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GHG Cap-and-Trade: Implications for Effective and Efficient Climate Policy In Oregon  

Executive Summary 

Todd Schatzki and Robert N. Stavins1 

November 2018  

Like many other states, Oregon has begun to pursue climate policies to attempt to fill the gap 
created by the lack of effective climate policy at the Federal level.  After adopting a variety of policies to 
address climate change and other environmental impacts from energy use, Oregon is now contemplating 
the adoption of a greenhouse gas (GHG) cap-and-trade system.  However, interactions between policies 
can have important consequences for environmental and economic outcomes. Thus, as Oregon considers 
taking this step, reconsidering the efficacy of its other current climate policies may better position the 
state to achieve long-run emission reductions at sustainable economic costs.  

1. A Well-Designed GHG Cap-and-Trade Program is a Better Approach to Regulating GHG 
Emissions Than Alternatives  

A GHG cap-and-trade system offers many advantages compared with other approaches to 
reducing GHG emissions.  By capping total emissions, a cap-and-trade system provides a high level 
of emissions certainty.  By comparison, policies that target particular activities through standards do not 
achieve any particular emission target with certainty.   

In addition, cap-and-trade systems achieve emission reductions at a lower cost than other 
regulatory approaches by creating a uniform incentive that encourages emission reductions 
through the least-costly approach.  Thus, cap-and-trade creates incentives for sources to undertake the 
least-costly emission reductions, while forgoing more costly options.   

Development of a well-designed cap-and-trade system requires careful attention to the 
details.  Prior legislative proposals in Oregon have included elements of a well-designed GHG cap-and-
trade system, such as broad economy-wide coverage and flexibility to allow sources to use offsets to 
cover a portion of compliance obligations.  However, many key program design decisions will be left to 
the program’s regulator–the Oregon Environmental Quality Commission.  Thus, decisions made in the 
rulemaking process will have important implications for the program’s eventual performance and 
possible success. 

 

1 Dr. Schatzki is a Vice President at Analysis Group.  Professor Stavins is A. J. Meyer Professor of Energy and 
Economic Development, John F. Kennedy School of Government, Harvard University; University Fellow, 
Resources for the Future; and Research Associate, National Bureau of Economic Research.  He is an elected Fellow 
of the Association of Environmental and Resource Economists, was Chairman of the U.S. Environmental Protection 
Agency’s Environmental Economics Advisory Committee, and served as Lead Author of the Second, Third, and 
Sixth Assessment Reports and Coordinating Leading Author of the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change.  Institutions listed are for purposes of identification only, implying no 
endorsement of this work.  Support was provided by the Western States Petroleum Association, but the opinions 
expressed are exclusively those of the authors.  Research assistance was provided by Jonathan Baker, Ben Dalzell 
and Scott Ario.  To request further information or provide comments, Dr. Schatzki can be reached at: 
tschatzki@analysisgroup.com.   
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2. Well-Designed Complementary Policies Can Improve Environmental and Economic 
Outcomes, Although Some Complementary Policies Raise Costs with Little (or No) 
Environmental Benefit 

When developing a climate policy, states may consider pursuing reductions through multiple 
“complementary” policies that target individual activities that produce emissions.  But what appears to be 
logical, can turn out to be ineffective or worse yet, counter-productive.   

Complementary policies may provide economic benefits when they target market failures 
apart from the GHG emission externality, or when they target sources that are not covered by the 
cap-and-trade system.  Many other legitimate market failures affect the climate change problem.  For 
example, energy efficiency programs may target distorted incentives to invest in building energy 
efficiency.  Targeting this additional market failure can achieve net cost savings from reduced energy use, 
while also producing the ancillary benefit of reducing GHG emissions.   

On the other hand, overlap between complementary policies and the GHG cap-and-trade program 
can have perverse consequences.  In general, when state-level policies overlap with cap-and-trade, the 
complementary policies will fail to create any additional emission reductions.  When a binding cap-
and-trade system is in place, aggregate emissions will equal the cap whether or not complementary 
policies are implemented.  Under such conditions, complementary policies produce no incremental 
emission reductions, but simply shift emissions among sources or sectors covered by the cap (or worse, as 
we discuss below). 

Complementary policies may increase the cost of meeting emission targets when 
implemented alongside cap-and-trade.  If complementary policies require that more costly emission 
reductions be undertaken, then the shift from lower-cost to higher-cost reduction activities increases the 
overall cost of achieving emission targets.  Thus, unless a policy targets non-GHG market failures or 
sources not covered by the cap, it likely raises costs (or is not binding).   

Further, complementary policies may depress cap-and-trade allowance prices.  When 
complementary policies require emission reductions that are more costly than would be required under 
cap-and-trade, the requirements reduce the quantity of emission reductions required to meet the cap, thus 
depressing the price of allowances and reducing incentives for technological change.   

In fact, many of Oregon’s climate policies would overlap with an economy-wide GHG cap-
and-trade program.  These policies will likely add little (or no) change in emissions once a cap-and-
trade program is adopted.  They include the Renewable Portfolio Standard and Clean Fuels Program.  
However, other policies may provide some economic benefits by targeting non-GHG market failures, 
such as the Energy Trust of Oregon, which funds residential and commercial energy efficiency programs.   

 

3. Consequences of Policy Overlap: Lessons from California for Oregon  

California is several years ahead of Oregon in the adoption of its climate policies, and thus can 
provide valuable lessons for Oregon.  Analysis of California’s Low Carbon Fuel Standard (LCFS) 
shows that it actually increases emissions relative to cap-and-trade alone, while also increasing 
costs.  From 2013 to 2017, estimated costs were over $1 billion.  However, as shown in Figure ES-1, 
since the cap-and-trade program was expanded in 2015 to include transportation fuels, emissions outside 
of California (and outside the state’s GHG cap-and-trade system) have increased by more than 1.8 million 
MTCO2e (through 2017).  Moreover, as shown in Figure ES-2, the differences in costs between programs 
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are dramatic; while GHG cap-and-trade allowance prices have been below $16 per MTCO2e, LCFS 
program credit prices have risen to nearly $180 per MTCO2e, more than a 11-fold difference.  

 

Figure ES-1. Aggregate Change in Emissions from California’s LCFS  

 

Figure ES-2.  California’s LCFS Credit Prices vs. Cap-and-Trade Allowance Prices 

 

Some have tried to justify these high costs and negligible environmental impacts by claiming that 
the LCFS is a “technology” policy aimed at “spurring innovation.”  While measuring innovation is 
complex, it should be noted that compliance with the LCFS has largely been achieved through pre-
existing technologies.  It is unclear to what degree, if any, improved efficiencies (“learning by doing”) 
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have been achieved through the demand for renewable fuels created by the LCFS.  Moreover, LCFS costs 
are comparable to all federal spending on renewable energy, raising the question of whether the LCFS is 
the best use of society’s resources from the standpoint of investment in promoting energy technology 
innovation.  

 

4. Next Steps for Oregon Climate Policy 

As Oregon contemplates the adoption of cap-and-trade, it has several options for its suite of 
climate policies.  One approach maintains all policies, as currently designed.  Our analysis shows that, 
due to interactions among overlapping climate policies, retaining certain complementary policies could be 
very costly without achieving any incremental environmental benefits.   

A second option would be to develop a GHG cap-and-trade program of sufficient stringency to 
achieve targeted emissions or allow prices to rise to the social cost of carbon, and end complementary 
policies that do not produce incremental benefits by addressing market failures unrelated to the GHG 
emission externality or regulating sources not covered by the cap.  This approach could begin by 
undertaking a thorough assessment of the likely interactions among overlapping climate policies and the 
extent to which policies address market failures unrelated to GHG emissions.  The feasibility of this 
approach will depend on how aggressively Oregon can pursue carbon pricing.   

A third approach is a hybrid of these approaches.  While economic analysis unambiguously 
shows that policies relying on GHG emission pricing, such as GHG cap-and-trade, are the most cost-
effective approach to achieving emission targets, political realities may not support the immediate 
adoption of climate policies relying largely (if not solely) on carbon pricing.   But the costs of pursuing 
aggressive GHG emission reductions goals through more-costly complementary policies will grow over 
time, which makes that path not only costly but politically risky.  The hybrid option involves a transition 
to increased reliance on GHG cap-and-trade by diminishing the reliance (i.e., stringency) of some 
complementary policies and gradually (or even quickly) shifting to the uniform-price incentives created 
by cap-and-trade.   
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 Oregon is contemplating the adoption of a greenhouse gas (GHG) cap-and-trade system.3  For 
example, Senate Bill 1507, also known as Oregon’s Clean Energy Jobs bill, would create a GHG cap-and-
trade system for major sources of GHG emissions.4  The GHG cap-and-trade system would add to the 
existing policies Oregon has adopted to address climate change and other environmental impacts from 
energy use.  Like many other states, Oregon has begun to pursue climate policies to attempt to fill the gap 
created by the lack of effective climate policy at the Federal level.   

In this paper, we evaluate Oregon’s proposed GHG cap-and-trade system and consider its 
implications for other climate policies Oregon has already adopted.  Section I starts by discussing the 
benefits of cap-and-trade as an approach to addressing climate change.  In Section II, we discuss 
“complementary” policies states are developing to address GHG emissions.  Under certain conditions, 
such additional policies can improve environmental and economic outcomes.  However, due to 
interactions between policies, some complementary policies raise costs and fail to achieve emission 
reductions.  We identify the conditions that lead to these different outcomes, and discuss how the 
particular policies currently in place in Oregon would interact with the addition of a GHG cap-and-trade 
system.  In Section III, we analyze certain climate policies in California to identify the impacts of 
interactions that Oregon might expect from its suite of policies.  In particular, we examine California’s 
Low Carbon Fuel Standard (LCFS), including its interactions with California’s GHG cap-and-trade 
system.  

