment Sharing) In HKBSSs in which c0/c1 is low (high), assessment

sharing is most valuable when the knowledge gap between the upper level and lower level is mainly

due to higher accuracy (consistency). Furthermore, the relative advantage of assessment sharing

under HA and HC gap scenarios, ∆HA(SA||IA)/∆HC(SA||IA), increases as the lower level as-

sessment increases.

The implication of our results for managing an HKBSS is that implementing assessment sharing

is particulary beneficial in systems in which (a) upper level knowledge is characterized by higher

accuracy compared to the lower level, and (b) c0/c1 is low. For instance, as mentioned earlier,

in the TPT system, triage nurses make judgements about whether the patient is urgent (Y = 1)

or not (Y = 0). In such a setting, classifying an urgent patient as non-urgent is typically more

costly than classifying a non-urgent patient as urgent, and hence, c0/c1 is low. Thus, our results

suggest that assessment sharing is particulary valuable in TPT systems in which the knowledge

gap between the telemedical physician and the nurses is due to better accuracy. The gain from

assessment sharing in such systems is also higher for patients that have a higher nurse assessment

(i.e., are considered more likely to be urgent).

4 Heuristic Workload Rebalancing Policies

Finally, we turn to the fourth question raised in the Introduction, which is whether simple methods

can be used as practical policies for managing workload fluctuations in an HKBSS. The optimal

policy characterized in Section 3.5 provides important insights, but it (i) requires full information
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Figure 8: Effect of assessment sharing under HA and HC knowledge gap scenarios for various lower level
assessments (x` ∈ {0.45, 0.50, 0.55}).

about arrival rates, which are not always available in practice, and (ii) prescribes a different set of

decision control-limits for each queue length, which may be impractical to implement. Furthermore,

as can be seen from the results in Sections 3.5 and 3.6, the optimal policy depends on many

parameters that may change over time. In this section, we appeal to the properties of the optimal

policy to guide development of more practical alternatives.

4.1 Heuristics

We begin by noting that the queue length at the upper level has a stronger impact on the choice of

the optimal control-limit (at the lower level), than do queue lengths at the lower level. That is, the

optimal control-limits change more dramatically in nu than in nk (k = 1, . . . ,K), as illustrated in

Figure 4. This suggests that simple policies that effectively restrict the flow of cases to the upper

level as nu increases may perform well. Based on this intuition, we propose the following two simple

and implementable heuristic policies for managing workload fluctuations in an HKBSS.

Green/Red Light (GR). Under this policy, when the upper level queue length is less than some

number, NGR, the system uses fixed (i.e., queue length independent) thresholds that are chosen so

as to optimize performance under the normal arrival rate, (x̂∗` , x̂
∗
` ). When the upper level queue

length is greater than or equal to NGR, lower level agents are prohibited from sending cases to the

upper level (i.e., the “light” changes from green to red) and must make 0/1 decisions based on their

own judgements (i.e., the thresholds collapse to x̂∗` = x̂∗` , so there is no “UP” region).

Switching (SW). Under this policy, when the upper level queue length is less than some number,

NSW , the system uses the optimal thresholds for the normal arrival rate, (x̂∗` , x̂
∗
` ). When the upper

level queue length is greater than or equal to NSW , the system uses a second set of thresholds that

are optimal for the maximum arrival rate.15

15Such a maximum arrival rate is typically determined by the system’s manager. Due to the balking behavior
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Note that the GR policy is similar to the SW policy except that SW uses spiked workload

thresholds that satisfy x̂∗` ≤ x̂∗` , but GR uses thresholds that satisfy x̂∗` = x̂∗` . This implies that

there are fewer control variables in GR than in SW, so it requires less search to find the best

threshold. The reasons we consider both policies are that (i) the GR policy is intuitive and well-

suited for practice, and (ii) it is useful to determine cases in which GR performs as well as SW

despite having fewer control parameters.

In addition to computing referral thresholds, in order to implement the GR and SW heuristic

policies, we must also compute the optimal queue length thresholds, N ∗GR and N ∗SW . In practice,

these would be set by the upper level agent or an external controller so as to minimize total expected

cost over the possible range of arrival rates. We will do this numerically in our performance

evaluations.

4.2 Benchmark Policies

We introduce some benchmark policies to evaluate the performance of our proposed heuristics.

Detailed calculations of thresholds and costs under these policies are given in Online Appendix D.

Normal Operation (NO): continue using the same decision thresholds as in normal situations

(e.g., average arrival rate and queue lengths) without using information about either the new arrival

rate or current queue length.

