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Application
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Multi-class queueing systems widely used in operations research and management typically experience
ambiguity in real-world settings in the form of unknown parameters. For such systems, we incorporate
robustness in the control policies by applying a data-driven percentile optimization technique that allows for
(1) expressing a controller’s optimism level toward ambiguity, and (2) utilizing incoming data in order to learn
the true system parameters. We show that the optimal policy under the percentile optimization objective is
related to a closed-form priority-based policy. We also identify connections between the optimal percentile
optimization and cμ-like policies, which in turn enables us to establish effective but easy-to-use heuristics
for implementation in complex systems. Using real-world data collected from a leading U.S. hospital, we
also apply our approach to a hospital Emergency Department (ED) setting, and demonstrate the benefits
of using our framework for improving current patient flow policies.
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1. Introduction

Multi-class queueing systems require dynamic control in environments where servers must process

multiple types of jobs that vary with respect to holding costs, service rates, and other defining

characteristics. These types of queueing systems are widely used to model call centers, hospitals,

manufacturing lines, and service operations, where elements in the queue can be classified based on

differing levels of urgency, processing time, or other attributes. For example, in a hospital Emergency

Department (ED), patients are classified through a triage system, which differentiates them based

on their severity, medical complexity, or other conditions (see, e.g., Saghafian et al. (2012), Saghafian

et al. (2014), and the references therein). Hence, a natural way to analyze ED patient flow is via a

multi-class queueing system which separates patients based on their attributes.1

In such systems, when all parameters are known, many well-established policies like the cμ rule

have been shown to be optimal for optimizing the system’s performance (see, e.g., Van Mieghem

(1995) and Buyukkoc et al. (1985)). However, the assumption that all the model parameters are

perfectly known is often unrealistic, especially in settings with little supporting data, inaugural

system launch, or various other sources of ambiguity. A manager with incorrect parameter specifi-

cations may enforce policies that perform poorly, or may not have confidence in using a policy that

1 See, e.g., Saghafian et al. (2015) for a recent review of various models used to optimize patient flow and improve
ED operations.
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is obtained from a model with parameters that s/he does not fully trust. In an effort to combat such

mistrust, we consider a form of model ambiguity caused by the ambiguity in parameters termed

parameter ambiguity, and develop strategies that directly take these into account.

Traditionally, robust optimization protects against parameter ambiguity by utilizing a minimax

objective on an ambiguity set of parameters which are assumed to contain the true system param-

eters. However, this type of robustness (1) can result in overly pessimistic policies and (2) ignores

the significant potential to learn about the true system parameters from data acquired both before

and after system launch. Even when this pessimism is reduced by choosing tighter ambiguity sets,

the policies generated are not capable of learning from incoming data. To avoid these deficiencies,

we model parameter ambiguity via a Partially Observable Markov Decision Process (POMDP), an

extension of Markov Decision Processes (MDPs), which allows for (1) imperfect state knowledge,

and (2) learning in a Bayesian manner. A POMDP supports the distribution of the underlying

system parameters, known as the belief space, and updates this distribution to reflect received ob-

servations. This is ideal from a learning perspective; however, in a POMDP, the decision-maker is

assumed to have an initial prior belief which is often a subjective value, guided by scarce data,

error-prone expert opinion, intuition, or instinct. For these reasons, Bayesian critics distrust such

learning mechanisms, citing the unreliability of the prior specification in real-world applications2.

To incorporate robustness to such a prior belief (hence gaining robustness to parameter ambi-

guity), we integrate our POMDP model with a percentile optimization approach. Percentile op-

timization is traditionally used to avoid overly conservative policies by offering a certain level of

performance over a percentage of the ambiguity set (see, e.g., Delage and Mannor (2010) and Ne-

mirovski and Shapiro (2006)). We extend percentile optimization in order to incorporate robustness

to the belief about the model parameters rather than relying on a robustness generated directly

from the parameters themselves. In this way, we investigate strategies where the controller learns

the main model parameters (e.g., unknown service rates) while simultaneously controlling the un-

derlying system for superior performance, which contrasts with robust techniques that only focus

on parameter ambiguity sets. Thus, our framework allows generating policies that are robust to pa-

rameter ambiguities (considering a manager’s pessimism level), while simultaneously learning about

the true model from data/observation of the system’s performance in a Bayesian manner.

Our main contributions stem from extending the robust percentile optimization approach for in-

tegration with POMDPs. We find that the percentile optimization objective reduces to the minimax

and minimin objectives when the optimism level is set to its lowest and highest values, respectively

2 Though we mainly focus on a queueing model, our approach can be used for the general class of Bayesian decision-
making problems where the decision-maker faces ambiguity with respect to parameters that shape his/her prior (see
Corollaries 2 and 3 in Online Appendix B).
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and show that the optimal policies under these objectives are myopic cμ priority policies. Under-

standing the non-robust problem (which assumes a specified initial belief) proves to be essential in

finding robust policies where the belief is subject to ambiguity. We find that optimal robust policies

can be formed using specific non-robust policies via a geometric structure known as the convex float-

ing body. Therefore, to solve the robust percentile problem, we first solve the non-robust problem

that has a known initial belief. As the rate of observations increases, we find that a priority-based

policy that acts as as an extension of the well-known cμ rule becomes asymptotically optimal to the

non-robust problem. This policy, which we term Ecμ, is myopic and prioritizes the class with the

largest expected cμ value. The proposed Ecμ policy utilizes incoming data for learning (unlike the

traditional cμ rule), and is extremely simple to implement.

Due to its foundation in POMDPs, the robust framework we consider is computationally ambitious

and necessitates finding tractable methods for implementation. Using the analytical insights gained

from the connection between non-robust and robust policies, constraints via the convex floating

body, and the relation of Ecμ to the non-robust objective, we develop a heuristic for the robust

problem that (1) is highly scalable to large problem instances, and (2) shows strong performance

in extensive simulation experiments. We also develop analytical bounds to the non-robust problem

based on queueing systems with fully known parameters. These bounds are (1) tight under a variety

of conditions, and (2) can be used to more effectively compute optimal robust policies. Furthermore,

since the bounds are based on non-learning policies, they can be computed in an efficient manner.

Finally, we demonstrate the benefits of our approach in a real-world setting by utilizing data that

we have collected from a leading U.S. hospital, and by establishing the advantages of using our

framework in improving the current ED patient flow policies. Our percentile optimization framework

is the first study in the literature to yield data-driven policies for use in EDs that hedge against

parameter ambiguity. We find that highly congested EDs are well-suited to our percentile opti-

mization framework, especially in geographical areas with uncertain/unstable patient population

characteristics. Additionally, our approach explicitly avoids overly conservative policies that focus

only on the “worst-case” scenarios. As a result, we find that percentile optimization performs well

over a large spectrum of optimism/pessimism. In particular, our simulations calibrated with hospital

data suggest that, by using our approach, an ED manager can typically improve performance by

10%− 15% regardless of his/her disposition.

The rest of the paper is organized as follows. In Section 2, we provide a literature review of the

related studies. Section 3 introduces the non-robust continuous-time formulation of our problem,

which is uniformized into a discrete-time problem in Section 3.1, and lays the foundation for the

percentile framework developed in Section 3.2. We provide the majority of our analytical insights
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in Sections 4 and 5, where we establish optimal policies for the non-robust and robust formulations,

and identify upper/lower bound results. Section 6 introduces a heuristic to the robust problem

that is rooted in the analytical insights generated from Section 4. In Section 7, we present various

numerical experiments, discuss the application of our work for improving patient flow in EDs, and

use real-world data obtained from a leading U.S. hospital to evaluate the potential benefits of our

approach. Finally, in Section 8, we present our concluding remarks.
2. Literature Review

The literature surrounding multi-class queueing systems aims to analyze complex structures and

discover their optimal control policies such as the cμ policy and its variations (see, e.g., Buyukkoc

et al. (1985), Van Mieghem (1995), Saghafian and Veatch (2016), and the references therein). A com-

mon tool used to analyze and control such systems is Markov Decision Processes (MDPs). However

their use is limited to the unrealistic case where the decision-maker is assumed to completely know

all the parameters of the model (e.g. service rates). Most notably, this includes a perfect knowledge

assumption of the transition matrices that guide a system’s state transitions. This assumption can

be problematic in various practical applications in which service rates (or other parameters) are not

perfectly known. Mannor et al. (2007) and Nilim and El Ghaoui (2005) found that small changes

in such parameters can result in significant differences in decision-making strategies. However, a

synthesis of most studies on dynamic control in queueing systems indicates the use of tools that

heavily rely on a full knowledge about the system’s parameters. This is despite the fact that in

practice such parameters are typically unknown and often hard to estimate.

Robust methods applied to queueing models are largely involved with reducing the computational

burden of characterizing queueing metrics and policies. Su (2006) studies a fluid approximation

of a multi-class queueing model’s holding cost under a robust paradigm established by Bertsimas

et al. (2004) and Bertsimas and Sim (2004). Bertsimas et al. (2011) focuses on finding bounds for

performance measures through a method rooted in robust optimization, and studies the performance

of this method on tandem and multi-class single server queueing networks. Jain et al. (2010) finds

that a queueing network with control over traffic intensities has a simple threshold type policy under

a robust objective. For more recent studies on robust techniques used in queueing systems we refer to

Pedarsani et al. (2014), Bandi and Bertsimas (2012), Bandi et al. (2015), and the references therein.