 

2 Dr. Schatzki is a Vice President at Analysis Group.  Professor Stavins is Albert Pratt Professor of Business and 
Government, John F. Kennedy School of Government, Harvard University; University Fellow, Resources for the 
Future; and Research Associate, National Bureau of Economic Research.  He is an elected Fellow of the Association 
of Environmental and Resource Economists, was Chairman of the U.S. Environmental Protection Agency’s 
Environmental Economics Advisory Committee, and served as Lead Author of the Second and Third Assessment 
Reports and Coordinating Leading Author of the Fifth Assessment Report of the Intergovernmental Panel on 
Climate Change.  Institutions listed are for purposes of identification only, implying no endorsement of this work.  
Support was provided by the Western States Petroleum Association, but the opinions expressed are exclusively 
those of the authors.  Research assistance was provided by Scott Ario, Jonathan Baker, and Ben Dalzell.  To request 
further information or provide comments, Dr. Schatzki can be reached at: todd.schatzki@analysisgroup.com.   
3 Oregon Department of Environmental Quality, “Considerations for Designing a Cap-and-Trade Program in 
Oregon,” February 14, 2017 
4 79th Oregon Legislative Assembly, Senate Bill 1507, Ordered February 16, 2018. 
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I. BENEFITS OF GHG CAP-AND-TRADE SYSTEMS 

A cap-and-trade system limits (caps) the total emissions permitted from a designated set of 
sources.  By reducing the cap over time, emissions are reduced from current levels to meet policy 
objectives.  Cap-and-trade systems have been widely applied to GHG emissions.  At present, there are 
approximately 21 systems covering emissions at the state, provincial, national, or regional level.5  A cap-
and-trade system can cover a large fraction of economy-wide emissions, because the energy sources that 
account for most emissions can be regulated through a relatively small number of sources.  For example, 
California’s GHG cap-and-trade system covers approximately 85% of state-wide GHG emissions by 
regulating emissions from electric power generators, large industrial facilities, and suppliers of natural gas 
and other fuels.6   

By capping total emissions, a cap-and-trade system provides a high level of emission 
certainty.  By comparison, policies that target particular activities through standards do not achieve any 
particular emission target with certainty.  For example, a low carbon fuel standard may reduce fuel 
carbon-intensity, but it does not affect the number of miles driven or vehicle fuel efficiency.  Thus, total 
emissions may increase even if carbon-intensity is falling.    

Cap-and-trade systems achieve emission reductions at a lower cost than other regulatory 
approaches.  By imposing a cost on activities that generate emissions, cap-and-trade creates a uniform 
incentive that encourages emission reductions through the least-costly approach.  Sources that can reduce 
emissions at a cost less than the cost of emission permits (allowance prices) will take steps to reduce 
emissions, while sources that can only reduce emissions at a cost greater than allowance prices will not 
take such action.  Because allowances used to comply with the cap-and-trade system are tradeable among 
regulated sources, allowances can flow to sources as needed to cover emissions.  

Legislative proposals in Oregon (e.g., HB 4001, SB 1507) specify many elements of the GHG 
cap-and-trade design, but also leave many features for the regulator, the Oregon Environmental Quality 
Commission (EQC), to determine.  These proposals include features of a well-designed GHG cap-and-
trade system, and, when providing the EQC with rule-making discretion, do not preclude potentially 
valuable design features.  But, as with any complex regulation, the design details that need to be worked 
out during this rulemaking process would be critical to determining the eventual effectiveness of the 
policy.   

In these proposals, the program would cover all sectors of the economy that are easily regulated 
through a GHG cap-and-trade system, including large point sources and fuels, such as natural gas, 
gasoline and diesel.  Sources outside the proposed program are generally more difficult to monitor and 
enforce, thus making regulation through other measures more promising.   

Proposed legislation can accommodate key design features to take advantage of “when” and 
“where” flexibility, although such features must be developed during the rulemaking process.  
Because GHG emissions are long-lived “stock” pollutants, the timing of emissions is less critical to the 
damages they create than is the case with many other pollutants (e.g., criteria air pollutants).  Thus, well-
designed cap-and-trade systems include banking and multi-year compliance periods to allow sources 

 

5 ICAP. (2018). Emissions Trading Worldwide: Status Report 2018. Berlin: ICAP. 
6 Center for Climate and Energy Solutions, “California Cap and Trade,” March 16, 2018. 
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flexibility over when emission reductions are made.7  Further, because the impact of GHG emissions is 
independent of where emissions occur, systems that include linking and offsets can lower the total costs 
of achieving emission goals.  The legislation includes specific provisions that permit the EQC to link 
Oregon’s programs with other systems and allow sources to use offsets to fulfill up to 8% of their 
compliance obligation.8   

The proposed system includes an Allowance Price Containment Reserve, designed to help 
contain the costs of compliance.  The Reserve holds a finite quantity of allowances that are released only 
when prices rise to a predetermined “trigger” price level.  The Reserve can help mitigate costs and 
allowance price volatility in the event that there is a sudden increase in demand that would lead to a 
spike in allowance prices.   

However, the proposed cap-and-trade system does not include an explicit price cap that 
could provide a “safety valve” in the event that demand for allowances suddenly increases.  By 
itself, the Reserve will not limit prices from rising to economically (and politically) unacceptable levels.  
Because the Reserve holds a finite quantity of allowances, once the Reserve is exhausted, allowance 
prices can continue to rise unabated.   

A price cap has many benefits.9  A price cap sends a clear signal to the market about the range 
of prices that could prevail in the future.  It also provides market stability, because absent a price cap, 
there is a risk that a sudden increase in prices undermines political support for the policy.  In the past, the 
failure of policies to include a safety valve has led to the suspension of emission trading programs when 
prices suddenly rose to high levels, such as occurred in the RECLAIM program in California’s South 
Coast Air Quality Management District.10  

California recently adopted a price cap.  In its draft rulemaking, the California Air Resources 
Board (CARB) has set the price cap at $65 per MTCO2e in 2021.  The price cap would rise at a rate of 5% 
plus inflation.  It is anticipated that CARB will finalize these rules this year.   

In many respects, the GHG cap-and-trade proposals mirror systems already in place in California 
and Quebec.  This builds on experience gained with design of GHG cap-and-trade systems in California.  
If sufficiently similar, Oregon could link its system to the California system and other systems (e.g., 
Quebec), if desired.  Linkage can lower the total economic cost of achieving emission targets by 
expanding the geographic scope of emission reductions opportunities.11  

 

7 SB 1507 does not specify the length of compliance periods and does not explicitly allow allowance banking. 
8 SB 1507, Section 17. Offset Projects; SB 1507, Section 19. Linkage with market-based compliance mechanisms in 
other jurisdictions. 
9 SB 200.  See Schatzki and Stavins, 2018. 
10 The RECLAIM trading in the South Coast Air Quality District was dismantled after significant price spikes for 
RECLAIM allowances contributed to a broader crisis in California's electricity markets. 
11 Stavins, Robert N., Judson Jaffe, and Matthew Ranson, “Linking Tradable Permit Systems: A Key Element of 
Emerging International Climate Policy Architecture.” Ecology Law Quarterly 36(2010):789-808.  
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The compliance instruments -- allowances -- used by sources to comply with a cap-and-trade 
system have substantial economic value.12  Thus, a key decision for legislators in developing a cap-and-
trade system is determining how these allowances will be allocated.  This can affect both the aggregate 
economic impact of the cap-and-trade program, as well as the distribution of its economic outcomes 
across businesses and consumers.  

Legislators have two basic options: freely allocating allowances to particular entities, or selling 
allowances through auction.  HB 4001 / SB 1507 proposes to allocate allowances through both of these 
mechanisms.  Some allowances would be allocated directly to electric and natural gas utilities and 
emission-intensive, trade-exposed industries.  These direct allocations have two distinct purposes.  Direct 
allocations to emission-intensive, trade-exposed industries through an updating, output-based 
allocation can offset the risk that the GHG cap-and-trade program leads to emission leakage.13  
Emission leakage occurs when economic activity shifts locations due to higher regulatory costs.    

When allowances are allocated directly to regulated utilities, the allowance value is used to lower 
customer bills to offset the impact of cap-and-trade on consumer energy costs.  While this approach 
reduces customer rate impacts, it also reduces energy customers’ incentives to reduce energy use.  Thus, 
an alternative approach that returns allowance value to customers in a lump sum dividend can help 
offset program costs while preserving the (marginal) incentives for energy consumers to reduce 
their energy use.  This approach may also address distributional concerns, as carbon pricing tends 
to disproportionately affect lower-income households. 

Under SB 1507, as proposed, allowances that are not allocated directly would be sold through an 
auction, with the government retaining the auction revenues.  When selling allowances through an 
auction, the resulting economic gains and their distribution throughout the economy depends on 
decisions made by the government about how revenues are used.  The cost of a cap-and-trade 
program is minimized when auction revenues are used to offset pre-existing distortionary taxes, such as 
income taxes.  This path was taken in British Columbia, which lowered several types of pre-existing taxes 
to offset new revenues from its carbon tax, including personal income taxes, corporate income taxes, and 
industrial property taxes.14      

Legislative proposals in Oregon specify particular uses for the auction revenues, including road 
and highway maintenance, public education (per existing articles in the State Constitution), projects 

 

12 Schatzki, Todd and Robert N. Stavins, “Using the Value of Allowances from California’s GHG Cap-and-Trade 
System”, Regulatory Policy Program, Mossavar-Rahmani Center for Business and Government, Harvard Kennedy 
School, August 27, 2012. 
13 SB 1507 indicates that direct allocations to emission-intensive, trade-exposed industries should use an “output-
based benchmarking methodology”.  To mitigate leakage, direct allocations must reflect an “updated” estimate of 
each firm’s level of economic activity during the compliance year.  Direct allocations that are fixed (even if based 
on historical output levels) fail to create an incentive for firms to pass-through the value of the direct allocation to 
their customers, which increases their ability to compete with firms that are not covered by the cap-and-trade 
system. 
14 For example, corporate income taxes were reduced from 12% prior to the program to 11% in 2008, 10.5% in 2010 
and 10% in 2011.  In 2008, corporate income taxes to small business were reduced from 4.5% to 2.5%, and the 
threshold for the small-business tax rate was raised from $400,000 to $500,000. 
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aimed at achieving the bill’s objectives, and transitioning workers in affected communities.15  Road and 
educational spending reflects requirements in the Oregon Constitution given the nature of the revenues 
being collected.     