Reoptimization (RO): adjust the decision thresholds so that they are equal to their optimal

levels for the new arrival rate (but do not make use of real-time queue length information to alter

thresholds).

4.3 Performance Analysis

To evaluate the performance of the two heuristics, we designed an extensive test suite that covers

various parameter settings consisting of 85,750 cases. A detailed description of these settings is

presented in Online Appendix B.

To consider performance across a range of utilizations, we let λnorm = 0.5 and λmax = 0.95

denote the normal and max arrival rates (an average utilization that varies between 0.5 and 0.95 at

the lower level), respectively. We consider 10 discrete arrival rates with 0.05 increments. Letting

Ciπ denote the expected cost at arrival rate λi = 0.5 + 0.05i (i = 0, 1, . . . , 9) under policy π, with

C0
π representing the expected performance under normal conditions, we consider the total expected

(maximum allowed queue lengths), the network remains stable even for large arrival rates. For instance, in some
states, ED’s are allowed to go on diversion. However, for an HKBSS in which balking does not occur, this arrival
rate can also be found via stability analyses: the arrival rate at the lower agents should satisfy two conditions: (a)
it should be less than the lower level service rate, and (b) be such that the total arrival rate of referred cases to the
upper level under an optimal policy is less than the upper level service rate.
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cost among all arrival rates: TCπ =
∑9

i=0C
i
π. Here, we are giving equal weight to all Ciπ values

because we believe a suitable policy is one that is potentially prepared for all arrival rates. Hence,

we regard a policy π as a strong candidate if both TCπ and C0
π are close to that of the lower

benchmark policy.

We start by comparing the performance of RO with the optimal policy under the IA scenario

over 720 symmetric cases (i.e., p1
` = 0.5, c1 = c0 = 1, α1

j = β0
j and β1

j = α0
j (j = `, u)). These

symmetric cases cover different values of system parameters including α1
j , β

1
j , h, K, cr and µu (see

Online Appendix B for details). The results are summarized in Table 2. As the table shows, the

optimality gap between RO and the optimal policy is on average 0.02 and 0.01 with respect to TCπ

and C0
π, respectively. Furthermore, in more than 95% (98%) of cases the gap in TCπ (C0

π) is less

than 5%. These indicate that the performance of RO is indeed very close to that of the optimal

policy. This gives us confidence that we can use RO as a lower benchmark policy throughout the

remainder of our numerical study.

To compare the performance of the proposed policies, we consider the following performance

measures.

Opportunity (OP ). This metric, which compares the gap between the cost of the upper bound

(NO) and lower bound (RO) policies is defined as OP =
TCNO−TCRO

TCRO
. The value of OP (which is

always positive) indicates the potential for improvement by using workload rebalancing to avoid

cost explosions under spiked workload conditions. The larger this value, the more the potential

benefit from workload rebalancing.

Efficiency Loss (EF ). This metric, which measures loss in overall performance when using a

heuristic policy (GR or SW) instead of the lower benchmark policy (RO), is defined as EFπ =
TCπ−TCRO

TCRO
(π ∈ {GR,SW}). Obviously, we expect EFπ ≤ OP (∀π ∈ {GR, SW}). The lower the

efficiency loss EFπ, the better the heuristic policy π. When EF is close to 0, it implies that the

heuristic policy performs similarly to the lower benchmark policy RO, and hence, is an efficient

workload rebalancing policy. Note that since RO does not yield a true lower bound, it is possible

for EFπ to be slightly lower than 0.

Adaptivity Loss (AD). This metric, which compares performance under normal operating con-

ditions of the heuristic control policies (GR or SW) relative to the lower benchmark policy (RO), is

defined as ADπ =
C0
π−C0

RO
C0

RO
(π ∈ {GR,SW}). If a policy achieves low values of EFπ and ADπ, then

it can be regarded as a “one-size-fits-all” type of strategy, since it can both resolve workload spikes

effectively and perform well when there is no workload spike. We call such a policy “adaptive.”

Table 3 presents the main results using the above metrics (for all 85,750 test cases) under IA

and SA scenarios. In addition to computing the performance metrics, we performed paired T-tests
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Metric (TCRO − TC∗)/TC∗ (C0
RO − C

0
∗)/C0

∗
Mean 0.02 0.01
Max 0.17 0.16

Fraction of cases with value < 5% 95% 98%

Table 2: Performance comparison between RO and the optimal policy (denoted by “*”).

on various system parameters (e.g., lower level and upper level knowledge, lower level and upper

level error costs, upper level holding cost and upper level congestion related balking cost) to find the

statistical relationship between these parameter values and the performance metrics. The results

of the paired T-tests, as well as more details about the underlying numerical analysis, can be found

in Online Appendix B.