This stream of research is mainly aimed at increasing tractability by focusing on “worst-case” (i.e.,

fully pessimistic) scenarios, and establishing related performance metrics. Unlike this stream, our

goal is to provide policies that (1) are more optimistic (i.e., less conservative), and (2) incorporate

learning from online system-run data/observations.
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Adding robustness when facing parameter ambiguity is a topic of significant interest to a vari-

ety of fields including economics, operations research/management, computer science, and decision

theory among others. Typically, robustness in MDPs is added using “minimax” (or robust optimiza-

tion) techniques, since this often results in tractable analyses as shown in Nilim and El Ghaoui

(2005), Iyengar (2005), and the references therein. Other studies such as Chen and Farias (2013)

deal with ambiguities by considering policies that offer guarantees on expected performance. Still

other methods of incorporating robustness include regret minimization (Lim et al. (2012)), rela-

tive entropy (Bagnell et al. (2001)), and martingale-based approaches (Hansen and Sargent (2007))

that provide less conservative, and hence, potentially more realistic alternatives to minimax tech-

niques. In particular, Delage and Mannor (2010) identify a robust approach applied to MDPs called

percentile optimization that effectively avoids over-conservatism (see also Nemirovski and Shapiro

(2006) and Wiesemann et al. (2013) for related studies). Instead of finding policies that are tailored

to work well in worst-case scenarios, the percentile optimization method finds policies that max-

imize performance with respect to a level of belief about the true parameters for a given level of

optimism.3

Chow et al. (2017) also utilize this type of robustness to develop risk-constrained policies for

MDPs. However, a significant deficit in current percentile optimization approaches is the lack of

ability to learn about the true parameters over time. Delage and Mannor (2007) work to fill this

gap via a similar formulation to our approach, and find second-order approximations to MDPs that

experience transition parameter uncertainty. However, the Dirichlet-type uncertainty assumed in

transition parameters does not fit our queueing problem, and in our work, we extend the percentile

optimization approach with respect to ambiguity in the initial belief. Thus, system data/observations

can be used for learning the true operational model, and as we will show, this ability to learn itself

adds a strong layer of robustness for controlling queueing systems (e.g., hospital patient flows) that

face parameter ambiguity. Learning to overcome ambiguities are also discussed in Bassamboo and

Zeevi (2009), which models a call center application using a data-driven technique. However, their

work (1) does not include any notion of robustness, and (2) focuses on near-optimal policies with

performance bounds. Our work differs in modeling approach by our joint focus on learning and

robustness, and in methodology by our contributions in characterizing the exact optimal policies.

Data-driven parameter learning has been incorporated in POMDPs: Ross et al. (2011) explores a

finite-horizon POMDP model that updates a posterior of its parameter belief in a Bayesian manner,

and Thrun (1999) investigates a POMDP in continuous action and state spaces that relies on par-

3 The percentile objective originally arose in single-period contexts (see, e.g., Charnes and Cooper (1959) and Prékopa
(1995)).
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ticle filtering techniques to determine the belief state. Unlike learning mechanisms, robust methods

are almost non-existent in POMDP frameworks. Osogami (2015) shows that traditional minimax

approaches with convex ambiguity sets can be extended to POMDPs while still retaining its struc-

tural features (such as convexity). In a new approach, Saghafian (2017) extends POMDPs to a new

class termed Ambiguous POMDPs (APOMDPs) which incorporates ambiguity in transition and

observation probabilities in a robust fashion. The robustness in Saghafian (2017) is achieved by con-

sidering α-maximin (α-MEU) preferences, and by incorporating the decision-maker’s temperament

toward model ambiguity. Different from the APOMDP approach of Saghafian (2017), we utilize a

percentile optimization objective to hedge against ambiguities.
3. The Multi-Class Queueing Control Problem with Parameter Ambiguity

We begin by considering a continuous time multi-class queueing control problem with preemption,

where a single4 server is responsible for serving n classes of customers over an infinite time horizon.

Unlike the traditional version of this model, we assume the controller does not know the main

parameters of the system, and hence, is faced with parameter ambiguity. We focus on the case

where the ambiguity is on service rates. To this end, we start by excluding dynamic arrivals to the

system, and instead consider a clearing system5 version of the problem. We relax this assumption

in Sections 7 and A.4 by allowing for dynamic arrivals, and find that many of our major results

are transferable from the clearing system. Our general approach can also be used for systems where

arrival rates or other parameters are ambiguous by modifying the underlying dynamic program to

include these components along with their learning mechanisms. However, this appears to increases

the problem’s complexity without providing additional insights.

With N = {1, . . . , n} denoting the set of customer classes, we assume each customer of class i∈N
accrues a cost ĉi > 0 for each unit of time spent in the system. Let ĉ= (ĉ1, ĉ2, . . . , ĉn) be the cost

vector, α ∈ (0,∞) the discount rate, and X(t) = (X1(t),X2(t), . . . ,Xn(t)) the vector of the number

of customers in the system, where Xi(t) is number of class i customers in the system at time t.

In line with many robust approaches, we begin by outlining an ambiguity set (i.e. a “cloud” of

models) that is assumed to include the true model. To this end, and for tractability, we assume

service times for each class are i.i.d. exponential6 random variables with unknown rates for each

4 For analytical tractability, we restrict our attention to single-server scenarios. Cases with multiple servers may
interfere with some of our main analytical results, notably the relation to multi-armed bandit problems and the
optimality of cμ-like policies. In Section 7, we investigate the robustness of the insights we gain via simulation
experiments.
5 Clearing systems are typically used to model busy periods by focusing on the customers/jobs already in the system.
The goal is then to clear the system with the minimum cost.
6 In Section 7 we relax the exponential distribution assumption. For instance, our data shows that service times in
EDs are close to log-normal. As we will show, our main insights and heuristic control procedures remain effective
even when the service times are not exponential.
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class. The true service rate for each class i ∈N is chosen by Nature at time t= 0, and lies within

ambiguity set7 Mi = {μ̂i,1, . . . , μ̂i,mi
}. We further assume that service times for different classes are

independent. For future notational convenience, we let Ji = {1, . . . ,mi}. Throughout the paper, we

assume mi ∈N, and μ̂i,j �= μ̂i,k for each i∈N and distinct j, k ∈Ji. Though the ambiguity sets Mi

are discrete, the continuous case can be approximated arbitrarily closely by increasing the number

of potential service rates mi to make the mesh size of Mi close to zero.

Over time, the controller can learn the true service rates by observing the process history which

includes all previous service durations, control actions, and observations of service completions.

For Markovian systems with incomplete information, it has been shown in Bertsekas (1995) that

the Bayesian belief on the unknown parameters with respect to the observed process history is

a sufficient statistic. We let B be the set of all such sufficient statistics, i.e., the set of possible

belief distributions on the system’s service parameters. Letting m=
∑

i∈N mi, each b ∈ B is an m-

dimensional vector of the form b= (b1,1, b1,2, . . . , b1,m1
, b2,1, . . . , bn,mn) with the condition that each

bi,j ≥ 0 and that
∑mi

j=1 bi,j = 1 for each i ∈ N . In this setting, if μ̂∗
i ∈ Mi is the true (unknown)

service rate for class i∈N , P (μ̂i,j = μ̂∗
i |b) = bi,j . We further assume that the observation made after

serving one class does not affect the belief about another. This is aligned with the assumption that

service time of one class is independent of that of another class.

To find policies that optimally prescribe which customer class the server should serve at any time,

given (1) the available information summarized in the current belief about the service rates, and (2)

the number of customers in each queue, it is known that one can restrict attention to policies that are

deterministic, stationary, and Markovian (see, e.g., Sondik (1971), Smallwood and Sondik (1973),

and Bertsekas (1995)). Consequently, an admissible non-anticipative policy π at each time t maps

the current belief and queue length information (information state) to the set of admissible actions:

π :X(t)×B→A(X(t)) = {a∈N :X(t)− ea ≥ 0}, where ea refers to an n-dimensional vector with a

one at the a-th position and zeros elsewhere. Our model described above is schematically illustrated

in Figure 1.

We let Π be the set of all admissible policies, and Xπ(t) = (Xπ
1 (t),X

π
2 (t), . . . ,X

π
n (t))∈Z

n
+ be the

number of customers in the system under policy π ∈Π at time t. In Appendix B, we show via Lemma

17 shows that idling a server is always suboptimal; hence, we consider only non-idling policies in

our analysis. For a given policy π, the expected discounted true cost the system experiences is

Eπ

[∫ ∞

t=0

e−αtĉXπ (t)
T
dt|X(0)

]
,

7 The general nature of our ambiguity sets enhances the flexibility of our framework. For ambiguity sets reminiscent
of other robust literature, we may choose build each Mi to surround some nominal value estimated from historical
data. This is in fact the strategy we use in our ED application of Section 7.1
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Figure 1 The server serves a class a customer with an unknown rate μ̂∗
a belonging to ambiguity set Ma.

given the true transition parameters chosen by Nature at time t = 0, where the notation “T”

represents transpose, and Eπ is expectation with respect to the probability measure induced by

π. However, since the controller does not know the true transition matrix (as service rates are

unknown), we are interested in the expected cost with respect to the controller’s belief:

Jπ (X(0),b(0)) = Eπ,b(0)

[∫ ∞

t=0

e−αtĉXπ (t)
T
dt|X (0)

]
, (1)

where Eπ,b(0) denotes expectation with respect to both the initial belief b(0) and π. We refer to

Jπ(X(0),b(0)) as the non-robust cost, since it assumes a perfectly assigned b(0) (which is inevitably

hard to quantify for any decision-maker who is faced with model ambiguity). The optimal non-

robust cost is then given by J (X(0),b(0)) = infπ∈Π Jπ (X(0),b(0)) . In what follows, we first use

uniformization to work with the discrete-time model of the non-robust scenario, where the initial

belief is given. We then adopt percentile optimization to enable the decision-maker/controller to

reduce his/her reliance on b(0), and thereby make robust decisions.