Like Oregon’s proposal, many cap-and-trade programs use auction revenues to support projects 
aimed at reducing GHG emissions.  Such spending may seem natural given the goals of climate policy.  
However, care is needed when selecting projects and activities to achieve environmental and economic 
benefits.  To achieve reductions in GHG emissions, such spending should target sources outside the cap 
or programs that address market failures unrelated to GHG emissions.  Below, we elaborate on these 
conditions, as they pertain to complementary policies.  But the same logic holds for revenue spending: 
spending to reduce emissions from sources covered by the cap will not reduce total emissions because the 
cap remains unchanged.  Instead, such spending shifts where emissions occur under the cap and 
subsidizes spending on emission reductions activities that otherwise would be made solely due to the cap-
and-trade price signals.   

II. STATE CLIMATE POLICIES  

In the wake of a lack of Federal leadership on climate policy, some states have sought to develop 
their own policies, often in coordination with other states (and provinces).  These state climate initiatives 
often take a “belt and suspenders” approach that includes a suite of policies targeting different activities 
that generate GHG emissions.  This approach can aim to address each activity that produces GHG 
emissions through one or more measures, sometimes regardless of the merits of each policy or the 
interactions among the policies.   

Oregon already has enacted several other policies intended to reduce GHG emissions, including: 

 Clean Fuels Program (CFP).  The Clean Fuels Program is a standard designed to lower the 
carbon intensity of transportation fuels.  The CFP requires reductions in the average fuel carbon-
intensity below a baseline level.  As regulated by the program, carbon-intensity reflects “life-
cycle” emissions that include tail pipe emissions, emissions sequestered in the process of growing 
fuel crops (for renewable fuels), and emissions created during fuel production.  Fuel suppliers can 
comply with the standard by selling a mix of fuels with an average carbon-intensity below the cap 
(i.e., “over-complying”), or by purchasing credits generated by suppliers that have over-complied 
with the standard. The program was implemented in 2016. 

 Renewable Portfolio Standard (RPS).  Oregon’s RPS requires that 50% of electric power used in 
the state be generated from renewable sources of electricity by 2030.  Renewable energy sources 
include technologies such as wind power, solar power, geothermal power, small hydropower, 
certain biomass products, and power generated with landfill gas.   

 Sustainable Transportation Initiative.16 This initiative is an integrated statewide effort to reduce 
GHG emissions from the transportation sector.  Efforts include: a Statewide Transportation 
Strategy; GHG emission reduction targets for metropolitan areas; land use and transportation 

 

15 SB 1507, Sections 26 and 28. 
16 https://www.oregon.gov/ODOT/Programs/Pages/OSTI.aspx. 
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scenario planning guidelines; and tools that support local governments in reaching their emissions 
reduction goals. 

 Coal-to-Clean Law.  This law requires that the state’s electric utilities eliminate coal-fired 
electricity from their mix of energy generation by 2030. 

 Energy Trust of Oregon. The Energy Trust of Oregon provides information, cash incentives and 
technical assistance to help Oregon utility customers invest in energy-saving or renewable energy 
projects.  Its services and support are available to both residential and commercial customers.  
The Trust is funded by charges included in electric and natural gas utility customer bills.   

Below, we identify the key conceptual issues affecting decisions to develop policies to 
complement a GHG cap-and-trade program.  First, we identify the conditions under which 
complementary policies can improve environmental and economic outcomes, particularly by addressing 
problems (“market failures”) not addressed by cap-and-trade and by targeting emission sources not 
targeted by cap-and-trade.  Next, we consider when interactions between GHG cap-and-trade systems and 
other policies are problematic, raising costs and failing to achieve emission reductions.  Finally, we 
consider options policymakers have when political conditions do not support setting carbon prices at 
sufficiently high (efficient) levels. 

A. Economic Principles for Complementary Policies  

From an economic perspective, the primary purpose of regulatory interventions is to remedy 
market failures that prevent markets from arriving at economically efficient outcomes.  If a regulation can 
create positive net benefits (benefits greater than costs) by addressing a market failure, without imposing 
excessive costs or unintended consequences, economic welfare can be improved. 

The key market failure contributing to health and environmental impacts is the failure of 
households, businesses, and industry to account for these impacts in their energy use decisions.  
That is, energy prices do not reflect the true social costs of energy use.  As a result, energy use and 
associated impacts are too high from the standpoint of society as a whole.17  This problem has been well 
studied, and there is universal consensus that the most efficient approach to this problem is to set 
energy prices at their true social costs through environmental prices, such as carbon prices created 
through a cap-and-trade system.   

For climate change, the economic cost (damages) of additional GHG emissions are measured by 
the social cost of carbon.   Estimates of the social cost of carbon were developed by the United States 
Government’s Interagency Working Group (IWG) on the Social Cost of Greenhouse Gases.  Developed 
to provide United States’ regulatory bodies with a consistent estimate of the social cost of carbon for use 
in regulatory analyses,18 the IWG’s estimates of the social cost of carbon have become a standard 

 

17 In addition, energy may be underpriced for a variety of other reasons, which could also lead consumers to use 
excess energy. 
18 See Technical Support Document: Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 
12688, Interagency Working Group on Social Cost of Carbon, United States Government, February 2010 (“TSD 
2010”) at 1-4.  There have been a range of estimates produced of the social cost of carbon.  See e.g. National 
Research Council, 2009, Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use, 
Washington, DC: The National Academies Press at 216-219 for a brief review. 
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benchmark, used by many other regulators, including CARB.19  The IWG’s most recent estimates 
indicate that the social cost of carbon from emissions occurring in 2030 would range from $25 to 
$115 per metric ton (in nominal dollars), depending upon the choice of discount rate used to 
convert the future damages created by those emissions into present value terms.20  For example, the 
damages from 1 metric ton of emissions in 2030 would be $79 in 2030 dollars when the future impact of 
those emissions are discounted back to 2030 at a 3% discount rate.  These social cost of carbon estimates 
represent the global damages to various sectors, including agriculture and energy dependent sectors, 
climate driven human health impacts, damages from sea-level rise, and impacts to ecosystem services.21 

 However, the failure of energy prices to reflect true environmental costs is not the only market 
failure relevant to climate policy.  From an economic perspective, the criteria for complementary policies 
is relatively clear in principle.  Complementary policies may provide economic benefits under one of 
two conditions:22   

1. The complementary policy targets market failures unrelated to the GHG emission 
externality;  or 

2. The complimentary policy targets sources that are not under the cap of the cap-and-trade 
program.   

In each case, particular complementary policies must still be shown to provide positive net benefits and 
be preferred to other alternatives.  

We turn first to the rationale for complementary policies that there are market failures present 
which are unrelated to the GHG emission externality.  Several different types of market failures are 
particularly relevant to the climate change problem: 

 

19 CARB relies on the IWG’s estimate that employs a 3% discount rate.  CARB also converts this value to 2015 
dollars, accounting for inflation. See California Air Resources Board, California’s 2017 Climate Change Scoping 
Plan, November 2017 (“2017 Scoping Plan”) at 40 and fn. 97; see also CARB, “Preliminary Concepts” February 
2018. at Table 5, available at  
https://www.arb.ca.gov/cc/capandtrade/meetings/20180302/ct_price_concept_paper.pdf.  
20 See TSD 2016 at 4.  The IWG also presents a set of higher estimates reflecting more extreme assumptions 
regarding the underlying modeling inputs.  This higher set of estimates places the 2030 social cost of carbon at $240 
in 2030 (in $2030).  The IWG reports the social cost of carbon in $2007.  We convert $2007 to $2030 using 
historical annual average CPI values for all urban consumers provided by the BLS 
(https://www.bls.gov/cpi/tables/supplemental-files/home.htm) and forecasted CPI values that we derive from 
forecasted year to year (specifically Q4 to Q4) percent changes in the CPI presented by the 2018 Economic Report 
of the President, (https://www.whitehouse.gov/wp-content/uploads/2018/.../ERP_2018_Final-FINAL.pdf, Table 8-1, 
column 4).   
21 These values derive from three integrated assessment models (IAM) that assess how changes in greenhouse gas 
driven temperatures impose costs and various impacts.  All models also contain some characterization of adaptation, 
and in various ways capture catastrophic or extreme climate change driven impacts.  See TSD 2010 § III.A for 
further detail regarding the models underlying the social cost of carbon estimates.  See also TSD 2016 § II for 
further detail regarding updates to these models that underlie the most recent social cost of carbon estimates.  For 
further details regarding the process IWG followed in estimating the social cost of carbon, see TSD 2010 § III, IV.   
22 Bennear, Lori and Robert N. Stavins, “Second-best theory and the use of multiple policy instruments,” 
Environmental and Resource Economics 37(1): 111-129, 2007. 



GHG Cap-and-Trade: Implications for Effective and Efficient Climate Policy In Oregon 

 

Page 8 

 Information Problems.  When market participants fail to have accurate information about a 
product’s attributes, they can make decisions that do not account for the true costs and 
benefits of alternative choices.  Two types of information problems are of particular 
concern.23  The principal-agent problem arises when one party makes decisions with 
financial implications for another party.  For example, building owners may not make 
investments in energy efficiency if they lease to tenants that pay their own utility bills, since 
the tenant will keep the cost savings; likewise, renters may not make such investments, 
because there is a high likelihood they will move and lose out on future energy savings.  
Informational problems also include asymmetric information, which arises when one party to 
a transaction has more information than others.   

