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Abstract

This paper studies a model of intermediated exchange with liquidity-constrained
traders. Intermediaries are embedded in a trading network and their financial capac-
ities are private information. We characterize our model’s monotone, pure-strategy
equilibrium. Agents earn positive intermediation rents in equilibrium. An experimen-
tal investigation supports the model’s baseline predictions concerning agents’ strate-
gies, price dynamics, and the division of surplus. While private financial constraints
inject uncertainty into the trading environment, our experiment suggests they are also
a behavioral speed-bump, preventing traders from experiencing excessive losses due to
overbidding.

Keywords: Experiment, economic networks, intermediation, liquidity, auctions, budget
constraints
JEL: L14, C91, D85, D44, G10

∗We thank Douglas Gale for detailed comments and suggestions. We are also grateful to Larry Blume,
Gary Charness, Syngjoo Choi, Andrea Galeotti, Edoardo Gallo, Sanjeev Goyal, Tom Palfrey, Brian Rogers,
and Bill Zame for helpful discussions and comments. The paper has also benefited from suggestions by the
participants of seminars at several universities. This research was supported by the UC Berkeley Experimen-
tal Social Science Laboratory (Xlab), and the experiments were funded by the Multidisciplinary University
Research Initiatives (MURI) Program—Multi-Layers and Multi-Resolution Networks of Interacting Agents
in Adversarial Environments.

†Department of Economics, University of California, Berkeley, 530 Evans Hall #3880, Berkeley, CA 94720,
United States. E-mail: <kariv@berkeley.edu>

‡John F. Kennedy School of Government, Harvard University, 79 JFK Street, Cambridge MA 02138,
United States. E-mail: <maciej_kotowski@hks.harvard.edu>

§Department of Economics, Monash University, 900 Dandenong Road, Caulfield East VIC 3145, Australia.
E-mail: <matthew.leister@monash.edu>

1



1 Introduction
In many decentralized markets, intermediary traders link producers and consumers. Two
key variables determine the effectiveness of market intermediaries. First, a trader needs to
have adequate financial resources—either in the form of cash on hand or credit—to pay for
the goods that he wishes to trade. And second, each intermediary depends on his network of
potential counter-parties to source goods and to find buyers. The interaction between these
variables raises several open questions:

1. How do intermediary traders account for others’ (possibly) limited financial capacity?

2. What price dynamics might we observe as goods are bought and resold in the market?

3. What are the distributional consequences of the economy’s network structure? Are
some traders systematically advantaged because of their relationships or position in
the market?

In this paper we are the first to investigate the interaction between an economy’s extent
of decentralization and the private financial capacity of its participants. We pursue comple-
mentary tracks involving theoretical and experimental analysis; we develop a tractable model
that we test in the laboratory. Potential trading relationships and financial constraints are
often shrouded or deliberately concealed in real-world markets. In a lab setting, we can
directly control these key variables influencing behavior.

Our model, which builds on Gale and Kariv (2009), is simple, yet rich enough to ad-
equately probe the above questions. There is a producer of a good or asset (the “seller”)
and a final consumer (the “buyer”).1 We assume that the seller and the buyer cannot trade
directly. Instead, the asset must pass through a sequence of intermediary traders en route
from the seller to the buyer. An instance of such a situation is illustrated in Figure 1, with
four intermediary traders. A network specifies the relationships among the agents and deter-
mines the feasible transactions among them. If agent i is linked to agent j, then these agents
can trade; otherwise, transactions between them cannot occur. Traders, whose motives are
purely speculative, buy and resell the asset facilitating its passage along links in the network
from the seller to the buyer.

The key feature of our model, and where we substantively depart from Gale and Kariv
(2009), is that each trader is liquidity or budget constrained. He has limited funds to finance

1Following Gale and Kariv (2009), we call the traded good an “asset.” Depending on the application, it
may represent a financial product or a physical item.

2



Seller

Buyer

Traders

Figure 1: A trading network.

his trading activity. These constraints are private information and inject considerable risk
into the market. A successful trader must anticipate the funds available to his immediate
counter-parties and be mindful of similar constraints elsewhere in the economy. For sim-
plicity, we assume that transaction prices are set by a first-price auction. In equilibrium,
intermediaries in our economy adopt subtle bidding strategies accounting for the compound-
ing financing risks. Average prices systematically rise as the asset nears the final buyer.
Traders closer to the buyer benefit from the reduction of uncertainty. They manage to
garner a relatively larger share of the surplus than traders further away.

Our model’s simplicity ensures that it can be readily tested empirically in a laboratory
setting. Our experiments confirm the key conclusions from our theoretical analysis. Agents
with ample funds shade their bid relative to their trading budget and intermediaries closer
to the final buyer adopt uniformly more aggressive bidding strategies. Consequently, prices
rise and intermediaries closer to the buyer tend to earn higher trading profits. Interestingly,
our experiment also identifies a practical disciplinary role played by financial frictions and
budget constraints. In the laboratory, we observe that traders who are flush with resources
tend to experience a mild decline in profits relative to the equilibrium benchmark and to
others. While a lax budget constraint allows a trader greater freedom to pursue his goals, it
also allows him to err and overbid with greater frequency. The latter effect often dominates.

This paper is organized as follows. Section 2 briefly reviews the related literature. We
link our study to both theoretical and experimental studies of networked markets and auc-
tions. Section 3 introduces our model. The model’s equilibrium analysis is presented in
Section 4. We derive several implications concerning intermediary behavior, price dynamics,
and welfare. Our experiment’s procedures are summarized in Section 5. Data analysis is
performed in Section 6. Section 7 provides a discussion of our results and our study’s broader
implications. Section 8 concludes. All proofs are gathered in Section 9. An Online Appendix
contains supplementary material pertaining to our study and experiment.
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2 Related Literature
This paper contributes to literatures on networked markets and auctions. From a theoret-
ical point of view, our study is closely related to recent examinations of sequential trade
within networked economies. This literature builds upon Kranton and Minehart (2001) by
incorporating market intermediaries into the trading process. By assumption, buyers and
sellers must interact through intermediaries, who facilitate trade while respecting their net-
work of relationships. Recent contributions to this literature include Gale and Kariv (2007),
Blume et al. (2009), Gale and Kariv (2009), Kotowski and Leister (2014), Choi et al. (2017),
Manea (forthcoming), and Condorelli et al. (2017). Condorelli and Galeotti (2015) provide
a recent survey. Our study complements this growing literature by proposing a new model
of intermediated exchange in the presence of private information about trading ability.