3.1. A Discrete-Time Non-Robust Framework

The continuous-time Markov chain {Xπ(t) : t≥ 0} can be converted to a discrete-time equivalent

using the well-known uniformization technique (Lippman (1975)). Following this method, we first

select a uniformized exponentially distributed random variable ξ with a rate ψ > maxi∈N ,j∈Ji
μ̂i,j

which serves as our rate of observations made as follows. If the server completes service to a customer

of class i a uniformized unit of time (i.e., at the end of each period), an observation indicating the

“successful” service to class i is recorded. Otherwise, if no service completion is observed within this

time, an observation is recorded indicating an “incomplete” service to class i. We note that this

uniformization rate ψ may be arbitrarily large so as to approximate continuous observations.

We let σ be the Bayesian learning operator such that σ (b, a, θ) is an m-dimensional vector

representing the updated belief after taking action a and receiving observation θ, when the prior

belief is b. Since there are only two outcomes for observations for any given action, we let “+” signify

an observed service completion (“success”) during the uniformized time period, and “−” represent an

incomplete service (“failure”) in that period. In this setting, we use a discrete-time dynamic program

with uniformized parameters μi,j = μ̂i,j/ψ. For notational convenience, we let E[μi|b] =
∑mi

j=1 μi,jbi,j
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be the expected service transition probability of class i∈N given belief b. In this way, the Bayesian

learning operator updates belief b with components bi,j to belief b̄ = σ (b, a, θ) with components

b̄i,j = σ (b, a, θ)i,j , where a, i∈N , j ∈Ji, and

σ (b, a,+)i,j =

{
μa,jba,j∑ma

k=1
μa,kba,k

=
μa,jba,j
E[μa|b] : i= a

bi,j : i �= a
(2)

for a successful service observation, and

σ (b, a,−)i,j =

{
(1−μa,j)ba,j

∑ma
k=1(1−μa,k)ba,k

=
(1−μa,j)ba,j
(1−E[μa|b]) : i= a

bi,j : i �= a
(3)

for a failed service observation. Equations (2) and (3) are established due to the fact that under

realized parameter μa,j , the probability of successful service in a given period is μa,j and probability

of incomplete service is (1−μa,j). With this, and defining a discrete-time discounting factor β = ψ
ψ+α

and instantaneous cost cXT = ĉXT

ψ+α
, we can identify the non-robust optimal policy and the associated

cost via the dynamic program

Vt+1 (X,b) = cXT +β

[
min

a∈A(X)

{
E[μa|b]Vt (X− ea, σ (b, a,+))

+ (1−E[μa|b])Vt (X, σ (b, a,−))
}]

, (4)

with the terminal condition V0 (X,b) = cXT. In this setting, taking the limit as t → ∞, we de-

fine V(X,b) = limt→∞Vt (X,b), and note that V(X,b) = infπ∈Π Jπ(X,b) (see Lemma 11 in Online

Appendix B for a rigorous treatment), where Jπ(X,b) is defined in (1). To account for evaluating

non-optimal policies, we let Vπ
t+1 (X,b) be a value function similar to that of the dynamic pro-

gram (4) with minimization operator replaced by serving the class prescribed by policy π. Likewise,

we let Vπ (X,b) = limt→∞Vπ
t (X,b) be the infinite-horizon dynamic program value function under

policy π.

3.2. Gaining Robustness via Percentile Optimization

Since the controller is facing ambiguity with respect to the true model, s/he may distrust his/her

initial prior on the cloud of models, b(0). The specification of b(0) is subject to model sensitivities,

especially in applications in which there is little or highly variable data to perfectly quantify it.

Often, the selection of a prior is a process that requires sussing out probabilities and parameter

values from experts in the field, which can be a highly subjective and inaccurate task8. In order to

achieve robustness to the selection of the initial prior, it is necessary to investigate policies that are

not endowed with any particular initial prior, but rather can initialize with any desired prior. We

refer to such policies that lie within the set Πh = {π ∈Π|b(0)∈B} as prior-flexible policies.

8 This is indeed a general criticism to Bayesianism and goes well beyond the queueing setting of this paper.
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In traditional robust optimization, one would choose a policy assuming that Nature, being an

antagonistic character, picks the worst-case initial belief vector b(0) for a chosen policy. Hence, the

traditional minimax robust objective can be defined by first considering the worst-case cost under

a policy πh ∈Πh :

Rπh (X) =max
b∈B

Vπh (X,b) .

The cost under the minimax robust objective is then R(X) = infπh∈Πh
Rπh (X). In this setting, the

controller assumes that Nature will pick the transition parameters that result in the maximum cost

for any given policy, and chooses a policy that minimizes the cost of this worst-case outcome.

In sharp contrast to this type of robustness, which typically yields overly pessimistic control

policies, is the overly optimistic minimin objective defined by:

Nπh (X) =min
b∈B

Vπh (X,b) ,

and N(X) = infπh∈Πh
Nπh (X), under which the controller chooses a policy assuming Nature picks

the transition parameters resulting in the best-case cost for any given policy. In what follows, we

first show that both minimax and minimin optimal policies are within the well-known class of cμ

policies. Thus, they (1) are fully myopic, and (2) have very simple forms.

Proposition 1 (Minimax/Minimin cμ Optimal Policies). At any state (X,b), optimal poli-

cies to the minimax and minimin objectives serve classes argmaxa∈A(X) (minj∈Ja caμa,j) and

argmaxa∈A(X) (maxj∈Ja caμa,j), respectively.

Proposition 1 establishes that optimal policies under both minimax and minimin objectives are

myopic priority disciplines (known as the cμ rule) with respect to the smallest and largest transition

rates within the ambiguity set for each class, respectively. However, it should be noted that such

policies (1) ignore the potential for learning from the system behavior, and (2) only consider the

potentially unrealistic extreme best and worst-case scenarios and can perform poorly in real-world

applications. To address this deficit, we next investigate how the percentile optimization approach

provides a balancing alternative between these two extreme strategies, while incorporating learning

about the hidden probabilities associated with the true transition parameters (i.e., service rates).

To this end, for a given ε∈ [0,1], we define the percentile optimization program:

Yπh(X, ε) = inf
yε∈[Nπh (X),Rπh (X)]

yε (5)

s.t. PB (Vπh (X,B)≤ yε)≥ 1− ε, (6)

and let Y(X, ε) = infπh∈Πh
Yπh (X, ε) represent the optimal percentile objective. In (5), we impose

that Nπh (X) ≤ yε ≤ Rπh (X) so that the value of the objective is within the most optimistic and

pessimistic values attainable for any given belief in accordance with the policy, hence enforcing
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“realizable” expected costs. The probability operator, PB, in (6) is defined with respect to a speci-

fied probability density function over the prior belief space9, where B is a random variable whose

realization is b. The percentile optimization program (5)-(6) allows us to find a chance-constrained

policy: it emphasizes policy performance over a portion of the belief space. We thus term the policy

that is the solution under the optimal percentile objective as (1− ε)% chance-constrained policy.

Intuitively, the smaller the ε, the more protection from poor parameter settings since the proportion

of the belief space that performs worse than yε becomes smaller.

It is important to note that the percentile objective acts as a bridge between non-robust and

robust objectives; expressing a manager’s optimism level is a core ambition of this type of robustness.

For instance, the chance-constrained policy reduces to the minimax and minimin policies when ε is

0 and 1, respectively.

Proposition 2 (Percentile/Minimax/Minimin Relationship). The percentile objective,

minimax, and minimin policies share the following relation:

(i) If ε= 0 and PB (B= b)> 0 for all b∈B, then the optimal policy and cost under both minimax

and percentile objectives are the same.

(ii) If ε= 1, then the optimal policy and cost under the minimin and percentile objectives are the

same.

The additional condition PB (B= b)> 0 for all b ∈ B in part (i) is necessary, since PB with zeros

allows percentile objective to “ignore” certain portions of the belief space while still satisfying con-

straint (6). For example, if PB is the degenerate distribution with respect to a point b, Y(X,0) =

V(X,b).
4. Structure of Optimal Policies under the Percentile Objective

Analyzing program (5)-(6) is inherently complex both analytically and computationally. However,

we find that the solution to this program is linked to solving the non-robust problem. Hence, we

first consider the solution of the dynamic program (4), identify important characteristics of these

solutions over the belief space, establish the link between non-robust and robust policies, and finally

work to characterize optimal percentile policies. In Section 6, we develop an easy-to-use heuristic

based on these insights to facilitate tractable solutions.

As the observation rate increases, tending toward continuous observations, the non-robust problem

can be transferred to a multi-armed bandit (MAB) problem by noting that (1) under any action,

only the belief about transition parameters and number of customers in the served class (the “arms”

9 One may criticize the use of the percentile objective due to the potential ambiguity of PB; however, it should be
noted that this is a second-order distribution, and perturbations in PB result in very similar convex floating bodies,
which is the geometric structure investigated in Section 4 that generates our optimal robust policies.
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of a MAB) change, and (2) the “discounted cost” can be reinterpreted as “discounted savings” due

to our clearing system environment (for further discussion, see Lemma 3 in Online Appendix B).

MAB problems are typically solved by indexing policies related to the expected savings in cost

experienced through exclusively serving one class over time.

To take advantage of the above-mentioned connection, we term the myopic policy that serves

the class a ∈ A(X) with largest value of caE[μa|b] the “Ecμ” policy. Thus, we denote πcμ that

serves argmaxa∈A(X(t)) caE[μa|b(t)] as the Ecμ policy. This policy can be viewed as an extension

of the traditional cμ policy (often seen in the literature surrounding control of multi-class queueing

systems) for queueing systems with ambiguous parameters.10 The expectation operator in this policy

dynamically combines all the possible cμ values for each class based on the belief at time t. In

the following theorem, we show that the Ecμ policy is asymptotically optimal for the non-robust

problem as the observation rate increases.

Theorem 1 (Ecμ Asymptotically Optimality). The Ecμ policy πcμ is asymptotically optimal

for the non-robust problem: limψ→∞Vπcμ (X,b) = limψ→∞V(X,b) for all X∈Z
n
+ and b∈B.