 Behavioral failures.  Behavioral market failures refer to market outcomes that derive from 
actions that diverge from what economists have typically defined as rational behavior.  For 
example, consumers seem to require higher compensation for giving up a good than their 
expressed willingness to pay for the same good.  Behavioral failures have been invoked as an 
explanation for the apparent failure of households and businesses to adopt cost-effective 
energy efficient technologies – that is, technologies that produce energy cost savings that 
exceed the cost of technology adoption.24   

 Innovation Spillovers.25  Achieving ambitious climate goals will require substantial 
innovation in energy technologies to reduce their GHG emissions, while continuing to 
provide the many benefits created by use of energy.  Such innovation includes both 
development of new technologies as well as increases in the efficiency and reductions in the 
cost of existing technologies.   

Innovation leads to positive knowledge spillovers as ideas from research and development 
(R&D) flow into and enhance other R&D activities.  Even if new innovations have legal 
protections such as patent exclusivity, innovators cannot capture all of these spillovers.  
Because innovators do not reap all of the rewards created by their innovation, private 
incentives to invest in R&D are below the socially optimal level.   

 Congestion Externalities.  Socially inefficient levels of traffic congestion lead to many costs, 
including excess fuel use and emissions, and lost time.  However, efficient congestion pricing 

 

23 A third problem is related to the “public good” aspect of information: once created, information can be used by 
many people at little or no additional cost.  Because it may be difficult to limit access to information, the incentive 
for any individual to develop information is reduced.  Consequently, general information about energy efficiency 
may be underprovided.  However, this public good attribute does not diminish the incentive for any individual 
market participant, such as a building owner, to supply information about their own product (or building), since this 
information can distinguish their products from competitors’ offerings.  Building labeling has no obvious impact on 
this potential problem. 
24 Stavins, Robert N., Todd Schatzki, and Jonathan Borck, “An Economic Perspective on Building Labeling 
Policies,” March 2013. 
25 For a related discussion focusing on renewable energy technologies, see Gillingham, Kenneth and James 
Sweeney, “Market Failure and the Structure of Externalities”, In: Harnessing Renewable Energy, Boaz Moselle, 
Jorge Padilla, Richard Schmalensee (eds). RFF Press, 2019.   
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may be impractical because of technical challenges.  As a result, certain public policies may 
target these externalities, such as subsidies for public transportation.  

 Network Externalities.  Many energy systems include distribution networks that deliver fuel 
to individual consumers.  For a given technology or fuel type, the availability and reliability 
of the network used to delivery energy is an important dimension of consumer technology 
choices.  Network externalities potentially affect these technology choices.  Several examples 
from the transportation sector illustrate network externalities.   

Hydrocarbons, electricity and hydrogen are three important transportation fuel technologies 
that each require distinct refueling infrastructure.  At present, the ubiquity of gasoline service 
stations creates a positive network externality -- the benefits of owning a traditional gasoline 
powered vehicle increase with a more-developed refueling network.  Due to these positive 
network externalities, the incentives favor owning a gasoline-powered vehicle relative to, for 
example, an electric vehicle, which depends on a less-developed network of electric charging 
stations.  While a more developed network of charging stations would increase the benefits of 
owning an electric vehicle, without sufficient numbers of electric vehicles on the road, 
incentives to invest in charging stations may be inadequate (Li et al, 2017). The resulting 
“chicken-and-egg” problem may prevent the efficient market developments.  

Another example of a network externality is hydrocarbon standards.  Combustion and diesel 
engines are designed to accept fuels meeting particular fuel specifications.  For example, 
most gasoline-powered vehicles rely on E10, which includes up to 10% ethanol, but cannot 
operate on higher fractions of ethanol without creating risks of engine damage and voiding of 
warranties.  As a result, these technical engine standards may create a “blend wall” that limits 
the ability to blend renewable fuels.   

Policies aligned with the underlying market failure will address most efficiently and effectively 
these market failures.  For example, network externalities associated with refilling/recharging station 
networks suggest subsidization of refilling/recharging networks.26  By contrast, while some other policies 
would address transportation technologies, they would not necessarily address network externalities.  For 
example, an LCFS subsidizes all forms of transportation irrespective of whether a particular fuel faces a 
network externality.  Moreover, an LCFS subsidizes the variable costs associated with each fuel system, 
rather than addressing the fixed costs (or standards) associated with refilling/recharging infrastructure.  
Likewise, congestion externalities suggests some subsidization of public transportation or congestion 
zone pricing.  But, an LCFS would do nothing to address the congestion market failure, since it does not 
directly address any component of a consumer’s travel decisions. 

Similarly, policies to address innovation spillovers should target underinvestment in energy 
R&D.  Many market-based policies, such as GHG cap-and-trade systems, RPS and the LCFS, create 
financial incentives for private firms (entrepreneurs) to increase investment in energy R&D.  However, 
these policies create uniform incentive for GHG reductions regardless of the state of technology 
development.  Thus, depending on the state of technology development, these policies may promote 

 

26 Of course, this approach is not without challenges.  Uncertainty over which new technology will be the most cost-
effective creates the risk that the “wrong” technology is subsidized. 
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substantial technological innovation or simply lead to widespread deployment of pre-existing 
technologies.   

Despite these issues, regulators, such as CARB, have sometimes argued that these types of 
market-based policies are “technology” policies aimed at encouraging innovation, as distinct from 
policies aimed at cost-effectively achieving emission reductions.  For example, CARB has argued that its 
LCFS is a “technology” policy aimed at “spurring innovation” in cleaner fuels.27  However, this claim not 
only suggests that the gains in energy innovation outweigh the higher costs of these policies, but that their 
net gains outweigh those of other policies targeting increased energy R&D.     

Other policy approaches may better target R&D incentives.  For example, the federal government 
(and some state governments) undertakes substantial direct R&D investment in energy technologies.28   
To the extent policies aim to subsidize innovative technologies, such subsidies can be gradually reduced 
as market deployment increases.  By contrast, most current policies such as California’s LCFS have no 
mechanism to reduce incentives once a technology becomes mature.   

B. Interactions between Cap-and-Trade and So-Called Complementary 
Policies 

For state-level climate policies, interactions can occur between individual elements of a state 
policy or between state policy and federal policy.  In either case, interaction between policies has 
potential implications for the cost-effectiveness of actions taken to reduce GHG emissions, and can have 
implications for aggregate emission reductions as well.29  Interactions between policies are most 
problematic when two conditions occur:30  

1. When a state policy creates more stringent requirements that overlap with a “broader” state or 
federal policy (“overlap criteria”); and  

 

27 For example, “Since 2011, the LCFS has been a cornerstone of California’s effort to reduce greenhouse gas 
(GHGs) emissions and has spurred innovation in low-carbon transportation fuels such as hydrogen, electricity and 
biodiesel.” CARB, “CARB amends Low Carbon Fuel Standard for wider impact,” September 27, 2018.; “The LCFS 
is an important tool in California’s efforts to reduce the impacts of climate change by spurring innovation in an array 
of cleaner fuels.” CARB, “Air Resources Board readopts Low Carbon Fuel Standard,” July 19, 2017.; A group of 
UC Davis researchers concluded similarly, noting that “[t]he LCFS will clearly induce technological innovation and 
investment in new technologies, but perhaps with some delay.” Farrell, Alexander E. and Daniel Sperling, “A Low-
Carbon Fuel Standard for California Part 1: Technical Analysis", Institute of Transportation Studies, UC Berkeley, 
May 29, 2007; See also Parson et al., 2018. 
28 Clark, Corine, “Renewable Energy R&D Funding History: A Comparison with Funding for Nuclear Energy, 
Fossil Energy, Energy Efficiency, and Electric Systems R&D,” Congressional Research Service, June 18, 2018. 
https://fas.org/sgp/crs/misc/RS22858.pdf. 
29 Goulder, Lawrence and Robert Stavins, “Challenges from State-Federal Interactions in U.S. Climate Change 
Policy,”  American Economic Review Papers and Proceedings, volume 101, number 3, May 2011, pages 253-257.  
Goulder, Lawrence and Robert Stavins, “Interactions Between State and Federal Climate Change Policies,” The 
Design and Implementation of U.S. Climate Policy, eds. Don Fullerton and Catherine Wolfram.  Cambridge: 
National Bureau of Economic Research, 2012. 
30 Goulder and Stavins identify these conditions for interactions between state and federal climate policies.  Goulder, 
Lawrence and Robert Stavins, 2012.  
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2. The broader federal or state policy provides flexibility to meet requirements through adjustments 
across sectors or states, i.e. averaging (“flexible policy criteria”.)  

Not all policies meet these conditions.  For example, broader state or federal policies using command and 
control or price-based instruments have limited interaction with state-level policies.  By contrast, policies 
that trade in quantities (for example, cap-and-trade) and policies that average performance (for example, 
renewable portfolio standards and fleet vehicle efficiency standards) provide flexibility that creates 
perverse interactions between policies. 

In the context of Oregon’s climate policies, the interaction of greatest concern is between 
the GHG cap-and-trade program and other climate policies that regulate sources covered by the 
cap-and-trade program.31  For example, emissions from transportation fuel combustion are regulated by 
both the cap-and-trade program and by the CFP, which mandates reductions in the GHG-intensity of 
transportation fuels.   

In general, when state-level policies overlap with cap-and-trade, the complementary policies 
will fail to create any additional emission reductions.  With a binding cap-and-trade system in place, 
aggregate emissions will equal the cap whether or not complementary policies are implemented.32 While 
complementary policies may shift emissions among sources or sectors covered by the cap, aggregate 
emissions will remain unchanged.  Under these conditions, the complementary policy produces no 
incremental emission reductions; it simply relocates the emissions (or worse, as we discuss below).  

In addition, complementary policies may increase the cost of meeting emission targets when 
implemented alongside cap-and-trade.  If complementary policies require that more costly emission 
reductions be undertaken, then the shift from lower-cost to higher-cost reduction activities increases the 
cost of achieving emission targets.  If the complementary policy requires reductions that are cost-effective 
under cap-and-trade then the reductions occur whether or not the complementary policy is implemented; 
consequently, costs do not rise, but the policy is irrelevant.  A complementary policy can shift emission 
reductions to lower-cost emission reduction activities only if it targets non-GHG market failures, such as 
information problems or behavioral biases regarding household energy use, or targets sectors not covered 
by the cap-and-trade system. 

