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Ricardo Hausmann César A. Hidalgo Daniel P. Stock

Muhammed A. Yıldırım†

January 2019

Abstract

The comparative advantage of a location dictates its industrial structure. Current

theoretical models based on this principle do not take a stance on how comparative

advantages in different industries or locations correlate with each other, or what such

patterns of correlation might imply about the underlying process that governs the

evolution of comparative advantage. In fact, we find that correlations do appear

to exist: industries tend to exhibit output intensities that are systematically corre-

lated across locations, and locations tend to have output intensities that are correlated

across industries. We give evidence that these patterns are present in a wide variety

of contexts, namely the export of goods (internationally) and the employment, pay-

roll and number of establishments across the industries of subnational regions (in the

US, Chile and India). We then calculate the industry intensities that are implied by

related industries or related locations, and show that these measures explain much

of the location’s current industrial structure. Furthermore, the deviations between

the actual industry structure and our implied comparative advantage measures tend

to be highly predictive of future industry growth, especially at horizons of a decade

or more; this explanatory power holds at both the intensive as well as the extensive

margin. These results indicate that future productivity is already implied in today’s

patterns of production.
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David Ricardo (1817)’s seminal theory predicts that locations specialize in the goods
in which they have a comparative advantage, meaning that they enjoy a higher relative
productivity. Yet these comparative advantages are not random, nor are they set in stone;
theories detailing the evolution of a locations’ productivities date back to the work of
Marshall (1890) more than a century ago. Since then, there have been many studies high-
lighting the importance of sectoral or regional relatedness in the evolution of comparative
advantage or the production structures of regions. Here, we take a complementary stance,
proposing that the relatedness of industries and locations could be used to develop a mea-
sure of counterfactual or implied comparative advantage.

Imagine the following thought experiment. You have conducted the first-ever eco-
nomic census of your country, containing the output matrix for all cities across all indus-
tries. However, due to some accident, your computer randomly erases a few entries in
this matrix. How would you guess what those entries were if you had no information
other than the surviving part of the matrix? The current theoretical models would not
help you use the surviving data to predict the inter-industry variation in output at the
city level for the missing data.

In this paper we extend the neo-Ricardian models by assuming that the industrial
relatedness causes relative productivities to be differentially correlated across industries
in a manner that can be empirically estimated. This structure implies that the compar-
ative advantage of a location in an industry can be estimated from its comparative ad-
vantage in related industries, even for the industries that are currently absent from the
location. Further, information about the relative productivities of locations with similar
attributes should be informative of the relative productivities of industries in a given lo-
cation. Hence, we can infer the similarity in the productive orientation of locations from
the similarity in their output structure. Symmetrically, the intensity with which a location
engages in an industry should be related to the intensity with which it engages in similar
industries, where industry similarity is calculated from the pattern of coincidence of pairs
of industries across all locations. We use these similarity measures to generate predictors
of the implied comparative advantage of a location in an industry and show that it is strongly
predictive of the revealed comparative advantage of that country in that industry. In addi-
tion, these estimates are strongly predictive of future changes in comparative advantage,
whether among industries that already exist in a particular location or among those that
have yet to emerge. In terms of our thought experiment, our approach allows us to make
estimates of the missing data, and the error terms of our prediction are not just noise, but
are actually predictive of future changes.

Given both the national and subnational applicability of our approach, we use tech-
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niques or models used in both trade theory and urban and regional economic litera-
ture. We base our theoretical models on the international trade literature as many recent
regional development studies do (e.g., Davis and Dingel (2014); Costinot et al. (2016);
Caliendo et al. (2017)). Our empirical work is more intimately related to related diver-
sification literature (Hidalgo et al., 2018; Boschma, 2017). Our results are important in
shaping policy discussions. Especially given the importance of emergence of new indus-
tries, we believe that our results could be used in shaping this process as a guide.

Although Ricardo introduced the idea of comparative advantage almost two centuries
ago (Ricardo, 1817), the multi-location multi-product version of his model has only re-
cently been formalized and subjected to rigorous empirical testing (Eaton and Kortum,
2002; Costinot et al., 2012). These models infer a location’s productivity in a certain in-
dustry from its observed pattern of trade and have been successful in explaining a sig-
nificant portion of bilateral and subnational trade. Yet, these models can only infer the
relative productivity of a country in a product if the country actually makes the product
but cannot infer the productivity if the country does not. 1 This is an important short-
coming as there are many instances in which it would be useful to infer the productivity
level that a country would enjoy in products that it does not currently make. In addition,
current Ricardian models assume that the relative productivity parameters across indus-
tries are uncorrelated. This implies that the likely productivity of a country in trucks is
independent of whether it currently has comparative advantage in cars or in coffee.