Theorem 1 is surprising in its simplicity since problems based on POMDP formulations typically

do not yield closed-form results. In contrast to the usual complexities, the asymptotic optimality

of the Ecμ policy implies that the only information necessary to make decisions is the expected

transition rates among non-empty queues. Therefore, queue lengths are essentially irrelevant to

the decision-maker. Rather, the Ecμ policy features a momentum property; if the current action a

prescribed by the policy yields enough successes so that caE[μa|b] does not fall below the threshold

defined by câE[μâ|b] of the next highest available class â, the Ecμ policy will continue to serve class

a regardless of the state of other classes. In turn, this means that the policy will not attempt to serve

a class with smaller câE[μâ|b] until other classes with larger values have experienced a sufficient

number of service failures, or have cleared their queue. This property may run counter-intuitive to

the exploration-minded individual; even if a class has the potential to be endowed with a very large

caμa,j value (under the realization of system parameters), this potential is only rated on the basis

of its contribution to the expected service rate.

Another important property of the Ecμ policy is that under mild conditions, Vπcμ (X,b) is

piecewise-linear over the belief space (excluding beliefs near edges and faces of B).11

10 Argon and Ziya (2009) demonstrate the optimality of a similar policy in an average-cost non-learning queueing
environment when service rates are known, but customer class is not fully observed.
11 An infinite horizon POMDP value function is not always guaranteed to be piecewise-linear (see, e.g. White and
Harrington (1980)).
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Proposition 3 (Piecewise-Linearity of the Approximate Non-Robust Value Function).

Let B′ be any closed subset of B such that for any b ∈ B′, bi,j > 0 for all i ∈ N , j ∈ Ji. If

minj∈Ji
ciμi,j �= minj∈Jk

ckμk,j for any distinct pair i, k ∈ N , then Vπcμ (X,b) is piecewise-linear

on B′.

This result is related to two facts: (i) for any given initial prior b∈B′ (and X∈Z
n
+), the Ecμ policy

is unique, unless b lies on the break-points of the piecewise-linear function Vπcμ (X,b) (see Lemma 7

and 3 in Online Appendix B), and (ii) policies can be evaluated as linear functions of the belief

in any POMDP. Therefore, with respect to closed, non-zero portions of the belief space, the value

function Vπcμ (X,b) is differentiable (except at breakpoints). As we will show in Theorem 2, the

differentiability of the value function strongly enhances the relationship between optimal policies of

the non-robust problem and those under the robust percentile optimization program (5)-(6). Thus,

in identifying an asymptotically optimal policy that exhibits this property enables us to solve the

robust percentile optimization program in an efficient way. This is an important insight to our search

for robust chance-constrained policies especially since, as Zhang (2010) states, there are no known

conditions over which a POMDP value function is differentiable on its entire belief space.

To the purpose of finding robust chance-constrained policies, we introduce the following set of

policies. Fix the initial X, and let Kb =
{
π1
b, π

2
b, . . . , π

k
b

}
be any finite set of optimal policies to the

non-robust problem when the initial prior is b, and p= (p1, p2, . . . , pk) be an associated distribution

such that
∑k

i=1 pi = 1. We define a policy πp
Kb

to be a randomized policy, if at time 0, an element of

Kb, πib, is chosen with probability pi, which will dictate all current and future decisions.12

Interestingly, we find that there exists a randomized policy that forms an optimal solution to the

robust percentile problem. This means that there exists an optimal robust policy that randomizes

between optimal non-robust policies obtained for a single belief point b∈B. Furthermore, we shed

light on conditions (associated with the differentiability of V(X,b) with respect to the belief space)

such that a deterministic non-robust policy is optimal even for the robust percentile problem.

Theorem 2 (Chance-Constrained Policy). For any given ε ≥ 0, there exists a b∗ ∈ B and a

distribution p∗ forming a randomized policy πp∗
Kb∗ that is optimal under the percentile optimization

program (5)-(6)13: Yπ
p∗
Kb∗ (X, ε) = Y (X, ε) = V(X,b∗). Furthermore, if Vπb(X,b) is differentiable

at b∗, then Kb∗ consists of a single policy, and hence, πp∗
Kb∗ is deterministic.

The above result significantly reduces the complexity of the search for optimal robust policies.

Importantly, it implies that we can combine policies associated with the function V(X,b∗) to find

12 For these randomized policies, we disallow policies that are not picked at time zero for the purpose of targeting
specific contours of the value function.
13 For notational convenience, we suppress the dependency of p∗ and b∗ on ε.
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chance-constrained policies. In this way, we no longer need to look at the general space of policies,

but rather can focus on the class of non-robust optimal policies. Moreover, Proposition 3 shows that

the differentiability condition of Theorem 2 can be met by a surface that converges to the value

function. If b∗ lies on a linear segment of the value function that is not a breakpoint, Kb∗ can be

composed of a single policy yielding a deterministic chance-constrained policy. Hence, under this

assumption, one need not be concerned with finding p∗.

However, Theorem 2 leaves us with an important question: what belief, b∗, should be used to form

the chance-constrained policy πp∗
Kb∗ for a given percentile problem? If such a b∗ is characterized, then

the solution to the percentile problem can easily be found by a randomization of non-robust policies

associated with b∗. The answer to this question turns out to be closely related to the geometrical

concept of the convex floating body first discussed by Dupin (1822). In particular, we utilize the

notion of the convex floating body studied by Schutt and Werner (1990) to characterize b∗.

Definition 1 (Convex Floating Body). Let Wε = {(w,w)∈R
m×R : PB (BwT ≥w)≤ ε} be

the set of all half spaces that “cut off” ε or less volume of the belief space B with respect to PB.

An ε-based convex floating body on B is Lε =
⋂

{w,w}∈Wε
{b∈B : bwT ≤w} . We let δLε be the

boundary of Lε14.
Based on the above definition, a convex floating body is the region left from hyperplanes “cutting

off” a specified volume (ε) from an object. For every b∈ δLε, there exists a hyperplane that divides

B into two pieces, one which has volume less than or equal to ε. Figure 2 illustrates the convex

floating body of a sphere with uniform density, which is either the empty set or another sphere. We

study convex floating bodies with respect to the density measure PB on the belief space of our priors

to characterize b∗, and thereby find optimal chance-constrained policies as discussed in Theorem 2.

For the purposes of characterizing b∗, it is important that Lε is non-empty. Fortunately, Fresen

(2013) states that when PB is a log-concave probability distribution, Lε exists so long as ε≤ e−1.

Hence, for many robust applications which tend toward pessimism (where ε is small), under common

distributions, the convex floating body is guaranteed to exist. If Lε is nonempty, we find that b∗

(defined in Theorem 2) is found at the largest value of the non-robust problem on the boundary of

the convex floating body.

Proposition 4 (Characterizing Kb∗). If Lε is nonempty, then b∗ = argmaxb∈δLε
V(X,b),

where b∗ satisfies Y(X, ε) =V(X,b∗) .

Interestingly, Proposition 4 relates percentile optimization to a minimax objective: one can search

for a worst-case belief within a specified set. Since V(X,b) is concave in b (by the convexity results

14 We note that if Lε is nonempty, δLε always exists since closed, convex, and compact sets are equal to the convex
hull of their boundary.
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Figure 2 A convex floating body Lε when PB has uniform density within the circle and is zero elsewhere. It is
generated from the intersection of halfspaces (w,w) ∈Wε, and the striped area must contain less than
or equal to ε volume. (n= 2,m1,m2 = 2)

of Sondik (1971) and Smallwood and Sondik (1973)), if δLε is easily characterized, we can apply

gradient-based optimization to solve the problem rather than evaluating the entire surface which

is computationally intractable. Although Theorem 2 states that Kb∗ is a singleton when the value

function is differentiable at b∗, the differentiability is not always guaranteed. To this end, in the

proof of Proposition 4 (see Online Appendix B), we characterize p∗. We find that the distribution

p∗ such that the contour {b∈B|Vπ
p∗
Kb∗ (X,b) =V(X,b∗)} is a subgradient hyperplane to Lε.

In general, since non-robust policies are only partially characterized (they converge to Ecμ policies

asymptotically), it is important to connect the Ecμ policies to the percentile optimization objective.

The following corollary is similar to Proposition 4 and shows that there exists a finite randomization

of Ecμ policies that are asymptotically optimal as ψ→∞ to the percentile objective.

Corollary 1 (Robust Ecμ Optimality). If Lε is nonempty, then there exists a policy π that is

a finite randomization of Ecμ policies such that Yπ(X, ε)−Y(X, ε)≤Vπcμ(X, b̂)−V(X,b∗), where

b̂= argmaxb∈δLε
Vπcμ(X,b) and b∗ is defined in Theorem 2.

This corollary holds despite the fact that Vπcμ(X,b) is not guaranteed to be concave in b. In fact, if

it is concave in b, the randomized policy π can be directly built from non-robust policies. However,

if Vπcμ(X,b) is not concave in b, we can still form the appropriate randomized policy satisfying

Corollary 1 via a randomization of policies that satisfy minimax solutions within the set of Ecμ

policies on the boundary of the convex floating body, namely minb1∈Bmaxb2∈δLε
V
π
cμ

b1 (X,b2).

With respect to optimal solutions to the percentile objective, additional results can further confine

Kb∗ (of Theorem 2) by noting that b∗ must lie near the extreme belief state with worst-case

transition parameters. We denote this “worst-case” belief state by b0, and note that it is composed

of components

b0i,j =

{
1 : if μi,j =mink∈Ji

μi,k,
0 : otherwise. (7)
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It can be shown (see the proof of Proposition 5) that for any prior-flexible policy, b0 is the worst-case

(most expensive) belief state for the system. To further characterize b∗, we define the concept of

visibility (seen in geometry literature but repurposed for our needs).