Complementary policies may depress cap-and-trade allowance prices.  Because 
complementary policies may require emission reductions that are more costly than would be required 
under cap-and-trade, these requirements displace emission reductions that would otherwise be required by 
the cap-and-trade system.  As a result, the quantity of emission reductions required to meet the cap are 
reduced, which depresses the price of cap-and-trade allowances.  These low prices are problematic for 
induced technological change. 

 

31 Schatzki, Todd and Robert N. Stavins, “Implications of Policy Interactions for California’s Climate Policy”, 
Regulatory Policy Program, Mossavar-Rahmani Center for Business and Government, Harvard Kennedy School, 
August 27, 2012. 
32 If the cap is not binding, then complementary policies can reduce emissions.  For example, for several quarters in 
recent years, California’s cap was not binding because the auction reserve prices limited allowance allocations.  
However, the low demand for allowances was primarily a result of the substantial emission reductions achieved by 
the complementary policies.  Thus, the actual reduction in emissions achieved by the complementary policies was 
likely limited to the allowances unsold at auction. 
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In fact, several of Oregon’s existing climate policies regulate emissions that would be 
covered by a GHG cap-and-trade system.  Oregon’s RPS regulates the generation of electricity, 
which is largely produced by large stationary sources and electricity imports, both of which would 
be covered by the proposed GHG cap-and-trade system.33  Because the RPS regulates sources covered 
by the GHG cap-and-trade proposals, once the GHG cap-and-trade system is in place, the RPS will not 
achieve any incremental emission reductions.  Worse yet, because the RPS would raise costs if it required 
the adoption of renewable energy technologies that reduced GHG emissions at a higher cost than other 
options.   

 Interactions between the Oregon’s CFP and its GHG cap-and-trade system would be more 
complicated because portions of the transportation fuel lifecycle would be covered by the GHG cap-and-
trade system, while other portions of the fuel lifecycle would be outside the cap.  In section III, we 
provide a more detailed description of these interactions and analyze the actual change in emissions from 
the California’s LCFS.  

III. EXPERIENCE WITH INTERACTIONS BETWEEN CALIFORNIA’S LCFS AND 
ITS GHG CAP-AND-TRADE SYSTEM 

California’s AB 32 Scoping Plan includes multiple elements aimed at achieving climate targets 
specified in California’s Global Warming Solutions Act of 2008.  Implementation of these policies has 
been staggered, but generally started several years in advance of policies in Oregon.  Because many of 
these policies have been in place for multiple years, California’s experience can provide a valuable lens 
into the interactions among policies, which other states, such as Oregon, can expect from their suite of 
climate policies.   

We focus on interactions between California’s LCFS and its GHG cap-and-trade system.  The 
LCFS has been in place since 2013.  While the GHG cap-and-trade system has been in place since 2013 
as well, the cap initially covered only large stationary point sources, and was not expanded to cover fuels 
until 2015.  As a result, California’s experience allows market impacts to be analyzed before and after the 
interactions between the programs first occurred. 

A. Changes in Costs Due to the LCFS  

Both the LCFS and GHG cap-and-trade system create price signals that reflect the marginal costs 
of achieving emission reductions.  The LCFS has its own trading program, and LCFS credit prices reflect 
the (marginal) cost of reducing CO2 emissions by switching from high-carbon fuels to low-carbon fuels 
given their differences in carbon intensity.  Likewise, GHG allowance prices reflect the tradeoff between 
taking actions to reduce emissions and the market value of those emission reductions.   

There is a large difference between GHG cap-and-trade allowance prices and LCFS credit 
prices in California.  Figure 1 compares LCFS credit prices and GHG allowance prices from 2013 to 
present.  For the program’s first few years, LCFS credit prices were often at relatively low levels, 
comparable to GHG cap-and-trade allowance prices.  However, after legal uncertainty about the program 

 

33 SB 1507, Section 13.(2). 
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was resolved and the carbon-intensity standard was reduced, prices increased appreciably, and have since 
remained at levels above $80 per MTCO2e. In recent months, prices have been closer to $180 per 
MTCO2e.  By contrast, GHG cap-and-trade allowances prices are approximately $14 per MTCO2e and, 
for a period, were at the administratively set auction reserve price (i.e. the price floor).  

Figure 1. California’s LCFS Credit Prices vs. GHG Cap-and-Trade Allowance Prices 

 
Notes: [1] The monthly cap-and-trade allowance price is calculated as the monthly average of the California 
carbon allowance future contract price from SNL. [2] The monthly LCFS credit price is equal to the CARB 
monthly average credit price. 
Sources: [1] CARB. [2] SNL Financial. 

The large difference between LCFS credit prices and GHG cap-and-trade allowance prices 
in California indicates that, at the margin, the emission reductions being achieved by the LCFS are 
substantially more costly than reductions achieved through the GHG cap-and-trade system.  For 
example, in August 2018, LCFS credit prices averaged $179/MT, while GHG cap-and-trade allowance 
prices averaged just $15/MT, indicating that marginal CO2e abatement costs are more than eleven times 
greater in the LCFS program than in the GHG cap-and-trade system. 

The interactions between the two programs place downward pressure on cap-and-trade 
allowance prices.  In effect, the more costly emission reductions required by the LCFS displace less 
costly emission reductions that would otherwise be achieved by the cap-and-trade program.  But, by 
reducing emissions from sources that are covered by the cap, the LCFS requirement effectively reduces 
the GHG cap stringency, thus reducing allowance prices.   

Credit prices for Oregon’s CFP will differ from prices in California’s LCFS.  Figure 2 illustrates 
this, comparing credit prices and volume transacted from California’s LCFS and Oregon’s CFP.  
Differences in credit prices reflect a number of factors.  One important factor is the difference in the 
stringency between Oregon and California.  With a more stringent carbon-intensity standard, the use of a 
low-carbon fuel generates fewer credits, thus raising the cost of generating credits.  For example, in 2017, 
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Oregon’s CFP required reductions in carbon intensity of 0.5% (relative to a 2015 baseline), while 
California’s LCFS required reductions of 3.5% (relative to a 2010 baseline).  In 2018, required reductions 
are 1% and 5% for Oregon and California, respectively.  In addition, estimated carbon-intensity for 
individual renewable fuels tends to be lower in Oregon than in California, so substitutions generate more 
credits in Oregon than in California.34  Thus, use of a given type of low-carbon fuel will tend to create 
more credits in Oregon than California, thus lowering the cost.   

Figure 2. Comparison of Credit Prices and Volume Transacted, 
California’s LCFS and Oregon’s CFP 

 
Sources: [1] CARB. [2] Oregon Department of Environmental Quality. 

 

The incremental costs of achieving emission reductions through the LCFS, rather than the 
GHG cap-and-trade system, have been substantial.  Figures 3 provides an estimate of the incremental 
costs of the LCFS relative to the GHG cap-and-trade system.  The observed emission reductions are 
relatively small, less than 4% of the total annual emissions from the California transportation sector and 
less than 2% of overall state GHG emissions. In total, estimated incremental LCFS costs were around 
$300 million in both 2016 and 2017, and over $750 million over the 5-year period from 2013 to 2017.  
Extrapolating for 2018, estimated costs could exceed $400 million.   

 

 

34 A key source of these differences is that California’s carbon-intensity estimates account for indirect land use 
change, whereas estimates in Oregon to not. 
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Figure 3. Annual Incremental Costs, California’s LCFS 

 
Note: We distinguish in our calculations between expenditures by reducing entities and economic cost of 
emission reductions. Expenditures associated with emission reductions are simply (annual emission reductions 
[MT]) × (average annual credit price [$/MT]), where the average annual credit price represents the average of 
the 12 monthly CARB reported average credit prices. Costs of emission reductions can be represented by the 
area under an emissions reduction supply curve between the origin and market clearing price, here represented 
by the average annual credit price. If we make the simplifying assumption of a linear supply curve, costs will 
equal half of the expenditures, since the area of a triangle is one half the area of a rectangle with same base and 
height. 

Source: CARB. 

B. Changes in Emissions Due to the LCFS 

While the adoption of a GHG cap-and-trade system will increase the certainty of 
environmental outcomes, interactions between the GHG cap-and-trade system and complementary 
programs have consequences for the incremental impact of these complementary measures.  With 
the LCFS, these interactions are complicated because LCFS compliance depends on the lifecycle 
emissions of each type of transportation fuel, not simply emissions from vehicle fuel combustion.  While 
all of the vehicle emissions are covered by the cap-and-trade program, the portion of a fuel’s productions 
emissions that are regulated by the cap-and-trade system varies across fuel types.  The change in 
emissions due to the LCFS will reflect these differences in emissions outside the cap, rather than activity 
that is covered by the GHG cap-and-trade system.   

Figure 4 illustrates the impact of the substitution of a quantity of ethanol for an equal quantity of 
gasoline (CARBOB).  The example assumes that the gasoline is refined in California, while ethanol is 
refined in an out-of-state (non-California) refinery.  The gasoline carbon-intensity is 101 gCO2e, 
including vehicle emissions (74 gCO2e), in-state production emissions (14 gCO2e), and out-of-state 
production emissions (13 gCO2e).   By contrast, ethanol carbon-intensity is lower, 79 gCO2e, reflecting 
only in-state emissions (4 gCO2e), and out-of-state production emissions (75 gCO2e).  Under the LCFS, 
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ethanol produces very little net vehicle emissions because carbon sequestered in the process of growing 
corn to produce ethanol offsets tailpipe emissions.  

Absent the GHG cap-and-trade system, switching from gasoline to ethanol results in a carbon 
reduction of 22 gCO2e (that is, 101 gCO2e - 79 gCO2e).  However, with the GHG cap-and-trade system in 
place, the impact needs to account for the interaction of the switch to ethanol proscribed by the LCFS 
program with the GHG cap-and-trade system.  Accounting for this impact requires a separate analysis of 
changes in emissions from sources covered by the cap-and-trade system and those outside the cap.   