As noted above, our analysis is closest to that of Gale and Kariv (2009), who study
a similar class of trading economies. Assuming a complete information setting, Gale and
Kariv (2009) show that prices converge to the asset’s value and all intermediation rents are
quickly competed away. Our study differs in two important ways. Most importantly, we
study an economy where intermediaries hold private information concerning their trading
ability, which we model as a budget to bankroll transactions. Second, our price-setting
mechanism, a standard first-price auction, is simpler than Gale and Kariv’s protocol, which
involves averaging bid and ask prices.2 These departures lead to predictions distinct from
those advanced by Gale and Kariv (2009). Average prices in our economy rise with successive
transactions and traders enjoy positive intermediation rents.

Other network-based trading games are studied by Charness et al. (2007) and Judd and
Kearns (2008). The former considers bargaining while the latter considers a trading process
with continuously-updated limit-order books. Choi et al. (2017) examine intermediated
exchange theoretically and in the laboratory focusing on a posted-price mechanism. Their
experiment highlights the importance of coordination among market intermediaries and the
role of “critical traders.” Critical traders enjoy monopoly-like positions in a network allowing
them to extract considerable intermediation rents. Our economy does not feature critical
traders; instead, we identify an alternative channel allowing intermediaries to earn sustained
profits in equilibrium. Kosfeld (2004) provides a survey of other laboratory experiments
involving networked economies.

2Gale and Kariv (2009) report results from a control treatment where transaction prices equaled only the
bid, as in our model. These results are similar to their baseline experiment with the more complex pricing
rule. Mindful of this result, we have opted for a simpler pricing rule from the onset. See also Remark 2.
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Though our focus is on trade in a networked economy, we also contribute to the ex-
perimental auction literature. Our experiments incorporate a direct test of Che and Gale’s
(1996) model of a first-price auction with private budget constraints. In this model, each
bidder has a one-dimensional type, a private budget constraint above which he cannot bid,
and the item for purchase has a commonly-known and fixed value.3 To our knowledge, Che
and Gale’s (1996) model has not been tested in a laboratory before. Anticipating our results,
data from our baseline treatment are consistent with the equilibrium that they character-
ize. Other experimental investigations of auctions with budget constraints include Kotowski
(2010) and Ausubel et al. (2017), albeit they consider environments different from ours.
Pitchik and Schotter (1988) examine sequential auctions with budget constraints theoreti-
cally and experimentally; however, they consider a setting where multiple goods are sold in
sequence. In our case, the same good is sold and resold among a sequence of distinct agents.
Comprehensive surveys of the experimental auction literature are provided by Kagel (1995)
and Kagel and Levin (2016).

3 The Model
In this section we introduce the model that will inform our experimental analysis. We
characterize its equilibrium in the next section.

Consider an economy where trading possibilities are summarized by a directed graph.
Agents are nodes and a directed link from agent i to agent j indicates that i can sell to
j. The network structure is exogenous and common knowledge. We focus on a tractable
class of networks originally analyzed by Gale and Kariv (2009). Choi et al. (2017) call
such networks “multipartite networks.” Figure 2 illustrates a family of multipartite trading
networks involving increasing degrees of intermediation between the buyer and the seller. In
a multipartite network, agents are arranged in rows 0, 1, . . . , R + 1. One agent is the buyer
(B) and one agent is the seller (S). The buyer is located in row 0 and the seller is located
in row R + 1. The buyer is offering to pay v > 0 for an asset or good that is created by
the seller at zero cost (a normalization). There exist gains from transferring the asset from
the seller to the buyer. However, these agents are not linked directly. Instead, there is a
set of intermediary traders who may buy and sell the asset. In our model, they inhabit

3Most models of auctions with private budget constraints, such as Che and Gale (1998) or Kotowski
(2017), assume bidders’ types are two-dimensional, encompassing private information concerning the item’s
value and a private budget constraint. Bobkova (2017) generalizes Che and Gale’s (1996) model to an
asymmetric setting.
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Figure 2: A family of multipartite trading networks.

rows 1, . . . , R. Rows are numbered according to their network distance from the buyer.4

Traders, who are risk neutral, do not value the asset per se. Rather they seek to earn profits
by facilitating trades in the network. The network constrains the set of feasible trades as
follows. An agent in row r can purchase the asset from an agent in row r + 1 and can sell
the asset to an agent in row r− 1, as illustrated in Figure 2 with the corresponding directed
links. As usual, a trader earns profits if he can “buy low” and “(re)sell high.”

The particular trading networks illustrated in Figure 2 feature in our experimental in-
vestigation and involve one, two, or three rows of intermediaries. Intuitively, as the distance
between the buyer and the seller increases, the market’s operation involves a more complex
chain of intermediary transactions. For simplicity, we assume that there is a common num-
ber N ≥ 2 of intermediary traders in each row. Extending our results to allow for a different
number of intermediaries in each row is straightforward and does not change our qualitative
conclusions. In Figure 2, each row has three intermediaries.

All trade occurs via sequential auctions according to the following protocol. When an
agent in row r + 1 holds the asset, he organizes a first-price, sealed-bid auction to sell it.
Agents in row r participate in the auction by submitting bids. The highest bidder is awarded
the asset and makes a payment equal to his bid. Ties among highest bidders are resolved
with a uniform randomization. This process continues until the asset reaches the buyer, who
(by assumption) pays v for the good.

With the exception of the pricing rule, the model above broadly parallels that of Gale
4Our numbering scheme simplifies our equilibrium characterization. Gale and Kariv (2009) follow the

opposite numbering convention.

6



and Kariv (2009). Substantially departing from their setting, we additionally assume that
agents have private information, a common feature of many trading environments. As out-
lined in the introduction, we assume that each intermediary trader faces a private budget
constraint that represents his access to funds or liquidity to finance his trading activity.
When attempting to acquire the asset, each trader is constrained to bid less than his private
budget. This budget has no direct impact on an agent’s payoff; it only describes his feasible
actions.

To model this constraint, we assume that trading budgets are independently and iden-
tically distributed according to the cumulative distribution function F . We assume that F
admits a continuous density, f , with full support on the interval [0, w̄] where 0 < v ≤ w̄.
Though straightforward to relax, for analytical brevity we assume that the ratio F (w)/f(w)

is non-decreasing in w. Many common distributions, including the uniform, satisfy this con-
dition. As standard, this information structure is common knowledge among all agents in
the economy, though a trader’s realized budget (i.e., his type) is his private information.
When there is one row of intermediary traders (R = 1), our model reduces to Che and
Gale’s (1996) model of a common-value, first-price, sealed-bid auction with private budget
constraints.

4 Equilibrium Analysis and Model Predictions
We start by characterizing an equilibrium in monotone, pure strategies. Monotone, pure
strategy equilibria are focal in auction-like settings. Che and Gale (1996), whose model
our market generalizes, also focus on such equilibria. While the payment made by the
buyer is fixed by assumption, the value of the asset to traders in rows r ≥ 2 is determined
endogenously. The value of the asset to a row-2 trader, for example, depends on the expected
bids of row-1 traders. Likewise, the value of the asset to a row-3 trader depends directly on
the expected bids of row-2 traders and indirectly on the bids of row-1 traders; and so on.
The result of this inductive reasoning is an equilibrium featuring a recursive structure.