Definition 2 (Visibility). A belief point b∈Lε is said to be visible from a reference belief b1 ∈B
if {b2 ∈B : b2 = ηb+(1− η)b1, η ∈ [0,1]}⋂Lε = b.

As demonstrated in Figure 3, a belief b in the convex floating body is visible from a reference

belief b1 if, on the line segment connecting these points, only b lies within the convex floating body.

This implies that if the reference belief point b1 is distinct from b, and b is visible from b1, then

b must lie in the boundary (b ∈ δLε). However, not every point on δLε is visible from a reference

point b1. In the following Proposition, we show that the belief b∗ (introduced in Theorem 2) must

be visible from the worst-case belief state b0.

Proposition 5 (Visibility of b∗). If Lε is nonempty, then there exists a b∗ visible from the worst-

case belief b0.

Proposition 5 significantly helps us find b∗ (of Theorem 2): we only need to search part of δLε
which is visible from b0. Proposition 5 also can facilitate establishing effective heuristics which

circumvent the calculation of the non-robust problem. For instance, Figure 4 demonstrates the

implications of Proposition 5 for a uniform type PB: b∗ lies somewhere on the dashed line.

The set Lε (and hence δLε) typically needs to be estimated by a polytope since most distributions

result in convex floating bodies with no easy closed-form representation. However, upper and lower

bounds to the percentile objective can be found by optimizing over sets (in the sense of Proposition 4)

that contain or are contained by Lε which converge to Y(X, ε) as the sets converge to Lε. The details

of this are expressed in the proof of Lemma 9 in Online Appendix B. Additionally, with certain PB,

the problem of estimating Lε may be altogether circumvented. This is specifically the case when PB

has the form of a spherical-type distribution defined below.

Definition 3 (Spherical Distribution). We say PB is a spherical distribution centered at b1,

if, for any ε∈R
+, Lε = {b2 ∈B : ‖b2 −b1‖ ≤ d} for some d∈R

+, where ‖·‖ is the l2-norm.

Remark 1. In cases with spherical distributions, searching for b∗ is simplified even in large

dimensional spaces, since we have the expression for δLε and bounds based on the visibility from

b0. Thus, the problem is reduced to searching for the maximum of a concave function on a sphere.

Another distribution that features an easily expressible convex floating body is a special case

when PB is uniform. If n= 2,m1 = 2,m2 = 2, and PB is uniform, a small modification of a result by
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Figure 3 Belief points b2 and b3 are not visible from reference belief b1, whereas b4 is visible from reference
belief b1 (n= 2,m1,m2 = 2).

Calgar (2010) shows that δLε is given by a curve defined in four quadrants as:

b2,1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b1,1−1+0.5ε

b1,1−1
: 0.5≤ b1,1 ≤ 1− ε, 0.5≤ b2,1 ≤ 1− ε

b1,1−0.5ε

b1,1
: ε≤ b1,1 ≤ 0.5, 0.5≤ b2,1 ≤ 1− ε

0.5ε
b1,1

: ε≤ b1,1 ≤ 0.5, ε≤ b2,1 ≤ 0.5

− 0.5ε
b1,1−1

: 0.5≤ b1,1 ≤ 1− ε, ε≤ b2,1 ≤ 0.5

for 0 < ε < 0.5 as shown in Figure 4. If we evaluate V(X,b) along the quadrant visible to b0,

belief b∗ is revealed as the maximum on this curve. We use this uniform case and various spherical

cases in Section 7 to show that since our approach includes learning, it provides robustness to the

specification of PB. Therefore, even though exact closed-form representations of Lε in general are

rare, polytope or spherical approximations are sufficient for the purposes of percentile optimization

in our framework.
5. Asymptotically Tight Bounds

Although we have characterized the optimal policies of the non-robust and percentile problems,

evaluating the non-robust value function V(X,b) is still a computationally complex problem (see,

e.g., Littman et al. (1998), Mundhenk et al. (2000), and Papadimitriou and Tsitsiklis (1987) for an

in-depth discussion regarding the complexity of POMDP programs). If the value function V(X,b)

and the convex floating body’s boundary δLε are known, the solution to the percentile optimization

is easily characterizable (Theorem 2, Proposition 4, and Proposition 5). Therefore, we provide

computationally tractable bounds to the non-robust problem that can be evaluated in closed-form

to facilitate the computability of chance-constrained policies.

The bounds we form are based on the performance of (1) queues under no model ambiguity with

fixed rate parameters equal to E[μi|b], and (2) following a particular server allocation priority rule

based on the initial parameter belief. These imply that our bounds rely only on the valuation of

fixed priority-based policies that do not change with dynamic observations, significantly reducing

the computational complexity of the problem.
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Figure 4 On the left, convex floating bodies Lε for ε= 0.05,0.15,0.25 with n= 2,m1,m2 = 2, and uniform PB.
To be visible from b0, belief b∗ associated with Proposition 4 must lie on the dashed lines assuming
μ1,1 <μ1,2 and μ2,1 <μ2,2 (Proposition 5). On the right, V((10,10),b) is evaluated on these boundaries
when μ1,1 = 0.1, μ1,2 = 0.2, μ2,1 = 0.05, μ2,2 = 0.25. Belief b∗ lies at the peak of these curves.

For a given belief b̂ ∈ B, consider a counterpart system identical to our original setting with the

exception of the ambiguity sets being M̂i =
{
E[μi|b̂]

}
(analogous to the original ambiguity sets

Mi). That is, the counterpart queueing system has fully known service rates that are calculated

based on taking an expectation of service rates in Mi over belief b̂. Obviously, the optimal policy

for this system is the traditional cμ rule, since all of its parameters are fully known. Let πb̂ denote

this cμ rule and V̄π
b̂(X, b̂) be the associated infinite-horizon cost of the counterpart system under

πb̂. It is important to emphasize that πb̂ exhaustively serves class argmaxa∈A(X) caE[μa|b̂] until no

customer of that class remains in the system, and acts only as a function of the queue state, not of

belief, even when πb̂ is implemented in the original system. When πb̂ is implemented in the original

system, we denote the infinite-horizon cost by Vπ
b̂(X, b̂). Using the counterpart system’s cost and

its associated policy, we can bound the non-robust cost (which is needed to calculate the robust

cost; see Theorem 2 and Proposition 4) using the following proposition.

Proposition 6 (Asymptotically Tight Bounds). For any state (X, b̂), the non-robust cost

V(X, b̂) is bounded as V̄π
b̂(X, b̂)≤V(X, b̂)≤Vπ

b̂(X, b̂). Furthermore:

(i) The gap between the upper and lower bound costs decrease to zero as queue length Xi increases

to infinity, where i= argmaxa∈A(X) caE[μa|b̂].
(ii) The gap between the upper and lower bound costs monotonically decrease to zero as Var[μi|b̂]

decrease to zero (for all i∈N ).

Both the upper and lower bounds of Proposition 6 are easily calculable (see Online Appendix B).

Furthermore, under the conditions above, these bounds become arbitrarily close approximations,

which adds computational tractability to the problem as well as analytical insight to the relationship

between our non-robust and traditional cμ policies. In particular, part (ii) of Proposition 6 supports

the intuition that gathering more data on unknown service parameters can provide more accurate
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bound information. Part (i) of Proposition 6 provides conditions under which the myopic, non-

learning policy’s cost converges to that of the optimal policy.

Remark 2. Since the percentile objective relies on the computation of the non-robust problem,

the bound results can be easily applied to the percentile formulation as well. For instance, one can

refine the search for argmaxb∈δLε
V(X,b) as in Proposition 4: if the upper bound for a b ∈ δLε is

less than the lower bound for b′ ∈ δLε, b must not be the belief point b∗. Since most infinite-horizon

POMDPs are calculated by finite-horizon approximations, a second application of the bounds is to

use them as the terminal cost used in the finite-horizon dynamic program. That is, when evaluating

the finite-horizon approximation, one can replace V0(X,b) by lower and upper bounds V̄π
b̂(X, b̂)

and Vπb (X,b) , respectively. This can provide very tight bounds on the POMDP, since after a

certain number of “learning periods,” where the POMDP is explicitly evaluated, the controller might

have collected enough information to have enough confidence in the true transition parameters.
6. An Analytically-Rooted Heuristic Policy

Chance-constrained policies are inherently difficult to calculate, even given the analytical results

established in the previous section. To circumvent complexity arising from (1) the PSPACE-hard

problem of evaluating a POMDP over a belief space with high dimensionality, and (2) finding the

shape of the convex floating body which requires high-dimensional polytope approximations, we now

introduce an effective heuristic policy. This heuristic policy operates by simply choosing the Ecμ

policy associated with the belief point on the convex floating body’s boundary δLε that minimizes

the distance from b0 (the worst-case parameter settings for each class characterized in (7)). This is

typically an easy-to-perform task, especially in the cases of uniform and spherical type distributions

on the belief space, allowing for managers to benefit from our approach without requiring demanding

computations. Moreover, as we will show in Section 7, this heuristic performs extremely well both

on randomly generated data and on real-world data that we have collected from a leading U.S.

hospital.

We term the Ecμ policy with expectation taken based on belief point argminb∈δLε
‖b0 −b‖ ,

where ‖·‖ is the l2-norm, as the (1− ε)% Ecμ heuristic policy. This heuristic policy takes advantage

of three main structural results of the chance-constrained policy (that we established in the previous

section), while providing a much simpler version of it:

(1) It assumes that the true optimal policies of the non-robust problem are Ecμ, a fact supported

by Theorem 1 which shows the asymptotic relationship of the optimal policies to Ecμ.