Start with emissions under the cap.  For gasoline, 88 gCO2e of lifecycle emissions are covered by 
the cap (74 gCO2e of vehicle emissions + 14 gCO2e from in-state refining), whereas only 4 gCO2e of 
ethanol lifecycle emissions would be covered by the cap.  Thus, substituting ethanol for gasoline reduces 
GHG emissions under the cap by 84 gCO2e (that is, 88 gCO2e - 4 gCO2e).  However, because total 
emissions under the cap is fixed, there is actually no change in emissions under the cap; instead, other 
sources under the cap will increase their emissions by 84 gCO2e given the slack in emission created by 
substitution.   

 

Figure 4. Illustration of Change in Emissions due to  
Substituting Ethanol for Gasoline under the LCFS 

 
Note: [1] We assume that the cap binds; thus any reduction in emissions covered by the cap will be replaced by emissions from 
another sector or source covered by the cap. This accounts for the increase in emissions due to interaction with the GHG cap-and-
trade system. [2] Assumptions regarding what is under the cap and outside the cap are made for illustrative purposes. 
Source: [1] CARB. 

Outside the cap, production of 1 MJ of ethanol increases GHG emissions by 75 gCO2e, while 
production of 1 MJ less of gasoline decreases GHG emissions by 13 gCO2e.  As a result, substitution of 
ethanol for gasoline increases emissions outside the cap by 62 gCO2e (that is, 75 gCO2e - 13 gCO2e).  

Net Change in Emissions

Outside the Cap

-1 MJ of CARBOB

Vehicle: [-74] gCO2e

Production: [-14] gCO2e

+1 MJ of Ethanol

Vehicle: [+4] gCO2e

Production: [0] gCO2e

-1 MJ of CARBOB

Vehicle: [0] gCO2e

Production: [-13] gCO2e

+1 MJ of Ethanol

Vehicle: [0] gCO2e

Production: [+75] gCO2e

Under the Cap

Emissions Reduction from Substitution
-74 + (-14) + 4 + 0

= [-84] gCO2e

Emissions Increase from Cap-and-Trade
Interaction

= [+84] gCO2e

Emissions Increase from Outside the Cap
0 + (-13) + (0) + (75)

= [+62] gCO2e

Net Change in Emissions
(-84) + (84) + (62)

= [+62] gCO2e
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Thus, while the substitution produces no change in emissions under the cap, emissions outside the cap 
increase by 62 gCO2e.  

The change in emissions from the substitution of low-carbon fuels for traditional fossil fuels 
-- gasoline and diesel -- depends on the specific substitution made and the difference in lifecycle 
emissions that are outside California’s GHG cap-and-trade system.  Table 1 illustrates these 
differences for several types of substitutions.  For each fuel, we break down lifecycle emissions into 
production and vehicle emissions under the cap, and emissions outside the cap.  Without cap-and-trade, 
the impact of any given fuel substitution reflects the change in “Total” carbon intensity.  However, with 
cap-and-trade, the impact reflects the change in “Outside the Cap” carbon intensity.   

As shown in Table 1, due to interactions with the cap-and-trade program, substitutions can either 
increase or decrease GHG emissions.  For example, while substitution of ethanol for gasoline increases 
emissions by 62 gCO2e (that is, 75 gCO2e - 13 gCO2e), substitution of electricity (EVs) for gasoline 
reduces emissions by 66 gCO2e (that is, -53 gCO2e - 13 gCO2e).  Likewise, substitution of biodiesel for 
diesel fuel (ULSD) increases emissions by 8 gCO2e (that is, 23 gCO2e - 15 gCO2e), while a substitution 
from gasoline to compressed natural gas (CNG) from landfills decreases emissions by 54 gCO2e (that is, - 
39 gCO2e - 15 gCO2e).   

  

Table 1. Lifecycle Emissions of Gasoline, Diesel, and Substitutes (gCO2e per MJ) 

 

 

Source: CARB. 

  

Because individual substitution between traditional fossil fuels and renewable fuels could 
increase or decrease emissions, the aggregate impact of the LCFS will depend on the mix of 
substitutions used by the market to comply with the LCFS.   We estimate the aggregate impact of the 
LCFS in California from 2012 to present.  The analysis reflects the particular mix of fuel used to comply 
with the LCFS, the carbon-intensity of each type of fuel, and the portion of each type of fuel produced 
within California (and thus subject to the cap).  Further details on the analysis are provided in the 
appendix. 

Lifecycle Component CARBOB Corn Ethanol Electricity
Production 14 - 84
Vehicle Use 74 4 -
Production 13 75 21
Vehicle Use - - -74

Total 101 79 31
Outside the Cap 13 75 -53

Under the Cap

Outside the Cap

Lifecycle Component ULSD
Cooking Oil 

Biodiesel
Landfill Gas to 

CNG
Production 13 - -
Vehicle Use 75 3 64
Production 15 23 -39
Vehicle Use - - -

Total 103 26 25
Outside the Cap 15 23 -39

Under the Cap

Outside the Cap
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 In aggregate, the direct impact of the LCFS leads to modest reductions in emissions.  Figure 6 
shows the direct reduction in emissions from the LCFS, before accounting for the interaction with the 
GHG cap-and-trade system.  These estimates reflect reductions achieved by changing the mix of fuels 
consumed, but do not reflect aggregate reductions.  In fact, total GHG emissions from transportation 
continue to grow under the LCFS, as policies have failed to stem the growth in vehicle miles travelled.  
Figure 7 shows these changes relative to California’s total emissions and total transportation emissions.  
These changes are modest.  For example, the direct change in emissions from the LCFS in 2017 was 
about 3.5% of total emissions, although this change required credit prices of more than $80 per MTCO2e.   

 

Figure 6. Direct Change in Carbon Emissions by Year from California’s LCFS 

 
Source: California Greenhouse Gas Emission Inventory. 
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Figure 7. LCFS Direct Emission Change Relative to California Aggregate Emissions 

 

Source: California Greenhouse Gas Emission Inventory. 

 

On average, fuel substitution required to comply with the LCFS has led to an increase in 
emissions from fuel production outside California not covered by the state’s GHG cap-and-trade 
system.  Thus, in aggregate, the LCFS has increased total GHG emissions.  Figure 8 shows estimated 
changes in total GHG emissions from the LCFS over the period 2012 to 2015.  Starting in 2015 when the 
GHG cap-and-trade system was expanded to include fuels, Figure 8 shows the actual change in emissions 
given the interaction between the LCFS and the GHG cap-and-trade system (the solid blue line) and the 
emissions reductions the LCFS would have achieved absent the GHG cap-and-trade system interaction 
(the dashed blue line).35   Table 2 provides detailed estimates of the changes in emissions associated with 
the increased (or decreased) use of each type of renewable fuel.36   

Prior to 2015 the LCFS achieved reductions ranging from 287,406 to 2,105,268 MTCO2e 
annually, as low-GHG fuels were substituted for fossil fuels.  However, since the GHG cap-and-trade 
system was expanded to include transport fuels in 2015, emissions outside California (i.e., outside the 

 

35 We cannot measure changes in emissions relative to 2010, the year prior to the adoption of the LCFS, because 
CARB does not provide detailed data on fuel consumption in 2010.  Thus, we measure changes in emissions relative 
to actual emissions in 2011, the first year the program was in effect.  Because the LCFS required only a 0.25% 
reduction in carbon intensity in 2011, a relatively weak requirement, emissions in 2011 provides reasonable 
benchmark for evaluating program impacts.   
36 Over time, the mix of non-traditional fuels has shifted, resulting in lower consumption for some renewable fuels 
with comparatively higher carbon-intensity.  For example, LCFS incentives have led to “fuel shuffling”, with 
reduced consumption of high-carbon-intensity ethanol (> 75 gCO2e/MJ) and increased consumption of lower-
carbon-intensity ethanol.   
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state’s GHG cap-and-trade system) have increased in each year due to the interaction between the two 
programs.  In 2015, emissions increased by 720,777 MTCO2e, while in 2017, emissions increased by over 
600,000 MTCO2e.   

 

Figure 8.  Aggregate Change in Emissions from California’s LCFS  

 

Note: [1] For 2012-2017, the estimated change in emissions assumes a counterfactual with renewable fuel use 
equal to 2011 levels. For 2018 (Q1), the estimate change emissions assumes a counterfactual of one fourth of 
renewable fuel use from 2011. The analysis does not assume any adjustment to renewable fuel use from 2011 
levels that might occur under a GHG cap-and-trade system. Estimates also do not account for emissions from in-
state production that might be covered by a GHG cap-and-trade system. 
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Table 2. California Overall Net Change in GHG Emissions (MTCO2e) 

 
Note: [1] For 2012-2017, the estimated change in emissions assumes a counterfactual with renewable fuel use equal to 2011 
levels. For 2018 (Q1), the estimate change emissions assumes a counterfactual of one fourth of renewable fuel use from 2011. 
The analysis does not assume any adjustment to renewable fuel use from 2011 levels that might occur under a GHG cap-and-
trade system. Estimates also do not account for emissions from in-state production that might be covered by cap-and-trade. 

 

 The increase in emissions reflects several factors.  First, nearly all gasoline and diesel used in 
California is produced in refineries located in California.  Thus, reductions in emissions from this refining 
activity are offset by increases in emissions from other activities.  Second, fuel production and refining 
emissions tend to be larger for low-carbon fuels than for traditional fossil fuels.  Thus, the substitution to 
low-carbon fuels produced out of state often leads to large emission increases.   

C. Technology Innovation  

CARB has justified the high cost of the LCFS by claiming that it is a “technology” policy aimed 
at “spurring innovation.”  A complete analysis of incremental innovation and R&D fostered by the LCFS 
is beyond the scope of this paper.  Such an analysis would need to determine whether technology 
innovation outcomes (e.g., patents, R&D spending) have increased with LCFS credits prices (after 
controlling for all other factors affecting investments in innovation).  Several points can be made about 
LCFS outcomes.   