To specify the resulting equilibrium strategy, we first define G(w) := F (w)N as the
cumulative distribution function (c.d.f.) of the largest of N independent random variables,
each with c.d.f. F (w). As usual, g := G′ is the corresponding density.

Theorem 1. Let U1(w) = maxb∈[0,w] F (b)N−1(v − b) and define

b∗1(w) = v − U1(w)

F (w)N−1
.
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For r ≥ 2, define inductively the following expressions:

ν∗
r−1 =

∫ w̄

0

b∗r−1(w)g(w) dw (1)

Ur(w) = max
b∈[0,w]

F (b)N−1
(
ν∗
r−1 − b

)
(2)

b∗r(w) = ν∗
r−1 −

Ur(w)

F (w)N−1
(3)

The strategy profile where all traders in row r bid according to the strategy b∗r(w) is the
unique, monotone, pure strategy equilibrium of the trading game.

The proof of Theorem 1 follows by induction from the analysis of Che and Gale (1996). An
immediate consequence of the equilibrium’s inductive structure is that the strategy defined
in Theorem 1 is independent of the parameter R. That is, if b∗r is the equilibrium bidding
strategy of a row-r trader in a network with R ≥ r rows (and N traders per row), then b∗r

continues to be the equilibrium bidding strategy of a row-r trader in a network with R′ ≥ r

rows (and N traders per row).
Before discussing the above equilibrium in greater detail, we present an example paral-

leling our experimental investigation to follow.

Example 1. Suppose the buyer offers to pay v = 100 for the asset and traders’ budgets are
uniformly distributed between 0 and 100. Assume that N = R = 3, as in Figure 2(c). The
equilibrium bidding strategies are illustrated in Figure 3. These bidding strategies are:5

b∗1(w) =

w if w < 67

100− 145000
w2 if 67 ≤ w

b∗2(w) =

w if w < 46

70− 50000
w2 if 46 ≤ w

b∗3(w) =

w if w < 39

59− 30000
w2 if 39 ≤ w

The equilibrium strategy of agents in each row is strictly increasing in w and concave. As a
group, equilibrium strategies are ordered with traders in row 1 submitting the highest bids.

This example nests equilibria from other trading networks as special cases. In particular,
5When stating the strategy, we round several values for expositional ease.
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Figure 3: Equilibrium bidding strategies in Example 1.

if R = 1 and N = 3, then the equilibrium strategy is composed only of b∗1. If R = 2 and
N = 3, then b∗1 and b∗2 characterize the traders’ equilibrium bidding strategies.

Example 1 suggests several general characteristics of equilibrium behavior in our net-
worked market. These conclusions touch on individual-level strategies, price dynamics, and
welfare implications. We summarize these features in three corollaries, which will inform our
experimental investigation. The first corollary focuses on two striking features of individual-
level bidding strategies.

Corollary 1 (Bidding). Consider the equilibrium characterized by Theorem 1.

1. There exists a critical value w∗
r such that for all w ≤ w∗

r , b∗r(w) = w. For all w > w∗
r ,

b∗r(w) is strictly increasing, concave, and strictly less than w.
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2. Conditional on w, a trader positioned further from the buyer bids less, i.e. b∗r(w) ≥
b∗r+1(w).

The conclusions of Corollary 1 are readily apparent in Example 1 and Figure 3. First,
bidders’ strategies are increasing and concave. For bidders in each row, there is a critical
budget level, which we denote by w∗

r , that defines a boundary between two types of bids. For
budgets below the critical value, the equilibrium strategy coincides with a simple heuristic—
“bid everything.” For budget levels above the critical value, equilibrium bidding demands
a more sophisticated approach whereby a bidder commits only a decreasing fraction of his
funds to the transaction.

Second, bidders’ strategies are ordered uniformly. Traders in row 1 bid more aggressively
than row 2 traders. Row 2 traders bid more aggressively than row 3 traders. This ordering
reflects the changing value of the asset as it proceeds through the network. In the example,
row 1 traders can resell the asset to the buyer for a price of 100. A trader in row 2, however,
can only resell the asset to a trader in row 1. Since the bids of row 1 traders are capped
by their budget, the expected resale price is only approximately 70. Thus, a row 2 trader
should shade his bid more aggressively than a row 1 trader. By induction, the same reasoning
applies to traders in subsequent rows moving away from the buyer.

Building on Corollary 1, we can derive equally clueful conclusions concerning equilibrium
price dynamics. Given our trading protocol, this value equals the highest bid submitted in
each respective auction. Since b∗r(w) is strictly increasing, the highest bid is always submitted
by the trader with the highest realized budget. Thus, and following directly from Theorem
1, realized transaction prices are independent and ν∗

r =
∫
b∗r(w)g(w)dw is the expected price

paid by traders in row r. This value evolves predictably through the network.

Corollary 2 (Prices). Consider the equilibrium characterized by Theorem 1.

1. Expected prices are increasing as the asset approaches the buyer, i.e. ν∗
r+1 ≤ ν∗

r .

2. The difference in expected prices is increasing as the asset approaches the buyer, i.e.
ν∗
r − ν∗

r+1 ≤ ν∗
r−1 − ν∗

r .

While the first point of Corollary 2 is intuitive, the second is surprising. As the buyer’s
offer of v acts as a hard bound on expected prices and these prices are increasing, we might
expect that they “converge” to the buyer’s value with later traders capturing smaller-and-
smaller shares of the total surplus. Instead, price differences evolve in the opposite manner.
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Among all intermediaries, traders closest to the buyer capture the greatest share of the
expected total surplus. Of course, part of the total surplus goes to the seller as well.

As expected prices evolve systematically through the trading network, it is natural that
traders’ payoffs behave equally predictably. From the bidding strategy defined in Theorem
1, we can conclude that the equilibrium expected payoff of a row-r trader with a budget of
w equals Ur(w), as defined in (2). Indeed, if we rearrange (3), we see that

b∗r(w) = ν∗
r−1 −

Ur(w)

F (w)N−1
=⇒ Ur(w) = F (w)N−1(ν∗

r−1 − b∗r(w)).

Conditional on acquiring the asset, a trader earns an expected return of ν∗
r−1 − b∗r(w), the

difference between the expected resale price and his bid. The probability with which he
acquires the asset equals F (w)N−1, which is simply the probability that all others in his row
have a budget less than w and bid less than b∗r(w) in equilibrium. With this description of
payoffs, we can conclude the following.