(2) It locates belief argminb∈δLε
‖b0 −b‖ to be near b∗ (of Theorem 2) based on Proposition 4. The

worst-case (most expensive) belief state is b0, and through the proof of Proposition 5 (see Online
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Appendix B) the value function is non-increasing in λ with respect to belief λb+(1−λ)b0 for

λ∈ [0,1]. Thus, argmaxb∈δLε
V(X,b) is expected to be near b0.15

(3) It takes advantage of the fact that argminb∈δLε
‖b0 −b‖ satisfies Proposition 5 (since this

belief is visible from b0).
7. Numerical Experiments

We now perform various numerical experiments in order to (1) identify the advantages of chance-

constrained policies in a variety of environments under model ambiguity, (2) demonstrate the sensi-

tivities of the underlying queueing models, (3) study the effectiveness of the proposed Ecμ heuristic

in mimicking the optimal chance-constrained policies, and (4) demonstrate the implications of our

results in real-world applications. To pursue these goals, we present our analyses in four parts: we (1)

investigate how our policies perform over a large parameter suite but in a relatively small queueing

system, (2) evaluate our proposed heuristic alongside percentile, minimax, and minimin policies in a

larger system, (3) demonstrate the gap between the Ecμ and optimal (non-robust) policies, and (4)

apply the Ecμ heuristic to a hospital Emergency Department (ED) setting using real-world data,

and discuss its significant implications on improving the current patient flow policies.

To better understand the relative performance of our robust percentile policies, we start by

considering a large parameter suite including over 1,000 parameter settings in an n= 2,m1 = 2, and

m2 = 2 setting with four different PB distributions at their 95% chance-constrained policy. We name

these PB distributions f1, f2, f3 and f4 respectively: f1, f2, and f3 are truncated multivariate normal

distributions with means μ1 = (0.5,0.5) , μ2 = (0.4,0.4) , μ3 = (0.6,0.6) and covariance matrices

Σ1 = ( 1.5 0.0
0.0 1.5 ) , Σ2 = ( 0.5 0.0

0.0 0.5 ) , and Σ3 = ( 0.5 0.0
0.0 0.5 ) respectively. Finally, f4 is the uniform distribution.

We include two non-learning robust policies (minimin and minimax) as benchmarks for the per-

formance of our robust percentile policies and compare the policies by evaluating their total cost

when each model (i.e., parameter configuration) is equally likely. That is, we assume that the true

(but unknown) prior of our system is b̄ = (0.5,0.5,0.5,0.5), and we evaluate the total cost under

95% chance-constrained, minimax, and minimin policies. Furthermore, we assume c1 = c2. In every

problem instance, we assume μ2,1 <μ1,1 and μ1,2 <μ2,2 so that the policy is not uniform throughout

the belief space, which provides incentive for gaining additional knowledge. Further detail on this

parameter suite is presented in Online Appendix A.1.

We start by investigating whether or not our robust percentile policies overcome the deficien-

cies we observe for non-robust policies regarding their sensitivity to the selection of initial prior

(Observations 8, 9, and 10 established in Online Appendix A.2). Our results presented in Online

15 This does not imply that argmaxb∈δLε
V(X,b) = argminb∈δLε

‖b0 −b‖. V(X,b) is only assured to be non-
increasing on line segments connected to b0.
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Appendix A.5 provide a positive response, showing that chance-constrained policies overcome these

issues. We next compare our proposed policies with other non-learning robust policies (minimax and

minimin). In Table 1, we present the results of this comparison expressed by the average (among all

models) optimality gap percentage under various policies. The optimality gap percentage for policy

π at b is defined as
Vπ(X,b)−V(X,b)

V(X,b)
%.

From Table 1, we observe that on average, our proposed chance-constrained policies perform

much better than the other non-learning policies. Since there is equal chance of every parameter

configuration, non-learning policies serve the wrong class for a realized set of parameters 50% of the

time, which results in poor performance.

Comparing the chance-constraint policies under f1, f2, f3, and f4 in Table 1 reveals yet another

interesting insight: they exhibit similar performance. The reason behind this is three-fold: (1) as

a property of Proposition 5, since we used 95% chance-constrained policies, each b∗ tends to be

near b0, (2) even though the distributions f1, f2, f3, and f4 are different (e.g., they have differing

covariance structures and are centered at different beliefs), their convex floating bodies are quite

similar, and (3) the chance-constrained policies we propose exhibit learning. Hence, we can make

the following:
Observation 1 (Sensitivity). The performance of chance-constrained policies is not sensitive to

the choice of PB.
In Section 6, we introduced the Ecμ heuristic as an easy-to-implement policy that mimics the

performance of robust optimal chance-constrained policies. To demonstrate the validity of the first

assumption underlying this heuristic – that the optimal policies of the non-robust problem are Ecμ –

in Figure 5 we depict the percent optimality gap of the Ecμ heuristic policy by comparing its cost

to that of the optimal non-robust policies in a situation where ψ is small. Since we know that

Ecμ becomes optimal as ψ becomes large (Theorem 1), this poses a “worst-case” scenario for the

performance of the Ecμ policies. From Figure 5, we can make the following:

Observation 2 (Near Optimality of Ecμ). Even when ψ is small, the Ecμ performance is close

to the non-robust optimal policy, especially when the system is highly congested.

Observation 2 confirms that the myopic Ecμ policy provides us with a good approximation of the

optimal POMDP value function (as we would expect given its asymptotic relationship to the chance-

constrained policy; see Theorem 1). However, using such a rule to find the explicit surface of the

POMDP value function is computationally challenging, even though the Ecμ policy is simple. This

is because policy evaluation (even when a policy is known) in POMDPs is PSPACE complete (see,

e.g., Mundhenk et al. (2000)). Hence, the ideal task of searching for the max of the convex floating
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Optimality Gap (%)

X Minimax Minimin 95% Chance
Constrained f1

95% Chance
Constrained f2

95% Chance
Constrained f3

95% Chance
Constrained f4

(2,2) 3.17 15.51 1.84 2.07 2.2 1.97
(2,5) 2.52 13.58 0.85 0.81 0.86 0.86
(2,10) 1.35 8.21 0.52 0.51 0.54 0.49
(5,2) 4.48 8.73 2.65 2.74 2.33 2.21
(5,5) 5.01 10.3 0.85 0.81 0.75 0.79
(5,10) 3.37 7.56 0.61 0.58 0.48 0.57
(10,2) 4.14 4.05 1.76 1.93 1.32 1.35
(10,5) 5.49 5.79 0.53 0.51 0.54 0.55
(10,10) 4.34 5.15 0.33 0.33 0.35 0.35

Ave. 3.76 8.76 1.10 1.14 1.04 1.02

Table 1 Performance of various robust policies over the test suite (n= 2,m1 = 2,m2 = 2).

body as in Proposition 4, even with the help of Proposition 5, is highly difficult even in moderate

problem instances where n > 3 and m > 6. Furthermore, often times the shape of Lε is difficult

to determine explicitly as is the case even in the simple uniform distributions in more than two

dimensions, which further complicates our search. Hence, for implementation in real applications,

we turn to our robust heuristic policy.

To gain deeper insights into the performance of our heuristic, we simulate systems with m1 =

m2 =m3 = 3 with uniform PB in the largest inscribed sphere of the belief space. To also evaluate

the robustness of our proposed heuristic vis-a-vis the optimal percentile policy as well as minimin

and minimax policies, we use CVar(q), which is the average cost within the most costly q% of our

simulated runs. Therefore, if S = {s1, . . . , sr} is the set of the costs from a simulation of r runs

ordered from most costly to least costly, then

CVar (q) =

∑�(1−q)(r−1)+1�
i=1 si

	(1− q)(r− 1)+ 1
 .

This statistic may roughly be seen as a function that increases in pessimism, since we use fewer low

cost data points in the expectation as q increases.16

Using a 95% chance-constrained policy, the Ecμ heuristic, minimin, and minimax policies, Figure 6

illustrates performance over 20,000 simulation runs.17 The leftmost subfigures display the raw CVar

values. However, we direct our attention to the rightmost figures, which display the percentage gap

(of CVars) between the four selected polices and “best” policy at a given q. From Figure 6, we

observe the following:

Observation 3 (Heuristic Performance). The Ecμ heuristic performs nearly identically to the

chance-constrained policy, with a diminishing difference as the system becomes more congested.

We note that percentile optimization is not concerned about the “worst-case” scenarios, and rather

optimizes based on a proportion of the belief space. Hence, being a statistic concerned with the

16 For instance, one would expect the minimax policy to perform well in comparison to other policies at CVar(1).
17 The associated confidence intervals are tight, so we only show the averages.
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Figure 5 The optimality gap (%) of Ecμ policy when evaluated on the central prior b̄ (μ1,1 = 0.6, μ1,2 = 0.7, μ2,1 =

0.5, μ2,2 = 0.8).

tail performance of the distribution of costs, CVar (as compared to the expected cost) provides us

with a more accurate representation of the value of robustness that percentile optimization offers.

Furthermore, Figure 6 demonstrates that the proposed heuristic captures the essence of the chance-

constrained policy in that it lies near the optimal policy, mirroring its performance in each simulated

run. Overall, our goal to provide an alternative to the over-conservatism and over-optimism of the

minimax and minimin policies seems to be met by our percentile optimization technique: it performs

well at each level of the CVar statistic. Thus, we make the following:

Observation 4 (Chance-Constrained vs. Minimin & Minimax). Unlike minimax and min-

imin policies, chance-constrained policies perform well regardless of the optimism/pessimism level.

Even in cases where the chance-constrained policy is inferior to other policies with regard to the

CVar statistic (e.g., the fourth row of Figure 6 with X= (10,10,10), where the minimin policy is

seen to perform best with regard to CVar(0)), we can see that fixed priority policies (e.g., those

obtained under the minimin objective) miss out on the advantages of robustness that the chance-

constrained policy offers throughout the optimism spectrum. Furthermore, percentile optimization

is flexible: by modifying ε, we can change our policy’s focus to be more or less optimistic to the

point of becoming a minimax and minimin policy itself (Proposition 2). A similar advantage is

also gained in the APOMDP framework of Saghafian (2017), where α-maximin expected utility

(α-MEU) preferences are used.