Column 1 of Table 3 shows that, regardless of the assessment sharing structure, the NO policy

does not work well compared to RO. As the table shows, using workload rebalancing policies under

the SA (IA) scenario can reduce the cost by an average of 22% (43%). This result together with

the paired T-test results lead to the following observation regarding the opportunity metric.

Observation 3 (Opportunity) Workload rebalancing in both SA and IA scenarios is an effective

mechanism for mitigating the negative effect of workload spikes. Furthermore, regardless of the

assessment sharing structure, OP typically increases as the holding cost decreases, rejection/balking

cost increases, lower level knowledge decreases and upper level knowledge increases.16

The reasoning behind these results is as follows. Under the NO policy, when the arrival rate is

large, the upper level is likely to be overloaded, resulting in much higher rejection/balking and

holding costs than under the lower benchmark policy. This is particularly the case in scenarios

in which the “UP” region (see, e.g., Figure 4) is large under normal conditions, and hence, the

upper level is more likely to be a bottleneck. Obviously, when the holding cost decreases (resulting

in less incentive to allow cases to leave the system), lower level knowledge decreases, or upper

level knowledge increases, there is more incentive to send a case to the upper level, and hence

the “UP” region becomes larger. This causes OP to increase. The rejection/balking cost also

has a positive effect on OP . This is because extra rejection/balking costs only occur when the

upper level is overloaded, which becomes less likely when workloads are rebalanced. Hence, when

the rejection/balking cost increases, TCNO increases, but TCRO is not affected as strongly, which

causes OP to increase. The managerial implication of these results is that if the holding cost is not

too large, the rejection/balking cost is not too small, and/or the upper level agent is significantly

more experienced than the lower level agents, then the system is vulnerable to a workload spike.

16Knowledge level is measured in terms of accuracy and/or consistency of assessments.
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Column # 1 2 3 4 5
Metric OP EFGR EFSW ADGR ADSW

Average (IA) 0.22 0.01 -0.01 0.00 0.00
Variance (IA) 0.24 0.003 0.0001 0.0001 7E-05
Average (SA) 0.43 0.03 -0.01 0.00 0.00
Variance (SA) 1.3 0.010 0.0001 0.0001 9E-05

Table 3: Performance of heuristic policies under the IA and SA scenarios as measured by average and
variance of various metrics.

Columns 2 and 3 of Table 3, along with the paired T-test results (Online Appendix B), lead to

the following observation about the efficiency of the proposed heuristic policies (GR and SW).

Observation 4 (Efficiency) Under both the SA and IA scenarios, the heuristic policies GR and

SW perform, on average, close to RO. Furthermore, both policies are typically more efficient

when lower level knowledge is close to upper level knowledge. However, GR becomes typically more

efficient as the holding cost increases, but SW becomes typically more efficient as the holding cost

decreases.

To understand the intuition behind the above result, we note that both GR and SW reduce

the fraction of cases that are sent to the upper level, albeit at a higher error cost. When the gap

between the knowledge level of the lower level agent and higher level agent is small, referring fewer

cases to the upper level does not result in a risk of a high error cost, and hence, the potential

loss due to errors is low. Moreover, both GR and SW lose efficiency compared to RO (i.e., EFGR

and EFSW increase) because the system can maintain a lower holding cost if more cases leave. The

efficiency of GR is also low when the holding cost is low, since unlike SW it stops sending “difficult”

jobs to the upper level whenever the upper level queue becomes higher than a threshold. In such

a situation, GR does not selectively use the upper level capacity to reduce error costs. But when

holding cost is not a dominant concern, paying attention to error costs becomes more important.

From Table 3, we can also compare the performance of the two myopic heuristic policies with

each other by considering columns 2 and 3. From this comparison and the paired T-test results

(Online Appendix B), we can make the following observation:

Observation 5 (EFGR vs. EFSW) On average, the overall performance of SW is better than that

of GR. However, the GR policy can be used instead of the slightly more complex SW policy without

a significant performance loss unless the holding cost is low, upper level knowledge is high, or the

lower level knowledge is low.