Corollary 3 (Payoffs). Consider the equilibrium characterized by Theorem 1. Define Ur(w)

as in (2) and define w∗
r as in Corollary 1.

1. Ur(w), is strictly increasing in w for all w ≤ w∗
r . For all w > w∗

r , Ur(w) is constant
and equal to Ur(w) = F (w∗

r)
N−1(ν∗

r−1 − w∗
r).

2. Conditional on w, expected payoffs are increasing as the distance to the buyer decreases,
i.e. Ur+1(w) ≤ Ur(w).

Corollary 3 shows that traders’ type-contingent expected payoffs differ systematically
through the network. Greater expected payoffs are earned by traders closer to the buyer.
As all traders are ex ante identical except for their position in the network, this implies
that unconditional expected payoffs are also greatest for traders closer to the buyer. Despite
the analogous network topology, these observations contrast with the conclusions of Gale
and Kariv (2009), who argue that intermediation rents are entirely competed away. In our
setting, the presence of private information ensures that intermediation rents remain positive.

Remark 1. Our analysis and experiment focus on the model’s symmetric, monotone, pure-
strategy equilibrium, which is both intuitive and focal. Our model also admits many mixed-
strategy and non-monotone equilibria. These equilibria replicate the bid distribution induced
by the strategies defined in Theorem 1. Intuitively, since traders with high budgets are
indifferent among a range of bids (Corollary 3), their bidding strategies can be “rearranged”
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without upsetting the equilibrium provided the overall bid distribution remains unchanged.
We elaborate on this point in Online Appendix A. Importantly, many of our theoretical
conclusions depend only on the bid distribution; hence, they are robust across equilibria.

Remark 2. A further extension of our setup introduces reserve prices into the pricing protocol.
Under this scheme, an agent currently selling the asset could specify a minimum acceptable
bid. It is straightforward to extend the analysis of Che and Gale (1996), and thus Theorem
1, to allow for reserve prices. Generally, the optimal (and equilibrium) reserve price depends
on the economy’s parameters. In Example 1, which parallels our experimental study, the
revenue-maximizing reserve price is zero for all traders. The supporting intuition is as
follows. Traders with low budgets “bid everything” in equilibrium and a small reserve price
only screens them out from the auction. A large reserve price can potentially increase the
sale price, but the reduction in sale probability dominates. Hence, expected payoffs decline.
Given the optimality of a zero reserve price in our experiment, we have suppressed their role
in our analysis and model.

4.1 A Practical Extension: Limited Liability

Several practical considerations complicate the direct translation of the preceding model to
a laboratory setting. One difficulty is that an intermediary trader may incur an ex post loss.
With the exception of traders in row 1, it is possible that a trader pays more for the asset
than he subsequently receives from a downstream counter-party. Standard experimental
protocols and laboratory rules (including ours) do not allow a subject to incur a financial
penalty in a study. Numerous methods have been employed in the literature to address this
common concern, sometimes with mixed effects.6 A simple method, which we follow in our
experiment, involves introducing a limited-liability constraint. Specifically, a trader can be
protected from loss by computing his earnings as

Earnings = max

Resale Price− Purchase Price︸ ︷︷ ︸
Trading Profits

, 0

 . (4)

Gale and Kariv (2009) compute earnings in their experiment with the same formula. They
argue that (4) can be interpreted as a compensation scheme for a professional trader who
enjoys bonuses when trading profits are positive, but earns constant wages otherwise.

6This concern also arises in studies of common-value auctions due to the winner’s curse. See Kagel (1995)
for a survey.
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When earnings are computed according to (4), traders’ incentives change relative to our
original model. Since agents are protected from a loss, intuition suggests that equilibrium
bidding ought to be more aggressive. In Online Appendix B we provide an equilibrium
characterization in our economy, analogous to Theorem 1, when (4) defines traders’ payoffs.
Though considerably less tractable than the baseline model, the equilibrium can again be
defined inductively. Equilibrium bidding strategies can no longer be expressed in closed
form; however, they can be readily computed numerically in standard examples.

To gauge the impact of limited liability, in Figure 4 we illustrate the equilibrium strategies
from Example 1 when earnings are instead computed according to formula (4). Recall
that the example featured three rows of traders, with three traders per row. Budgets were
uniformly distributed between 0 and 100. The asset’s value to the final buyer was 100.
(These parameters are identical to those employed in our experiment.) In the figure, we
illustrate the equilibrium strategies in the presence of limited liability as dashed curves and
label them as b̃r(·). For comparison, the figure also illustrates the equilibrium strategies from
our baseline model without limited liability, denoted by b∗r(·). The strategy of row 1 traders
is unaffected by the introduction of limited liability since the buyer always offers more for
the asset than the highest possible bid. Thus, b̃1(w) = b∗1(w). As expected, traders in rows
2 and 3 adopt more aggressive postures. They are willing to bid more since the down-side
risk associated with overpaying is mitigated by formula (4). Consequently, b̃2(w) ≥ b∗2(w)

and b̃3(w) ≥ b∗3(w), as illustrated in Figure 4. Paralleling our baseline analysis, for each row
r we define w̃r as the critical budget level such that b̃r(w) = w for all w < w̃r and b̃r(w) < w

for all w > w̃r. With limited liability, the critical values (w̃r) are 43.5, 50.5, and 67. Under
its original specification, the critical values (w∗

r) in Example 1 are 39, 46, and 67.
Since limited liability affects bidding in a measured manner, the qualitative conclusions

outlined in Corollaries 1–3 continue to obtain. The continued applicability of Corollary 1 is
apparent in Figure 4. Given the example’s parameterization, Corollaries 2–3 can be easily
verified, either analytically or numerically. Since many of our original conclusions continue
to apply, the limited liability constraint provides a practical, minimally invasive compromise
in implementing our experimental market.

4.2 Predictions

We conclude our theoretical analysis by translating our formal results into a set of empirical
predictions that will form the basis of our experimental investigation. These predictions
draw on Theorem 1, Corollaries 1–3, and our extension to the case of limited liability.
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Figure 4: Monotone, pure-strategy equilibrium strategies without limited liability (b∗r) and
with limited liability (b̃r) in the economy of Example 1.

First, monotone equilibria are focal in many auction-like games; thus, we anticipate
traders’ bidding strategies to exhibit the following qualitative characteristics.

Prediction 1 (Monotone Bidding).

1. Within a row, traders with greater budgets will place greater bids; however, traders
with large budgets will not expend all of their funds.

2. Conditional on budget level, traders closer to the buyer will exhibit more aggressive
bidding behavior.

Second, Corollary 2 describes the evolution of prices in the economy. Particular prices
are independent of each other, but higher average prices should be observed in rows closer
to the buyer.
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Table 1: Experimental sessions and treatments.