7.1. Real-World Application: ED Patient Prioritization

In most hospital Emergency Departments (EDs) in the U.S., patients upon arrival are sorted by

means of an urgency-based triage system into one of (typically) five classes known as Emergency

Severity Index (ESI) levels. These ESI levels classify patients in descending order of urgency so that

a patient of ESI 1, being in dire condition, is immediately treated, whereas patients of levels 4 and

5 are sent to a “fast track” area to be treated. Therefore, the classes served by the main section of

the ED (the majority of arrivals) are those with ESI levels 2 and 3 (see, e.g., Saghafian et al. (2012),
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Figure 6 Comparison of policies with respect to CVar (20,000 simulated runs and a uniform PB on the largest
inscribed sphere of the belief space).

Saghafian et al. (2014), and the references therein). We denote ESI 2 and 3 patients by “Urgent”

and “Non-Urgent” patients, respectively.

As patients wait to receive treatment their condition may worsen over time and lead to adverse

medical events. Sprivulis et al. (2006) and Plunkett et al. (2011) show that higher patient mortality

is associated with longer waiting times prior to seeing a physician. Other research (e.g., an extremely

large study on data of nearly 14 million patients by Guttmann et al. (2011)) indicate that the

Risk of Adverse Events (ROAE) for patients increases with higher waiting times leading to higher

mortality and hospital admission rates. Therefore, with the objective of increasing patient safety, we

consider the goal of minimizing average ROAE for ED patients, and investigate optimal prioritization

policies. To do so, we assume adverse events occur based on a Poisson process with a higher rate

for urgent patients, and note that ROAEs in this setting play the role of holding cost parameters

in our multi-class queueing model introduced earlier. The same approach is used in Saghafian et al.

(2014), where the benefits of further stratifying these levels in terms of a patient’s complexity is

discussed. Simple patients are those that experience only a single interaction with the physician,
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and thus are more quickly treated by the ED than complex patients, whose treatment necessitates

several interactions with the physician interspersed with various tests (CT scans, MRI, etc.).

Figure 7 (left) illustrates a schematic flow of patients as a multi-class queueing system. To ana-

lyze the multi-class queueing system of Figure 7 (right) in a traditional way, one needs to obtain

point estimates of various parameters (e.g., service/treatment rates for each class), a task which

is subject to inevitable errors.18 Furthermore, triaged urgency and complexity levels are subject to

misclassifications, which further confuses the true parameter settings of the system. Although mis-

classifications can be included in the analysis when all of the parameters of the system are known,

the misclassification probabilities themselves are also hard to quantify. These create parameter am-

biguity, and one needs to use robust analyses to hedge against them. However, current ED patient

prioritization policies are based on analyses that ignore such ambiguities.

To demonstrate the benefits of our percentile optimization approach, we now focus on two ques-

tions: “how should EDs prioritize their patients given that they are faced with parameter ambiguity?”

and “how much benefit can they get by taking ambiguities into consideration?” To answer these

questions, we first model the ED from a broad perspective with non-stationary Poisson process

arrivals and known service rates for all four classes: Urgent Simple (US), Urgent Complex (UC),

Non-Urgent Simple (NS), and Non-Urgent Complex (NC) patients. In this way, we model the ED

as a single “super-server” (i.e., with a pooled capacity that we estimate from our data set so as

to match the input-output process of the ED as a whole). This allows us to gain insights into the

questions we raised above by noting that the ED queueing model of Figure 7 (right) is essentially

a special case of our general model depicted in Figure 1 with n= 4.

Patient arrivals in an ED fluctuate throughout a given day, so we model these arrivals with a

non-stationary Poisson process with hourly rates shown in Figure 15 in Online Appendix A which

depicts the actual time-dependent arrival rates to the ED based on our data set. Furthermore,

since patient LOS in our data has a lognormal distribution, we fit lognormal service distributions

to match the LOS of patients for each class of patients. Next, we design our “cloud of models” by

perturbing the fitted rate parameters such that for each class i with fitted rate μ̂i,3, we incorporate

four additional possible rate parameters so μ̂i,1 < μ̂i,2 < μ̂i,3 < μ̂i,4 < μ̂i,5. Because patients become

fairly stable upon seeing a physician, we focus on adverse events in the waiting area of EDs, and

assume ROAE drops to zero once the treatment stage begins. Our model is non-preemptive, which

is a reflection of physicians’ behavior in EDs: upon initiating treatment to a patient, they rarely

18 Even after using a large data set that we have collected from a leading U.S. hospital, which includes data about
more than 18,000 patient visits, we see that our point estimates are not reliable due to various reasons including
the large variation among patient characteristics as well as the need to estimate parameters for each patient class
separately.
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Figure 7 Patient flow in hospital Emergency Departments (left: the overall flow; right: the multi-class flow).

pause treatment to serve a different patient. Since there is a possibility that the ROAE for simple

patients differs from that of complex patients, we also consider a variety of such “cost” structures

in our study.

Though this model allows for dynamic arrivals (unlike our model introduced in Section 3), we

can still incorporate chance-constrained policies through the use of our heuristic, and compare its

performance to the complexity-based prioritization policy that serves classes US, UC, NS, and NC in

descending priority (demonstrated to be optimal for EDs in Saghafian et al. (2014) when ambiguity

is ignored), minimax, and minimin policies. To do so, we simply modify the Bayesian belief to

also incorporate arrival data. We simulate these policies, and track the non-discounted ROAE by

assuming that PB is uniform. The result of 20,000 simulated days expressed in terms of the CVar

statistic is reported in Figure 8 (see Online Appendix A.6 for four additional ROAE settings and in

depth discussions).

A widely discussed topic in the literature surrounding EDs is the “overcrowding” issue (see e.g.

Derlet and Richards (2000), Derlet et al. (2001), and Trzeciak and Rivers (2003)) that stems from

high arrival rates and limited resources (such as capacity, physicians, equipment, etc). Overcrowding

in EDs results in high ROAE that endangers patients. The third row of Figure 8 demonstrates how

policies perform in overcrowded EDs by considering an ambiguity set with smaller service rates

(in comparison to the other ambiguity sets). We note that percentile optimization, in comparison

with other policies, is especially suited for studying patient prioritization in overcrowded EDs. This

is because under heavy congestion, chance-constrained policies learn faster, since more classes are

available to serve at any given time. Furthermore, as we show in Corollary 4 in Online Appendix B,

the Ecμ policy becomes asymptotically optimal when arrivals occur during intense bursts followed

by lull periods. Since hospital EDs typically experience long periods of heavy traffic in the afternoon

followed by little traffic after midnight (see the actual arrival pattern depicted in Figure 15 in Online

Appendix A), this further establishes our approach in hospital ED applications. Using these results,

we can make the following:
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Figure 8 20,000 simulated days in the ED for the complexity-based prioritization, 95% Ecμ heuristic, minimin,
and minimax policies, when PB is uniform, and the cloud of models perturbs the fitted service rate μ̂i,3

in terms of two-hour time increments with c= (3.5,4.0,1.75,2.0). (Triage levels US, UC, NS, and NC
are denoted 1,2,3, and 4, respectively.)

Observation 5 (High Traffic). Our percentile optimization approach performs well for prioritiz-

ing patients in EDs, especially in highly congested ones (e.g. those in busy research hospitals).

Also, Figure 8 shows that, once again, the chance-constrained policies nearly dominate the entire

spectrum of the CVar statistic since they explicitly incorporate both learning and robustness. The

performance advantage over complexity-based prioritization is consistently over 10 − 15% which

suggests implementation regardless of optimism/pessimism levels. Hence, to establish the magnitude
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of potential benefits percentile optimization can offer to EDs over the current status quo, we make

the following:
Observation 6 (Improved System Performance). Percentile optimization can improve the

performance of EDs by 10%− 15% regardless of a manager’s disposition.

In systems with high traffic, learning may occur at an advanced rate, since it has available

customers from each class a majority of the time the system is online. Hence, while static priority

policies continue to serve the “wrong” classes (due to the underlying parameter ambiguity), the

chance-constrained policy quickly identifies the optimal cμ priority using the observed values. This

enhances the quality the robustness percentile optimization offers, especially since one is typically

more concerned with overcrowded/busy systems (EDs with low traffic have short patient LOS

naturally, and are not in significant need for optimization).

Furthermore, our “clearing” system is a model often used to study queues undergoing overcrowded

situations. Therefore, a more congested ED is a better fit to our original model, and in considering

dynamic arrivals, we can reconfirm all the previous insights generated in the “clearing” environment.

This further confirms the results of Section A.4 (within Online Appendix A), where we show that

most of the main insights gained from the “clearing” system holds for systems with dynamic arrivals.

In communities with unstable patient population characteristics, where ED service rates or mis-

classification probabilities are more ambiguous, ED managers may incorporate percentile optimiza-

tion to effectively hedge against such ambiguities. Moreover, percentile optimization is well-suited to

high levels of ambiguity. In our simulations, this is captured through modifying our cloud of models

to incorporate larger differences in the fitted parameters (see the first row of Figure 8 and compare

it with the second row). Hence, when patient population characteristics are unstable, percentile

optimization stands out as a method that protects from negative consequences of focusing only on

extreme outcomes, while simultaneously learning from incoming data. This results in the following:

Observation 7 (Uncertain Population Characteristics). Percentile optimization can signifi-

cantly help EDs that are placed in geographical areas with unstable or unknown patient population

characteristics to better prioritize their patients.