Essentially, the Ricardian model can be seen as a reduced form of a more structural
model that determines the productivity parameter of the labor inputs. One such model is
a factor-based explanation given by Heckscher-Ohlin and later extended by Vanek (1968)
where, implicitly, the labor productivity parameter is the consequence of the availability
of an unspecified list of other factors of production. These may include many varieties
of human capital, geographic factors and technological prowess, among many others. In
the Appendix, we show that the essential results and reduced form equations of our ap-
proach can be derived from this setting. With a factor-based interpretation, the revealed
comparative advantage of a country in a product can be inferred from its revealed com-
parative advantage in products that have similar production functions or locations that
have similar factor endowments. Interestingly, our results can be derived without infor-
mation regarding production functions or factor endowments.

Our findings do not only pertain to international trade: we obtain similar results when

1Deardorff (1984), quoted by Costinot et al. (2012) says that “If relative labor requirements differ between
countries, as they must for the model to explain trade at all, then at most one good will be produced in common by two
countries. This in turn means that the differences in labor requirements cannot be observed, since imported goods will
almost never be produced in the importing country.”
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we use sub-national data on wage bill, employment or the number of establishments
for the US, India and Chile. Clearly, a city is an economy that is open to the rest of its
country and, hence, the logic behind trade models should be present, albeit with more
factor mobility than is usually assumed in trade models. Our results operate both at the
intensive and the extensive margins of growth: they correlate with future growth rates of
industry-locations, as well as with the appearance and disappearance of new industries
in each location.

Related literature

This paper is related to several strands of literature given its scope covers both national
and subnational data. Specifically, it builds on Bahar et al. (2014), Hausmann and Klinger
(2006, 2007) and Hidalgo et al. (2007) but develops a theoretical framework and explores
both the extensive and the intensive margins of industrial evolution of regions. Building
of these studies, Boschma and Capone (2015) analyzes the interaction between relatedness
and institutions and finds that different varieties of capitalism result in different diversifi-
cation patterns. Petralia et al. (2017) finds that the related diversification is also important
at the technological development of countries especially at initial stages of development.
Boschma et al. (2012, 2013) apply a similar approach to understand the regional diversi-
fication in Spain. Neffke et al. (2011) show that regions diversify into related industries,
using an industry relatedness measure based on the coproduction of products within
plants.

These studies could be thought as a part of larger relatedness literature (Hidalgo et al.,
2018; Boschma, 2017). Relatedness measures have been used to understand the relation-
ship between technology intensity of an industry and agglomeration (Liang and Goetz,
2018) and to understand how scientific knowledge diffuses between cities (Boschma et
al., 2014) as well.

Our results using sub-national data relate to the urban and regional economics litera-
ture. For example, Ellison et al. (2010) try to explain patterns of industry co-agglomeration
by exploring overlaps in natural advantages, labor supplies, input-output relationships
and knowledge spillovers. We do not try to explain co-agglomeration but instead use
it to implicitly infer similarity in the requirements of industries or the endowments of
locations. Hanlon and Miscio (2017) further show that the historical pattern of location
distribution of industries in Britain are shaped by the agglomerative forces as well. Del-
gado et al. (2010, 2015) and Porter (2003) use US sub-national data to explain employment
growth at the city-industry level, using the presence of related industry clusters. Lu et al.
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(2016) explores the effect of co-located clusters in the emergence of new clusters and find
differential interactions depending on the maturity of the cluster. We show that the ob-
served formation of clusters in a region and the region’s implied comparative advantage
are intimately linked. Beaudry and Schiffauerova (2009) surveys the literature to deter-
mine whether Marshallian forces or diversity of a region is more effective on the economic
progress of regions. Our work does not take a stance in that regard but the relatedness
measures that we use capture more than the Marshallian forces.

Interestingly, the measures we derive are similar to the collaborative filtering models
used in the computer science literature. These models try to infer, for example, a user’s
preference for an item on Amazon based on their purchases of similar items (Linden et al.,
2003), or how they will rate news articles based on the ratings of similar users (Resnick et
al., 1994). Here we derive a theoretical rationale for their logic.