First, the costs of the LCFS have been large relative to the all government spending on clean 
energy R&D.  As discussed above, the LCFS has imposed costs of over $700 million in both 2016 and 
2017.  This spending in on par with all Federal spending on renewable energy R&D.  From 2009 to 2018, 
Federal research and development spending on renewable energy averaged $937 million annually.37  For 
example, one important energy R&D program is the Advanced Research Projects Agency-Energy’s 
(ARPA-E), established in 2007 to help advance high-potential, high-impact energy technologies that are 

 

37 Clark, Corine, “Renewable Energy R&D Funding History: A Comparison with Funding for Nuclear Energy, 
Fossil Energy, Energy Efficiency, and Electric Systems R&D,” Congressional Research Service, June 18, 2018. 
https://fas.org/sgp/crs/misc/RS22858.pdf. 

LCFS Without Cap-And-Trade - No Leakage LCFS With Cap-and-Trade - Leakage
2011 2012 2013 2014 2015 2016 2017 2018 (Q1)

Bio-CNG 0 0 -61,040 -157,016 -43,219 -63,121 -91,938 -25,255
Bio-LNG 0 -196 -29,732 -92,082 -28,857 -31,467 -19,961 -3,453
Fossil CNG 0 -18,702 -31,100 -84,899 -11,726 -691 2,118 314
Fossil LNG 0 -15,693 -18,134 1,018 16,252 20,079 21,051 5,292
Hydrogen 0 0 0 0 -3 -3 -246 -104
Electricity - Onroad 0 -6,244 -25,736 -64,663 -11,552 -19,893 -28,823 -9,373
Electricity - Offroad 0 0 0 0 0 -35,068 -40,236 -9,997
Ethanol <65 0 -114,225 -189,306 -386,832 528,455 787,250 360,397 58,593
Ethanol 65-75 0 -94,366 -212,113 14,938 -119,866 4,538,552 5,578,020 1,417,485
Ethanol >75 0 90,885 199,980 156,361 -553,054 -5,601,373 -6,338,801 -1,683,664
Biodiesel 0 -63,272 -465,040 -578,330 78,772 15,568 197,440 37,252
Renewable Diesel 0 -65,593 -851,453 -913,762 865,575 881,223 972,919 262,765

Total 0 -287,406 -1,683,674 -2,105,268 720,777 491,055 611,939 49,856
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too early for private sector investment. In 2016, the budget for ARPA-E was $294 million, less than half 
of the LCFS’s incremental cost in the same year.   

 Second, compliance with the LCFS has been achieved through fuel technologies which have 
been commercially available prior to the LCFS, but have generally been too costly compared with 
alternatives without the LCFS subsidy.  Figure 9 and 10 illustrate the mix of fuels used to comply with 
the LCFS in terms of number of credits (Figure 9) and percentage of credits (Figure 10).  To date, LCFS 
compliance has been achieved primarily through ethanol, biodiesel, and renewable diesel, accounting for 
over 80% of credits each year.  These fuels were commercially available prior to the LCFS.  Thus, to 
date, LCFS compliance has largely been achieved through the deployment of existing, rather than 
innovative technology.  The LCFS program has expanded the market for these fuels, potentially 
providing producers of these fuels or suppliers of the underlying feedstock with windfalls (economic 
rents).38   

 

 Figure 9.  Mix of Fuels Used to Comply with the LCFS, MMT Credits 

 
Source: CARB. 

  

 

38 The increase in LCFS credit prices increases the value of the underlying feedstock and means of production.  In 
some cases, some production may be held by companies with proprietary technologies although, as we describe 
below, the fundamental chemical processes used in current renewable production are fairly well understood 
scientifically. 
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Figure 10.  Mix of Fuels Used to Comply with the LCFS, Percent of Total Credits 

 

 
Source: CARB. 

 

Ethanol has been the largest source of credits since the inception of the LCFS, while biodiesel has 
been the third largest source of credits.  Both ethanol and biodiesel have been widely produced in the 
United States for decades, in part due to subsidies from the Federal Renewable Fuel Standard.  Ethanol 
use to comply with the LCFS also includes sugar cane ethanol produced in Brazil, where the sugar cane 
industry was well-established prior to the LCFS, having produced significant quantities of fuel for 
decades.  

Some ethanol and biodiesel credits have also been created through “fuel shuffling,” which occurs 
when low-carbon intensity ethanol is directed to California (because of the higher price), while high-
carbon intensity ethanol is directed to other parts of the county.  Fuel shuffling creates “paper” emission 
reductions in California without actually creating any change in the ethanol fuel stock.   

The second largest source of credits is renewable diesel.  Renewable diesel is a “drop in” 
replacement for diesel that does not require any blending.  Use of renewable diesel in California has 
grown in recent years as credit prices have increased.  But, renewable diesel was in production long 
before the LCFS was established.  California’s renewable diesel is supplied primarily by two producers, 
Neste (Singapore) and Diamond Green Diesel (Louisiana).39  Neste has four plants, all of which have 
been operational since 2011.  Thus, renewable diesel is not a novel technology.   

 

39 Neste produces renewable diesel at facilities in Finland, Rotterdam and Singapore in facilities that were 
operational in 2007/2009, 2010 and 2011, respectively. 
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The share of credits from electric powered vehicles (EVs) has grown in each year.  In 2017, EVs 
accounted for over 10% of credits.  Electric vehicles have been growing slowly in share, and face 
significant technical hurdles to broad commercial acceptance (including battery life and cost, and 
necessary recharging infrastructure).  EVs also benefit from multiple state and federal subsidies, including 
federal tax deductions, rebates and incentives and requirements related to EV charging stations.  The 
extent to which the LCFS materially increases these incentives is unclear.   

D. Implications for Oregon 

California’s experience with its LCFS has important implications for Oregon. 

First, the GHG cap-and-trade system will achieve emission reductions at a lower cost than 
other (complementary) policies that Oregon has already adopted to address climate change and 
other environmental impacts.  At present, credit prices for the CFP program are approximately $80 per 
MTCO2e, which is significantly above likely GHG cap-and-trade allowance prices.  At present, emission 
reduction costs from the RPS appear comparable (but subject to uncertainty due to limited information).40  
These costs may rise as the stringency of Oregon’s CFP standard increases.   

Second, Oregon should expect the adoption of a GHG cap-and-trade system will have 
consequences for the effectiveness of the CFP in producing incremental emission reductions.   Like 
California’s LCFS, the CFP will lead to no (or little) emission reductions, and potentially even increase 
emissions as has been the experience in California.  As with California, actual emission outcomes will 
depend on the particular fuel substitutions used to comply with the CFP.  However, differences between 
the state’s programs and markets will lead to differences in emission outcomes.  While nearly all of 
California’s fossil fuel refining occurs in-state and is thus under the cap, none of Oregon’s fuel is refined 
in-state, and so all reductions in refining emissions are outside the cap.  All else equal, this will increase 
the emission reductions achieved by the CFP (compared to California’s LCFS) because reduced gasoline 
and diesel consumption will reduce out-of-state refinery emissions.  In addition, details of the policies, 
notably the carbon-intensities, differ between the states. 

Oregon’s CFP has yet to have a meaningful impact on renewable fuel use, thus making it 
premature to evaluate potential impacts of the overlap with a GHG cap-and-trade system.  In 2017, 
renewable fuel use increased by only 33 Million MJ compared with 20,360 Million MJ consumed in 
2016, an increase of less than 0.2%.41  Changes in the mix of non-traditional fuels led to reductions in 
emissions (as measured by Oregon) of 17,751 MTCO2e.  This is a very small change in emissions, less 
than 0.1% of total transportation in emissions in 2016 (24.2 million MTCO2e).  This change in fuel mix 
included a decrease in ethanol consumption of 713 Million MJ and an increase in consumption of other 

 

40 In 2017, the average reported cost of bundled RECs was $29 per REC for Portland General Electric. (Reported 
cost per REC for unbundled RECs was substantially lower.)  Assuming that the REC displaces natural gas-fired 
generation with a heat rate of 8 MMBtu per MWh, this results in a cost of $68 per MTCO2e.  PacifiCorp’s costs 
were not publicly reported.  Portland General Electric, UM 1958 - PGE 2017 Renewable Portfolio Standard 
Compliance Report, June 1, 2018.  https://www.oregon.gov/energy/energy-oregon/Documents/2017-PGE-
Compliance-Report.pdf 
41 As with our analysis of California’s LCFS, we estimate changes in emissions relative to 2016, the first year of the 
CFP, because Oregon does not report detailed information on non-traditional fuel use in 2015. 
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fuels (including biodiesel, renewable diesel and forms of CNG) of 746 Million MJ.  This shift in the 
composition of non-traditional fuels may be the result of CFP incentives, or it may be the result of other 
market factors. 

IV. NEXT STEPS FOR OREGON CLIMATE POLICY  

As Oregon contemplates the adoption of a GHG cap-and-trade system, it has several options for 
its suite of climate policies.  One approach maintains all policies, as currently proposed, with a new 
GHG cap-and-trade system plus existing complementary policies.  Our analysis shows that, due to 
interactions among overlapping climate policies, retaining many of the existing complementary 
policies could be very costly without achieving any incremental environmental benefits.   

A second option would develop a GHG cap-and-trade system of sufficient stringency to 
achieve targeted emissions or allow prices to rise to the social cost of carbon, and end 
complementary policies that do not produce incremental economic benefits by addressing market 
failure unrelated to the GHG emission externality or target sources not covered by the cap.  This 
approach could begin by undertaking a thorough assessment of the likely interactions among overlapping 
climate policies and the extent to which policies address market failures unrelated to GHG emissions or 
target sources not covered by the GHG cap-and-trade system.  Economic analysis unambiguously 
shows that this second option, relying largely (if not solely) on GHG emission pricing, is the most 
cost-effective approach to achieving emission targets.   