Network
Type

Number of
Sessions

Total
Subjects

Decision
Observations

Average
Earnings ($)*

1× 3 1 30 1,500 26.04
2× 3 2 72 3,600 24.51
3× 3 3 90 4,500 24.03

* Reported earnings include the $5 show-up fee and the $10 participation fee paid at
the experiment’s conclusion.

Prediction 2 (Prices). Average prices paid by intermediary traders in different rows exhibit
an upward trend as the asset approaches the buyer. The gap between purchase and resale
prices is increasing as the asset approaches the buyer.

Our final prediction recasts Corollary 3, establishing comparative statics on traders’
welfare and payoffs within and across rows.

Prediction 3 (Payoffs).

1. Within a row, average intermediary profits are increasing when trading budgets are
low and constant when they are high.

2. Conditional on his budget, a trader closer to the buyer earns higher average payoffs.

While Prediction 1 directly builds on the monotone, pure-strategy equilibrium, Predic-
tions 2 and 3 apply to the large family of (possibly asymmetric) equilibria, as noted in
Remark 1 above. Finally, as explained above, these predictions continue to apply even if
earnings are subject to a limited liability constraint.

5 Experimental Design and Procedures
In our experiment, we consider a family of networks to test our three main predictions. Table
1 provides a summary. First, the 1×3 network allows us to examine the within row elements
of Predictions 1.1 and 3.1. This network, which corresponds to a test of Che and Gale’s
(1996) model of a common-value, first-price auction with private budget constraints, allows
us to identify any dependencies in agents’ bids and payoffs on budgets without introducing
the confound of network depth. The 1 × 3 network is insufficient to probe the price and
welfare dynamics across rows. Thus, we also consider the 2 × 3 network and the 3 × 3
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networks, having two and three layers of intermediaries, respectively, between the buyer and
the seller. These more complex networks also provide a forum to ascertain the robustness
of our within-row conclusions. The monotonicity, concavity, and welfare conclusions apply
to these cases as well. To ensure comparability, we maintain the same level of competition
across treatments. Thus, each row always has three intermediary traders.

Six experimental sessions were conducted at the Experimental Social Science Laboratory
(Xlab) at the University of California, Berkeley. We employed the experimental computer
program developed by Gale and Kariv (2009) and our experimental procedures follow their’s
closely. Subjects were recruited from the undergraduate and graduate student bodies at the
university. No subject participated in more than one session. At the start of each session,
subjects were given ample time to silently read the experiment’s instructions. We reproduce
a sample of these instruction in Online Appendix B. The instructions were then read aloud
by an administrator. Subjects’ questions, if any, were publicly addressed. Each session lasted
roughly one hour and thirty minutes. Each subject received a payment of $5 for showing
up at the experiment on time. At the experiment’s conclusion, each subject received an
additional payment of $10 for participating in and completing the experiment plus their
within-experiment earnings or trading profits. We describe the calculation of trading profits
below. Total compensation for participation in the experiment ranged from $15 (the subject
earned only the show-up and participation fees) to $87.90 (the subject earned the show-up
and participation fees plus $72.90 in trading profit). Within the experiment, we refer to
units of currency using the neutral term “tokens.”

Each of six sessions consisted of 50 independent trading rounds. Subjects assumed the
role of intermediaries and each round mimicked our model’s operation. The buyer and the
seller were modeled by the computer. The network structure was held fixed throughout a
session and was clearly explained to the subjects. Each subject was randomly assigned by
the computer to one row of the network. These assignments were privately observed by the
subjects, and were held constant throughout the experiment’s duration. At the beginning
of each trading round, the computer randomly formed networks by assigning subjects to
their respective row in a network. Subjects faced the same probability of being placed to
any network and to any node position within their preassigned row. Thus, subjects were
unaware of the identities of others in their network in each round.

Upon observing their position in the network and immediately prior to each round of
play, each subject was informed of his trading budget for that round. This budget, called
the “token endowment” within the experimental platform, was randomly and uniformly
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Figure 5: Sample interface in the 3× 3 network treatment.

drawn between 0 and 100 tokens (including decimal values) and not carried over between
rounds. Budgets were independently drawn across subjects. Each subject was then asked to
choose a price (bid) at which they were willing to buy the asset. Each subject was allowed
to choose any number (including decimals) between 0 and their budget as their bid. Once
all bids had been submitted, trades were executed by the computer as follows. The subject
connected to the (computer) seller who submitted the highest bid was awarded the asset and
automatically resold the asset to the trader submitting the highest bid in the row below.
This process continued until the holder of the asset sold it to the (computer) buyer, who
always paid 100 tokens. This trading procedure was explained to the subjects prior to the
experiment.

After all trades in a round were executed, subjects learned the outcome. This information
was conveyed via the experimental platform’s interface, which we now describe. Figure 5
presents a typical dialog window from a session with a 3× 3 network. The interface for the
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other network structures was similar. The subject’s position in their network is displayed
in the large square window at the left of the screen. Upon completion of a given round,
this window also displayed that round’s price and trading information. The “View Results”
button in the screen’s top-right corner allowed the subject to view the price and trading
history from each previous trading round they participated in. The subject entered his or
her bid in the Bid field at the right of the screen. The subject’s budget was displayed in
the Token Endowment field, immediately above the Bid field. After each round of bidding,
each subject was informed of others’ bids and budgets. They were also shown the sequence
of executed trades and the associated prices, as illustrated in Figure 5. Provision of this
information ensured that subjects trusted and understood the trading protocol and pricing
system. After each subject clicked “OK,” the next trading round began.

Earnings in the experiment were determined as follows. At the end of the session, the
computer randomly selected one trading round. Each round had an equal probability of
being chosen. The subjects were then paid based on that round’s earnings. To compute final
payments, tokens were converted into dollars at a 1-for-1 exchange rate. If a subject did not
trade in the selected round, his or her trading profits were zero. The subject received only the
$5 show-up fee and $10 participation fee. If a subject did trade in the selected round, he or
she received the show-up and participation fees plus any earnings from the selected round.
These earnings were computed according to formula (4), which incorporated the limited
liability constraint. As explained above, use of this payment scheme ensured subjects did
not incur a financial penalty; it was also used by Gale and Kariv (2009).7 Subjects were
informed of the earnings formula as part of the experiment’s instructions.

6 Data Analysis and Results
As a starting point for our data analysis, we examine bidder behavior. In Figure 6 we
plot LOESS curves8 (and 95% confidence bounds) summarizing average bids submitted by

7An alternative experimental design could have endowed bidders with a “buffer” budget of tokens from
which trading losses could be deducted. The buffer could have been chosen to be sufficiently large to ensure
that ex post losses are extremely unlikely. We decided against such a design due to its added cost and
complexity. There is a risk of confusion between the buffer budget and the particular budget constraint
in a particular round. Furthermore, loss-aversion may become more salient as a behavioral confound. We
believe the present design is more closely aligned with our original model and we can account for the payoff
formula’s equilibrium consequences directly, as explained in Section 4.1.