8. Conclusion

Multi-class queues are versatile structures widely used in operations management that see a large

variety of applications in both service and manufacturing sectors. In such environments, often exact

parameter specification is rife with estimation errors that (if ignored) can cause system managers to

implement wrong policies. We identify and implement a novel data-driven percentile optimization

framework for use in POMDPs. Our method layers chance-constrained optimization on a non-robust

learning model, effectively enabling learning of the true system state parameters, and allowing
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the manager to set an optimism level indicating the extent of protection against poor parameter

scenarios s/he desires. We characterize the optimal policies to both the non-robust and percentile

problems and find that chance-constrained policies can be established via the non-robust problem.

Since percentile optimization problems are typically computationally difficult, we introduce an

analytically-rooted heuristic that can be used to effectively incorporate robustness in managing large

and complex service or manufacturing systems. To further improve computational tractability, we

find asymptotically tight bounds to the non-robust problem, which can be used to efficiently solve

the percentile optimization problem.

Finally, we demonstrate the efficacy of our methods numerically in both stylized and realistic

environments. Using real-world data collected from a leading hospital, we observe that our approach

provides promising results in improving current patient flow policies, especially for overcrowded EDs,

or those facing unknown patient population characteristics. Since ED managers typically do not

fully know the service rate parameters, traditional patient flow policies based on queueing models

that assume full service rate knowledge subject patients to higher risk than chance-constrained

policies. Our work is the first to take into account the inevitable ambiguities in ED operations, and

sheds light on the dire consequences of ignoring such ambiguities.
References
Argon, N., S. Ziya. 2009. Priority assignment under imperfect information on customer type identities. Manufacturing &
Service Operations Management 11(4) 674–693.

Bagnell, J., A. Y. Ng, J. Schneider. 2001. Solving uncertain Markov decision problems. Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-01-25 .

Bandi, C., D. Bertsimas. 2012. Tractable stochastic analysis in high dimensions via robust optimization. Mathematical Pro-
gramming 134(1) 23–70.

Bandi, C., D. Bertsimas, N. Youssef. 2015. Robust queueing theory. Operations Research 63(3) 676–700.
Bassamboo, A., A. Zeevi. 2009. On a data-driven method for staffing large call centers. Operations Research 57(3) 714–726.
Bertsekas, D. 1995. Dynamic Programming and Optimal Control , vol. 1. Athena Scientific Belmont, MA.
Bertsimas, D., D. Gamarnik, A. A. Rikun. 2011. Performance analysis of queueing networks via robust optimization. Operations
Research 59(2) 455–466.

Bertsimas, D., D. Pachamanova, M. Sim. 2004. Robust linear optimization under general norms. Operations Research Letters
32(6) 510–516.

Bertsimas, D., M. Sim. 2004. The price of robustness. Operations Research 52(1) 35–53.
Buyukkoc, C., P. Varaiya, J. Walrand. 1985. The cμ rule revisited. Advances in Applied Probability 17 237–238.
Calgar, U. 2010. Floating bodies. Master’s thesis, Case Western Reserve University.
Charnes, A., W. W. Cooper. 1959. Chance-constrained programming. Management Science 6(1) 73–79.
Chen, Y., V. Farias. 2013. Simple policies for dynamic pricing with imperfect forecasts. Operations Research 61(3) 612–624.
Chow, Y., M. Ghavamzadeh, L. Janson, M. Pavone. 2017. Risk-constrained reinforcement learning with percentile risk criteria.
arXiv preprint arXiv:1512.01629 .

Delage, E., S. Mannor. 2007. Percentile optimization in uncertain Markov decision processes with application to efficient
exploration. Proceedings of the 24th international conference on Machine learning . ACM, 225–232.

Delage, E., S. Mannor. 2010. Percentile optimization for Markov decision processes with parameter uncertainty. Operations
Research 58 203–213.

Derlet, R. W., J. R. Richards. 2000. Overcrowding in the nation’s Emergency Departments: Complex causes and disturbing
effects. Annals of Emergency Medicine 35(1) 63–68.

Derlet, R. W., J. R. Richards, R. L. Kravitz. 2001. Frequent overcrowding in U.S. Emergency Departments. Academic Emergency
Medicine 8(2) 151–155.

Dupin, C. 1822. Applications de Géométrie et de Méchanique. Bachelier, successeur de Mme. Ve. Courcier, libraire.
Fresen, D. 2013. A multivariate Gnedenko law of large numbers. The Annals of Probability 41(5) 3051–3080.



Bren and Saghafian: Multi-Class Queueing Systems with Model Ambiguity
30

Guttmann, A., M. J. Schull, M. J. Vermeulen, T. A. Stukel. 2011. Association between waiting times and short term mortality
and hospital admission after departure from Emergency Department: Population based cohort study from Ontario, Canada.
British Medical Journal 342.

Hansen, L., T. Sargent. 2007. Recursive robust estimation and control without commitment. Journal of Economic Theory
136(1) 1–27.

Iyengar, G. N. 2005. Robust dynamic programming. Mathematics of Operations Research 30(2) 257–280.
Jain, A., A. Lim, J. G. Shanthikumar. 2010. On the optimality of threshold control in queues with model uncertainty. Queueing
Systems 65(2) 157–174.

Lim, A. E. B., J. G. Shanthikumar, G. Vahn. 2012. Robust portfolio choice with learning in the framework of regret: Single-period
case. Management Science 58(9) 1732–1746.

Lippman, S. A. 1975. Applying a new device in the optimization of exponential queuing systems. Operations Research 23(4)
687–710.

Littman, M. L., J. Goldsmith, M. Mundhenk. 1998. The computational complexity of probabilistic planning. Journal of
Artificial Intelligence Research 9(1) 1–36.

Mannor, S., D. Simester, P. Sun, J. N. Tsitsiklis. 2007. Bias and variance approximation in value function estimates. Management
Science 53(2) 308–322.

Mundhenk, M., J. Goldsmith, C. Lusena, E. Allender. 2000. Complexity of finite-horizon Markov decision process problems.
Journal of the ACM (JACM) 47(4) 681–720.

Nemirovski, A., A. Shapiro. 2006. Convex approximations of chance constrained programs. SIAM Journal on Optimization
17(4) 969–996.

Nilim, A., L. El Ghaoui. 2005. Robust control of Markov decision processes with uncertain transition matrices. Operations
Research 53(5) 780–798.

Osogami, T. 2015. Robust partially observable Markov decision process. ICML. 106–115.
Papadimitriou, C. H., J. N. Tsitsiklis. 1987. The complexity of Markov decision processes. Mathematics of Operations Research
12(3) 441–450.

Pedarsani, R., J. Walrand, Y. Zhong. 2014. Robust scheduling and congestion control for flexible queueing networks. 2014
International Conference on Computing, Networking and Communications (ICNC). IEEE, 467–471.

Plunkett, P. K., D. G. Byrne, T. Breslin, K. Bennett, B. Silke. 2011. Increasing wait times predict increasing mortality for
emergency medical admissions. European Journal of Emergency Medicine 18(4) 192–196.

Prékopa, A. 1995. Stochastic Programming . Klewer Academic Publishers, Dordrecht.
Ross, S., J. Pineau, B. Chaib-draa, P. Kreitmann. 2011. A Bayesian approach for learning and planning in partially observable
Markov decision processes. Journal of Machine Learning Research 12 1729–1770.

Saghafian, S. 2017. Ambiguous POMDPs: Structural results and applications. Working Paper, Harvard University.
Saghafian, S., G. Austin, S. J. Traub. 2015. Operations research/management contributions to Emergency Department patient
flow optimization: Review and research prospects. IIE Transactions on Healthcare Systems Engineering 5(2).

Saghafian, S., W. J. Hopp, M. P. Van Oyen, J. S. Desmond, S. L. Kronick. 2012. Patient streaming as a mechanism to improve
responsiveness in Emergency Departments. Operations Research 60(5) 1080–1097.

Saghafian, S., W. J. Hopp, M. P. Van Oyen, J. S. Desmond, S. L. Kronick. 2014. Complexity-augmented triage: A tool for
improving patient safety and operational efficiency. Manufacturing and Service Operations Management 16(3) 329–345.

Saghafian, S., M. H. Veatch. 2016. A cμ rule for two-tiered parallel servers. IEEE Transactions on Automatic Control 61(4)
1046–1050.

Schutt, C., E. Werner. 1990. The convex floating body. Mathematica Scandinavica 66 275–290.
Smallwood, R., E. J. Sondik. 1973. The optimal control of partially observable Markov processes over a finite horizon. Operations
Research 21(5) 1071–1088.

Sondik, E. J. 1971. The optimal control of partially observable Markov processes. Ph.D. thesis, Stanford University.
Sprivulis, P. C., J. Da Silva, I. G. Jacobs, A. Frazer, G. A. Jelinek. 2006. The association between hospital overcrowding and
mortality among patients admitted via Western Australian Emergency Departments. Medical Journal of Australia 184(5)
208.

Su, H. 2006. Robust fluid control of multiclass queueing networks. Master’s thesis, Massachusetts Institute of Technology.
Thrun, S. 1999. Monte Carlo POMDPs. Advances in Neural Information Processing Systems 12 1064–1070.
Trzeciak, S., E. P. Rivers. 2003. Emergency Department overcrowding in the United States: an emerging threat to patient safety
and public health. Emergency Medicine Journal 20(5) 402–405.

Van Mieghem, J. A. 1995. Dynamic scheduling with convex delay costs: The generalized cμ rule. The Annals of Applied
Probability 809–833.

White, C., D. Harrington. 1980. Application of Jensen’s inequality to adaptive suboptimal design. Journal of Optimization
Theory and Applications 32(1) 89–99.

Wiesemann, W., D. Kuhn, B. Rustem. 2013. Robust Markov decision processes. Mathematics of Operations Research 38(1)
153–183.

Zhang, H. 2010. Partially observable Markov decision processes: A geometric technique and analysis. Operations Research
58(1) 214–228.