This is due to the fact that, unlike GR, SW mimics the threshold structure from the optimal

policy. The managerial implication of the above results is that when holding cost is low, upper

level knowledge is high, and lower level knowledge is low, the system should keep sending the
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most difficult cases to the upper level even when the upper level queue length is large. Therefore,

the manager should choose the slightly more complex SW policy over the GR policy under such

conditions. Under other conditions, the simpler GR policy is generally good enough.

We next consider the ADπ metric for policy π ∈ {GR,SW} (i.e., columns 4 and 5 of Table

3), and present our main findings in Online Appendix F. As indicated there, we observe that for

realistic ranges of parameters the heuristics exhibit reasonable performance under both normal

and spiked workload situations, and hence, they should be considered as effective “one-size-fits-all”

workload rebalancing policies.17

4.4 Robustness of Heuristic Policies

Finally, we study the robustness of our proposed heuristic policies, GR and SW, to their optimal

queue length thresholds N ∗GR and N ∗SW . This is of practical significance, because as noted earlier

many of the parameters that affect calculation of these thresholds may change over time. Fur-

thermore, for many other reasons, it might not always possible to find the exact values of N ∗GR
and N ∗SW in real-world settings. Our results presented in Online Appendix E indicate that the

proposed heuristic control policies can be safely implemented, even if their control parameter (N ∗π )

is not fully optimized. This gives us further confidence that the proposed heuristics are robust to a

variety of parameters that may change over time or parameters that are subject to misestimations

for other reasons.

5 Conclusions

Hierarchical Knowledge-Based Service Systems (HKBSS), in which the interplay between work-

flow/queueing dynamics and knowledge-based decision making governs system performance, are

prevalent in modern organizations. In this paper, we focused on the emerging practice of Telemed-

ical Physician Triage (TPT), but also noted other settings in which similar structures occur. We

constructed a POMDP model based on a novel model of agent knowledge, and used this frame-

work to provide an analytic description of the optimal policy for processing and referring cases in

a two-level system with binary decisions. This showed that the optimal decision thresholds are

described by control-limits with an inverted V-shape structure. These imply that lower level agents

should make decisions on a higher proportion of cases as the workload at the upper level grows. We

used this structural insight to design two practical heuristic policies, which we term the Green/Red

Light and Switching policies. Via numerical tests, we demonstrated that these are both effective

17In Online Appendix G, we also shed light on the ability of these policies to improve performance via assessment
sharing.
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in adjusting system performance to fluctuations in workload and robust to errors in the heuristic

control parameters.

In addition to providing a practical framework for managing the time versus quality tradeoff in

an HKBSS, our work provides several important managerial insights not obtainable from previously

available models. By describing the sensitivity of the optimal policy to various environmental

parameters, our results shed light on the factors that managers of HKBSSs need to consider.

For example, by examining the sensitivity of the optimal policy to the decision error costs and

interpreting those costs in the context of the TPT system, we showed that a hospital ED should

increase its use of a remote telemedical physician to make patient triage decisions as congestion in

the ED waiting area increases. This is an insight that clinicians experimenting with TPT did not

have prior to our work. Furthermore, by examining the case mix which varies among EDs (e.g., a

level 1 trauma center versus a community hospital), we demonstrated that different EDs need to

utilize TPT in different ways. Specifically, if a patient with same medical condition is evaluated

by the same telemedical physician for a level 1 trauma center and for a community hospital, the

optimal policy may recommend classifying the patient as urgent in one but as non-urgent in the

other. This insight is in sharp contrast with the prevailing belief that triage classification should

depend only on the medical conditions of a patient. Our model highlights the reality that since

triage classifications are used for prioritization, they should take into account the environmental

and operational conditions in which they are made.

By leveraging our model of agent knowledge, we also described how agent training and informa-

tion sharing between agents can be used to improve system performance. We showed that training

can be useful by improving either consistency or accuracy in agent decision making. However, to be

effective, training that targets consistency must focus on improving consistency for both types of

patients in the binary space, but training that targets accuracy can be effective even if it improves

accuracy for only one type of patient. These findings can help managers design the most suitable

training strategies for their system.

Finally, we showed that sharing the assessment of the lower level agent with the upper level

agent can improve decision making at the upper level. While the benefit of information is intuitive,

our model further enabled us to show that assessment sharing is most useful in systems in which

the upper level agent is more accurate than the lower level and the ratio of the error costs is low.

A TPT system, where the error cost of misclassifying a non-urgent patient is typically smaller

than that of misclassifying an urgent patient, has this property and so would benefit significantly

from having the triage nurse share his/her assessment with the telemedical physician (e.g., through

electronic forms). Again, this is a new and potentially useful insight for designing TPT systems.
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