8LOESS is a standard non-parametric regression procedure, which fits a local polynomial regression to
(in our case) bivariate data. See Fox (2008) for a practical discussion of this and related methods.
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traders in each row as a function of their budget.9 We group our estimates by network type,
but we pool across sessions and bidders.10 In each successive panel, we consider increasingly
complex networks, with the 3× 3 network presented in panel (c).

Two features of the fitted curves stand out. First, the estimates exhibit the anticipated
monotonicity and concavity predicted by our theoretical analysis. Across networks, traders
bid their entire budget when it is low. High budget traders do not commit all of their funds
to the auction. Instead, they shade their bid resulting in a concave bidding function. Second,
the fitted curves conform to the predicted ordering. Row 1 traders uniformly outbid their
row 2 and row 3 counterparts. Moreover, in the 3×3 treatment, row 2 traders outbid traders
in row 3. The associated confidence bounds overlap only at extreme values where estimates
are necessarily less precise, due to fewer observations.

Result 1 (Bidding). Across networks, traders’ bids are increasing in their budget level,
even when budgets are not a binding constraint. Traders with low budgets bid all of their
available funds to acquire the asset. Traders with ample funds reduce their bid relative to
the their budget. Across networks, intermediaries closer to the final buyer adopt uniformly
more aggressive bidding strategies.

As for price dynamics, in Table 2 we report descriptive statistics concerning the prices
paid by traders to acquire the asset. The table summarizes these values conditional on the
network structure and on the row, though the values are pooled across sessions and trading
rounds. For example, a trader in a 1 × 3 network who successfully acquired the asset from
the seller, paid 70.71 tokens on average. The median price paid was higher, 75 tokens, and
the standard deviation was 17.16 tokens. Similar statistics are reported for other networks
on a row-by-row basis.

A first-order feature apparent from Table 2 is the trend in average prices as the asset
approaches the buyer. In a 2 × 3 network, the price paid by a row 1 trader to acquire the
asset (from a row 2 trader) is on average 10.5 tokens greater than the price paid by a row
2 trader to acquire the asset (from the seller). In a 3 × 3 network, a row 1 trader paid on
average 7.18 tokens more than a row 2 trader. A row 2 trader paid on average 2.57 tokens

9All of our estimates and data analysis use the full data sample. As a robustness check, we have repeated
our estimates dropping the first 10 and 25 rounds from each session to account for the possibility of learning.
The results of this exercise were not substantively different from the estimates based on the full sample. Our
results support Gale and Kariv’s (2009) conclusion that subjects appear to adapt quickly to this type of
trading environment.

10In Online Appendix D we estimate a parametric model controlling for subject-level effects. The conclu-
sions are entirely analogous to those presented here. Pooling by session yields similar conclusions.
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Figure 6: Estimated bidding strategies. LOESS curves with 95% confidence bounds. All
plots were created with the R statistical package using default settings (the span parameter
is set to the default 0.75).
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Table 2: Summary statistics of trading prices.

Network 1× 3 2× 3 3× 3

Row 1 1 2 1 2 3
Mean 70.71 68.91 58.41 68.51 61.33 58.76

Median 75.00 71.30 60.00 72.50 62.10 60.10
St. Dev. 17.16 17.22 14.82 16.02 13.93 15.62

Obs. 500 600 600 500 500 500

more than a row 3 trader. Similar differences exist among median prices. These observed
differences are (statistically) distinct from zero. For example, t-tests and sign tests reject
the null hypothesis of equality with p-values far below 0.001.

As noted in Corollary 2, our model also provides a prediction concerning second-order
price dynamics. The gap in realized prices between adjacent rows is predicted to increase as
the asset approaches the buyer. Above we noted why this prediction may challenge initial
intuition given the mechanical “cap” on resale prices provided by the buyer’s constant offer
price of 100. To test this prediction, we again consider the 3×3 network. As noted above, in
that economy we observed notable differences in the average realized prices between adjacent
rows. Similarly, the median difference in realized prices was 9.1 between rows 1 and 2 and
and 2.4 between rows 2 and 3.11 Again this difference is statistically distinct from zero. For
example, a sign test rejects equality (p = 0.043, two-sided).

Result 2 (Prices). Average prices are increasing as the asset approaches the buyer. More-
over, the gap between purchase and resale prices is increasing.

Our analysis has also provided predictions concerning the evolution of profits across rows,
conditional on a trading budget, and across budget levels, conditional on row. To illustrate
both comparative statics, in Figure 7 we plot traders’ payoffs as a function of their realized
budget stratifying the sample by row, but pooling across subjects. To summarize general
trends, our plots again consist of LOESS curves, which provide an estimate of the average
payoffs conditional on budget level. Payoffs are computed accounting for the limited liability
constraint as given by formula (4) and explained in Section 5. This correction is necessary
to ensure that we correctly capture the incentives faced by the subjects in the experiment.
Panel (a) provides a succinct summary of general trends by combining data from all network
types and sessions. Panels (b)–(c) disaggregate the data by network type.

11The median difference in realized prices differs from the difference in median realized prices, which can
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Figure 7: Average earnings as a function of a trader’s budget. LOESS curves with 95%
confidence bounds. All plots were created with the R statistical package using default settings
(the span parameter is set to the default 0.75).
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Agreeing with Prediction 3, traders closer to the buyer enjoy higher average payoffs
conditional on realized budget. Empirically, the sole exception to this general pattern occurs
at low budget levels. Traders with low budgets always have a small chance of successfully
acquiring the asset; hence, payoffs are (unsurprisingly) uniformly low. When budgets are
high, however, the ordering of traders’ payoffs is evident and robust. It appears in the
aggregate data and on a network-by-network basis.

Though the evolution of payoffs across rows provides a definite comparison, the evolution
of payoffs within a row is more subtle. Recalling Corollary 3 and Prediction 3, we anticipate
that average payoffs will be increasing when budgets are low and constant when budgets are
high. The former effect is apparent in all panels of Figure 7. The latter effect, however,
appears to not be a feature of the data. Curiously, average payoffs exhibit a mild downward
trend at high budget level. This effect is evident in panel (a) and remains a persistent feature
at finer scales.