However, political realities may not support the immediate adoption of climate policies relying on 
high (efficient) carbon pricing.  Thus, when carbon pricing is adopted, the resulting price levels are often 
well below the social cost of carbon and price levels that would be needed to achieve the emission targets 
sought by legislators.  Instead, states (and other local governments) often take a “belts and suspenders” 
approach that pursues reduction through a “suite” of policies targeting many of the activities that lead to 
GHG emissions (i.e., the first option described above).  This approach is often more politically expedient, 
as it offers the possibility of addressing climate change while hiding the costs.  However, this approach 
may actually be less effective at achieving desired emission reductions.  And, as state climate policies 
become increasing stringent, the costs associated with inefficient complementary policies will become 
larger.   

A third option takes a hybrid approach by enacting carbon pricing that begins at relatively 
low levels that are politically feasible even if they are not optimal, gradually raising prices over 
time.  As carbon prices are increased over time, reliance on the more costly complementary policies to 
achieve targeted emission reductions can be diminished, and in some cases eliminated.   Those 
complementary policies that address other legitimate market failures (e.g., energy R&D, energy efficiency 
programs, etc.) or sources outside the cap would be retained.  Thus, the burden of achieving GHG 
emission reductions can be shifted from complementary policies to GHG pricing.   

Along with acclimating politicians and citizens to carbon pricing, decisions about the use of the 
revenues from GHG pricing may also have an important role in affecting political willingness to adopt 
ambitious carbon-pricing policies.  Much of the opposition stems from the perception that carbon pricing 
constitutes a new tax.  Thus, while decisions about revenue use has important impacts on the costs of 
achieving climate goals, these decisions may also lower political barriers to GHG cap-and-trade systems 
if revenues uses can defuse arguments grounded in opposition to new taxes.  In particular, making a GHG 
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cap-and-trade system revenue neutral may address concerns that the policy is a new tax.  Making the use 
of revenues transparent may also reduce political opposition.   

In the interim, there are several important considerations for decisions regarding complementary 
policies.  First, policies that meet the criteria identified above, such as addressing market-failures 
unrelated to the GHG emission externality or targeting emission sources outside the emission cap, will 
continue to provide economic, and potentially environmental, benefits.  Second, complementary policies 
that achieve emission reductions at a lower cost than alternatives will be more economically efficient.  
Finally, complementary policies that include mechanisms to reduce their stringency over time may better 
allow carbon pricing to achieve a growing share of emission reductions.  In this regard, subsidies are 
problematic, as they create a constituency that inevitably lobbies for their preservation.     
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Technical Appendix  

Our analysis assesses the change in lifecycle emissions achieved by the LCFS.  In particular, for 
fuels covered by both the LCFS and GHG cap-and-trade programs—CARBOB gasoline, ULSD diesel, 
ethanol, electricity, biodiesel, and CNG—we model the change in emissions due to switching from either 
CARBOB or ULSD diesel to a lower carbon intensity fuel substitute.  The model is similar in structure to 
that used in Schatzki and Stavins (2012), with three key differences: (1) the model relies on actual fuel 
usage reported by ARB instead of forecasted scenarios; (2) the model considers all alternative fuel types 
instead of just a few different forms of low-carbon fuels; and (3) the model accounts for differences in the 
location of production. 

The model considers annual emission changes due to the LCFS in two distinct periods of the 
program.  The first period occurs from 2011 through 2014, prior to the GHG cap-and-trade system 
expanding to cover fuels.  The second period occurs from 2015 through the first quarter of 2018 (the 
latest period for which data exists), during which time the GHG cap-and-trade system and the LCFS both 
regulated transport fuels. 

In the 2011-2014 period, the analysis calculates the emissions changes due to fuel switching 
caused by the LCFS alone.  Specifically, changes in emissions are calculated for each alternative fuel type 
as the difference between the carbon intensity of the alternative fuel being switched to and the carbon 
intensity of the fuel being switched away from (CARBOB or ULSD diesel).  Because the LCFS considers 
lifecycle carbon intensity (i.e. throughout the entire production process and point of use), the change in 
emissions from fuel switching reflects lifecycle emissions changes. 

In the 2015-2018 (Q1) period, the analysis calculates the emissions due both to fuel switching as 
just described and the interaction between the LCFS and GHG cap-and-trade system. In estimating the 
impact of this interaction, changes in emissions depend upon the component of each fuel’s production 
process that occurs within California and outside California. The GHG cap-and-trade system covers 
emissions from combustion, in-state petroleum refining, and in-state renewable fuel production. 
Therefore, the model incorporates the following assumptions: 

 Crude production occurs in and outside California, reflecting data from CARB, while 
CARBOB gasoline and ULSD diesel refining occur solely in California.42 

 Production of ethanol occurs both in and outside California, reflecting data from the 
Energy Information Administration (EIA).43 

 Production of renewable diesel occurs outside California, reflecting market information 
and communications with market participants.   

 

42 CARB, “Detailed CA-GREET Pathway for California Reformulated Gasoline Blendstock for Oxygenate Blending 
(CARBOB) from Average Crude Refined in California,” December 15, 2014, available at 
https://www.arb.ca.gov/fuels/lcfs/121514carbob.pdf; CARB, “Detailed California-Modified GREET Pathway for 
Ultra Low Sulfur Diesel (ULSD) from Average Crude Refined in California,” December 15, 2015, available at 
https://www.arb.ca.gov/fuels/lcfs/121514ulsd.pdf. 
43 For ethanol production see EIA, “California State Energy Profile,” October 19, 2017, available at 
https://www.eia.gov/state/print.php?sid=CA; for biodiesel production see EIA, “Monthly Biodiesel Report,” 
September 2018, available at https://www.eia.gov/biofuels/biodiesel/production/biodiesel.pdf. 
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 Production of electricity used to power electric vehicles is covered entirely by the GHG 
cap-and-trade system, consistent with the program design.  

 Production of remaining fuels (bio-CNG, bio-LNG, fossil CNG, fossil LNG, and 
hydrogen) occur within California. 

The lifecycle emissions change (in grams of CO2e per MJ) implied by the model are captured in 
the table below: 

California Change in GHG (gCO2e/MJ) 

 
Source: [1] Carbon intensities are calculated based on fuel volumes and credits from ARB's LCFS Quarterly Data spreadsheet as 
of 7/3/2018. 

 

Annual Direct Emission Reductions and Incremental Costs, California’s LCFS 

 

 
Note: We distinguish in our calculations between expenditures by reducing entities and economic cost of emission reductions. 
Expenditures associated with emission reductions are simply (annual emission reductions [MT]) × (average annual credit price 
[$/MT]), where the average annual credit price represents the average of the 12 monthly CARB reported average credit prices. 
Costs of emission reductions can be represented by the area under an emissions reduction supply curve between the origin and 
market clearing price, here represented by the average annual credit price. If we make the simplifying assumption of a linear 
supply curve, costs will equal half of the expenditures, since the area of a triangle is one half the area of a rectangle with same 
base and height. 

Source: CARB. 

 

LCFS Without Cap-And-Trade - No Leakage LCFS With Cap-and-Trade - Leakage
2011 2012 2013 2014 2015 2016 2017 2018 (Q1)

Bio-CNG - - -81 -76 -8 -8 -8 -8
Bio-LNG -78 -78 -72 -59 -8 -8 -8 -8
Fossil CNG -27 -27 -27 -26 -8 -8 -8 -8
Fossil LNG -19 -19 -19 -19 -8 -8 -8 -8
Hydrogen - - - - -8 -8 -8 -8
Electricity - Onroad -57 -57 -69 -69 -8 -8 -8 -8
Electricity - Offroad - - - - - -8 -8 -8
Ethanol <65 -41 -48 -41 -40 45 44 39 43
Ethanol 65-75 -30 -30 -30 -28 51 53 53 53
Ethanol >75 -12 -13 -16 -16 64 60 59 59
Biodiesel -61 -67 -78 -85 5 1 10 9
Renewable Diesel -81 -72 -57 -63 41 27 22 21

Year
Observed Emission 

Reductions (MT)
[A]

Average Credit Price 
($ / MT)

[B]

Estimated Incremental Cost of 
Reducing Emissions
[C] = ([A] * [B]) / 2

2013 1,683,674 50.5 $42,512,760
2014 2,105,268 36.1 $37,982,546
2015 3,225,935 45.9 $74,062,084
2016 5,969,891 103.0 $307,548,894
2017 6,723,286 87.9 $295,544,445

2018Q1 1,749,576 124.7 $109,056,884
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California LCFS Emission Reductions Relative to Total Emissions, 2013 - 2016 (MMT of CO2e) 

 

Source: California Greenhouse Gas Emission Inventory. 

 

 

 

2017 Direct Emission Reductions and Incremental Costs, Oregon’s CFP 

 

Note: We distinguish in our calculations between expenditures by reducing entities and economic cost of emission reductions. 
Expenditures associated with emission reductions are simply (annual emission reductions [MT]) × (average annual credit price 
[$/MT]). Costs of emission reductions can be represented by the area under an emissions reduction supply curve between the 
origin and market clearing price, here represented by the average annual credit price. If we make the simplifying assumption of a 
linear supply curve, costs will equal half of the expenditures, since the area of a triangle is one half the area of a rectangle with 
same base and height. 

Source: Oregon Department of Environmental Quality. 

 

 

Year Emission Reductions 
[A]

Emissions 
[B]

Reduction Share 
[C] = [A] / [B]

Emissions 
[D]

Reduction Share 
[E] = [A] / [D]

2013 1.68 165.8 1.02% 447.6 0.38%
2014 2.11 167.14 1.26% 444.1 0.47%
2015 3.23 170.89 1.89% 441.4 0.73%
2016 5.97 174.01 3.43% 429.4 1.39%

Transportation Sector All Sources

Observed Emission 
Reductions (MT)

[A]

Average Credit Price 
($ / MT)

[B]

Estimated Incremental Cost of 
Reducing Emissions
[C] = ([A] * [B]) / 2

17,751 48.1 $426,810
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