To evaluate the significance of this apparent downward trend, we first draw on our theo-
retical model to aid in sample selection. Restricting the sample to budget realizations above
w̃r, we regress trader’s earnings on their realized budget. (Recall that w̃r denotes the cut-off
value after which traders bid less than their budget in equilibrium and expected payoffs are in
theory constant.) By Corollary 3 and Prediction 3, the resulting regression estimates should
be zero. Tables 3 and 4 report the outcomes of these calculation controlling for subject fixed
effects. For comparison, Table 3 corresponds to Figure 7, panel (a), and Table 4 corresponds
to Figure 7, panels (b)–(d).

In Table 3 we identify a mild, though statistically significant, negative correlation between
realized budgets and payoffs. Thus, beyond the w̃r threshold, an increase in a trader’s budget
is associated with a decline in average earnings. For example, increasing the budget of a
row 1 trader from 67 to 100, thereby removing all constraints on his bid, reduces his average
payoff by about 3 tokens (dollars). Similar declines affect row 2 and row 3 traders. This effect
appears despite the limited liability constraint present in our experiment, which precludes
trading losses from pulling-down realized payoffs further.12 Table 4 repeats the estimates
of Table 3, but on more disaggregated samples. Across all specifications, the consistently
negative point estimates of the budget coefficient corroborate the presence of a downward
trend, though some estimates lose statistical significance.

be computed directly from Table 2.
12Neglecting the limited liability constraint maintains the payoff ordering but significantly reinforces the

downward trend in the payoffs of row 2 and row 3 traders with high budgets. Therefore, the correction for
earnings formula (4) is important.
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Table 3: Earnings trends among high-budget traders by row. OLS regression
with subject fixed effects. Pooled sample across all networks and sessions.

Row 1 Row 2 Row 3
Constant 22.834*** 9.249*** 10.834***

(3.771) (2.517) (2.589)
Budget -0.099*** -0.042** -0.039**

(0.035) (0.019) (0.016)
Obs. 1,571 1,552 834

Cut-off (w̃r) 67 50.5 43.5
Robust standard errors in parenthesis. * p < 0.1. ** p < 0.05. *** p < 0.01.

Table 4: Earnings trends among high-budget traders by row and network. OLS regression
with subject fixed effects. Pooled sample across sessions.

Network 1× 3 2× 3 3× 3

Row 1 1 2 1 2 3
Constant 24.996*** 25.301*** 7.932*** 17.077*** 10.244*** 10.834***

(6.149) (5.570) (3.244) (5.794) (2.901) (2.589)
Budget -0.120** -0.137** -0.030 -0.031 -0.055** -0.039**

(0.058) (0.059) (0.027) (0.062) (0.025) (0.016)
Obs. 489 594 831 488 721 834

Cut-off (w̃r) 67 67 50.5 67 50.5 43.5
Robust standard errors in parenthesis. * p < 0.1. ** p < 0.05. *** p < 0.01.
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We can rationalize the observed downward trend in payoffs with a simple behavioral argu-
ment. In our model, the blessing of a high budget comes with the curse of more opportunities
for error. An intermediary with a tight budget constraint faces a relatively straightforward
problem in formulating his bid. With high probability the asset’s resale value will exceed
his budget. Bidding up to his budget constraint provides a simple, focal heuristic strategy
guaranteeing considerable upside in the (admittedly, unlikely) event that he is the winner.
Limited liability shields him from losses while the budget constraint provides protection from
overbidding.

The problem faced by a high-budget trader is more complex. Agents with high budgets
have sufficient funds to compete for the asset. Hence, they must be more careful in balancing
the probability of winning the auction and the surplus derived from resale. This introduces
additional channels for error or misperception to enter into the bid-formulation process. A
high budget provides no mechanical backstop preventing overbidding, thereby allowing these
miscalculations and temptations to filter into the trading game.

Result 3 (Trader Profits). On average, intermediaries closer to the buyer earn higher trading
profits. Average profits are initially increasing in a trader’s budget. When a trader’s budget is
relatively large, a further increase in his budget is associated with a mild, though statistically
significant, decline in earnings.

7 Discussion and Interpretation
As with all market experiments, we build our analysis around a stripped-down theoretical
model that we subsequently test with a particular population. Neither the trading platform
nor the university-student subject pool perfectly replicates the “real world.” Of course,
concerns regarding an experiment’s external validity are not new; see Chapters 14–20 of
Fréchette and Schotter (2015) for an extensive survey. Our analysis studies general principles
of market operation. Thus, echoing Kessler and Vesterlund (2015), we believe the qualitative
insights of our study will generalize to related non-laboratory environments even though the
quantitive estimates are specific to our model and experiment. Generalizable insights from
our analysis include (i) the coordination on an equilibrium that is monotone in financial
capacity,13 (ii) the payoff advantage enjoyed by intermediaries closer to a final buyer or

13We note, additionally, that equilibria are monotone within each transaction episode (i.e. auction) and
across transactions occurring within the same market.
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consumer, and (iii) the disciplinary benefit of budget constraints observed in the laboratory,
which we interpret as preventing behavioral errors.14

Below we explain how two elements of our model, the multipartite network structure and
the private budget constraints, relate to features beyond the laboratory environment.

Multipartite Trading Networks

A characteristic of our setting is the network structure. The number of rows—the parameter
R—describes the prevailing depth of intermediation in the market. It counts the number
of intermediaries involved in moving assets from sellers to buyers. Different markets will
exhibit different values of this parameter. In Kranton and Minehart (2001), for example,
R = 0 as buyers and sellers are linked directly. Often, however, R may assume a relatively
large value. For example, Li and Schürhoff (2014) have recently documented the presence
of long chains of successive intermediaries in over the counter (OTC) trades of municipal
bonds. They note that approximately a quarter of transactions between buyers and sellers
in this market involve multiple intermediaries. Describing these transactions, they write:

[L]onger chains start with a dealer purchasing a bond from a customer, followed
by one or several interdealer trades that move the bond from the head dealer
to the tail dealer, and end with the tail dealer selling the bond to one or more
customers. (Li and Schürhoff, 2014, p. 14)

This process closely aligns with our framework.
Beyond OTC markets, our network structure parallels some of the directed intermedia-

tion observed in financial systems and supply chains (Spulber, 1996). As large institutions
save and consumers borrower, for example, financial intermediaries, i.e. banks and dealers,
facilitate the movement of funds between wholesale and retail markets. Similarly, buyer
financing is a prominent concern in many export industries, which often depend on inter-
mediaries to fund complex transactions and to facilitate the movement of physical goods.
Though stylized, we believe our model provides some insight to the strategic dynamics at
play in these applications.

Multipartite networks also offer insights regarding more complex economies by focusing
on local interactions among agents. They can be interpreted as a small neighborhood within
a larger economy where a few agents enjoy a dense set of relationships among each other.

14This behavioral disciplinary effect complements the use of budget constraints to solve a principal-agent
problem in an auction environment (Burkett, 2016; Ausubel et al., 2017).
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Under this paradigm, the non-strategic seller and the buyer can be interpreted as metaphors
for (not modeled) upstream and downstream markets, respectively.

Private Budget Constraints

Private information plays a central role in our model and in our experimental study. In-
troducing private information on top of an economic network, however, compounds the
environment’s complexity. We focus on the case of private budget constraints because they
arise naturally in many markets and they capture, sometimes in reduced form, many types of
market uncertainty. Beyond its literal interpretation as a hard financial constraint, a budget
constraint may also reflect an economic opportunity-cost of funds.

More abstractly, a reinterpreted private budget may capture behavioral constraints not
directly related to financial capacity. For example, it may capture a trader’s relative status
in the network. A trader with perceptions of weak ties to resale markets—represented by a
low realized “budget”—may be unwilling or unable to commit a large sum to a particular
interaction. In our economy, such low-budget traders tend to earn relatively large profits
conditional on trading successfully; however, they trade with relatively low frequency.

8 Conclusion
We study a decentralized market with financing risk and a multipartite network structure,
focusing on intermediary behavior. In our economy, (average) transaction prices rise with
successive transactions and intermediaries positioned closer to the buyer enjoy greater ex-
pected profits. We find strong evidence supporting these theoretical predictions in our labo-
ratory experiments. In the lab, we also identify a mild negative correlation between expected
profits and subjects’ trading budgets, conditional on budgets being relatively high. That is,
liquidity-rich traders tend to overbid. This trend is observed across rows. Tighter budget
constraints appear to mitigate this behavioral tendency. Thus, budgets have a disciplinary
role in markets, preventing excessively costly “trembles” or “errors.”

While the implication of private liquidity risk has been well-studied in centralized ex-
changes,15 the pricing and distributional implications of liquidity risk in decentralized mar-
kets is much less understood. Our analysis provides clear predictions, substantiated by
experimental data, concerning the compounding of risk in a decentralized market. We also
describe the strategies adopted by market participants in response to its presence. Analyzing

15See Foucault et al. (2013) for a recent survey.
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specific policy interventions, such as liquidity injections that target trading positions within
the market, offers a promising avenue for future research.

9 Proofs
Proof of Theorem 1. The proof is by induction. The base case for b∗1 follows immediately
from Che and Gale (1996). For r > 1, the expected resale value of the asset is ν∗

r−1. Applying
the argument from Che and Gale (1996) to a first-price auction with a common value of ν∗

r−1

confirms that b∗r(w) is an equilibrium strategy for intermediaries in row r. Their argument
applies as b∗r(w) is independent of the asset’s price history.

Proof of Corollary 1.

1. Since F (w)/f(w) is increasing, F (w)N−1
(
ν∗
r−1 − w

)
is concave and attains a maximum

at a unique value, which we call w∗
r . Thus, when w < w∗

r , Ur(w) = F (w)N−1(ν∗
r−1−w)

and (3) reduces to b∗r(w) = w. When w > w∗
r , Ur(w) = F (w∗

r)
N−1(ν∗

r−1 − w∗
r). Hence,

b∗r(w) = ν∗
r−1 −

F (w∗
r)

N−1(ν∗
r−1 − w∗

r)

F (w)N−1
.

From the first-order conditions that define w∗
r ,

F (w∗
r )

f(w∗
r )

= (N − 1)(ν∗
r−1 − w∗

r). Thus,
b∗

′
r (w) = F (w∗

r)
N−1(ν∗

r−1−w∗
r)(N − 1)f(w)F (w)−N = F (w∗

r )
N

f(w∗
r )

· f(w)
F (w)

· 1
F (w)N−1 . Therefore

b∗
′

r (w) is decreasing (i.e. b∗r is concave) in w and since b∗
′

r (w
∗
r) = 1, it follows that for

all w > w∗
r , b∗r(w) < w.

2. Let b̂w ∈ argmaxb∈[0,w] F (b)N−1
(
ν∗
r−2 − b

)
. We next establish a useful bound:

Ur−1(w)− Ur(w)

F (w)N−1
=

maxz∈[0,w] F (z)N−1(ν∗
r−2 − z)−maxz∈[0,w] F (z)N−1(ν∗

r−1 − z)

F (w)N−1

≤
F (b̂w)

N−1(ν∗
r−2 − b̂w)− F (b̂w)

N−1(ν∗
r−1 − b̂w)

F (w)N−1

=
F (b̂w)

N−1

F (w)N−1

[
ν∗
r−2 − ν∗

r−1

]
≤ ν∗

r−2 − ν∗
r−1.
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Using the preceding inequality,

ν∗
r−2 − ν∗

r−1 ≥
Ur−1(w)− Ur(w)

F (w)N−1

=
F (w)N−1

(
ν∗
r−2 − b∗r−1(w)

)
− F (w)N−1

(
ν∗
r−1 − b∗r(w)

)
F (w)N−1

.

Rearranging terms, ν∗
r−2− ν∗

r−1− b∗r−1(w)+ b∗r(w) ≤ ν∗
r−2− ν∗

r−1 =⇒ b∗r(w) ≤ b∗r−1(w).

Proof of Corollary 2.

1. By definition, b∗r(w) = ν∗
r−1 −

Ur(w)
F (w)N−1 ≤ ν∗

r−1. Since νr−1 is a constant value, taking
expectations of both sides gives

∫ w̄

0
b∗r(w)g(w)dw ≤ ν∗

r−1 =⇒ ν∗
r ≤ ν∗

r−1.

2. First consider the difference

b∗r(w)− b∗r+1(w) = ν∗
r−1 − ν∗

r −
(
Ur(w)− Ur+1(w)

F (w)N−1

)
.

To conclude that b∗r(w) − b∗r+1(w) ≤ ν∗
r−1 − ν∗

r it is sufficient to verify that Ur(w) ≥
Ur+1(w). To see this, recall that b∗r−1(w) ≥ b∗r(w). Hence, ν∗

r−1 ≥ ν∗
r . And so,

Ur(w) = maxb∈[0,w] F (b)N−1(ν∗
r−1 − b) ≥ maxb∈[0,w] F (b)N−1(ν∗

r − b) = Ur+1(w). There-
fore, b∗r(w)− b∗r+1(w) ≤ ν∗

r−1 − ν∗
r . Taking expectations gives ν∗

r − ν∗
r+1 ≤ ν∗

r−1 − ν∗
r as

required.

Proof of Corollary 3.

1. Follows directly from the proof of Corollary 1.

2. The expected payoff of a bidder of type w when following the strategy outline in
Theorem 1 is

Ur(w) = max
b∈[0,w]

F (b)N−1(νr−1 − b).

This expression is increasing in νr−1. Since νr < νr−1, Ur+1(w) ≤ Ur(w).
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