Our paper is related to the literature on the Ricardian models of trade (Dornbusch et
al., 1977; Eaton and Kortum, 2002; Costinot et al., 2012), where we abandon the assump-
tion of an absence of systematic correlations of relative productivity parameters between
industries. For example, Eaton and Kortum (2002) assumed that the productivity param-
eters are drawn from a Frechét distribution, except for a common national productivity
parameter. Costinot et al. (2012) relaxed this assumption by assuming a country-industry
parameter, but no correlation across industries in the same country. These assumptions
are clearly rejected by the data, as there is very significant correlation across industries
in the same country. In our results, we show that there is a systematic correlation in
the patterns of comparative advantage across pairs of industries across all countries. We
also show that there is a systematic correlation of the patterns of comparative advantage
between pairs of countries across all industries. We assume instead that technological
relatedness across industries causes relative productivities to be correlated.

The patterns we observe in the data allow us to derive implied comparative advantage
estimates. It has the advantage of being able to estimate relative productivities for indus-
tries that have zero output. Moreover, the implied parameters estimated are strongly
correlated with future relative productivities implying that they capture something more
fundamental than the relative productivities that are calculated from contemporaneous
trade. Previous Ricardian literature, however, cannot infer relative productivities of in-
dustries that do not exist. An exception is Costinot et al. (2016) where they estimate
implied or counter-factual productivity parameters for agricultural industries using agro-
nomic models and data. This approach requires a detailed knowledge of agricultural pro-
duction functions and hence cannot be easily extended to other industries. Our approach
can be extended to all industries.

5



This paper is structured as follows. Section 1 derives our predictors using a modified
Ricardian framework. Section 2 discusses the data. Section 3 presents our results for the
intensive margin. Section 4 discusses our results on the growth of industries in location.
Section 5 contains our results for the extensive margin. In Section 6 we conclude with a
discussion of the implications of our findings.

1 Theoretical motivation

In this section, we use a modified Ricardian framework to show how the similarities be-
tween the output of industries across different locations (and similarities between the out-
put of locations across different industries) can contain information on the “true” compar-
ative advantage of a location, i.e. the hidden match between the requirements of indus-
tries and the ability of locations to meet those requirements. As we argue in the Introduc-
tion, a Ricardian model of trade that assumes that the productivity parameter of a country
in an industry is a random realization from a probability distribution would not be able
to explain the patterns of co-location of industries in countries, or the co-location patterns
of the same industry across countries. However, it is possible to make a Ricardian model
compatible with these observations by incorporating the assumptions that products differ
in their technological relatedness, and that countries tend to have similar productivities
in technologically-related products. With this assumption, we can motivate our results in
a Ricardian framework as stating that a country will export a product with an intensity
that is similar to that with which countries with similar patterns of comparative advan-
tage export that product. By the same token, it would also export that product with an
intensity that is similar to that with which it exports technologically related products. In
the Appendix, we also derive measures that capture the similarity between industries and
between locations using a factor-based model like Heckscher-Ohlin-Vanek (Vanek, 1968)
model.

Here, we will construct a particular relation between the requirements of an industry
and endowments of a location, showing how their interaction might effect the observed
global patterns of output, and what can be inferred from these patterns. Let’s denote the
size (e.g., output, payroll, employment, or number of establishments) of an industry i in
a location l with yil. Suppose the total industry size in the sample universe (which is the
world if we are dealing with a national data or the country if we are dealing with the
subnational case) is Yi ≡ ∑

l
yil. The location’s expected size will depend on the size of

the location relative to size of the sample universe. Let’s denote size of the location with
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Wl and size of the sample universe with W ≡ ∑
l

Wl. With this in hand, we can write the

expected size of the location as:

ŷil = Yi
Wl
W

.

We can develop a measure of comparative advantage by dividing the observed size of the
industry to its expected size:

ril =
yil
ŷil

.

By taking logs, using the definition of the expected size and re-arranging the terms we
arrive at:

log(yil) = log(ril) + W − log(Yi)− log(Wl) (1.1)

In particular, if yil is the exports of country l in industry i, and Wl is the total exports of the
country ril becomes Balassa (1964)’s Revealed Comparative Advantage (RCA) measure.
Instead, if we use Wl to be the population of the location, we arrive at the Revealed per-
Capita Advantage (RpCA), which will be more explicitly defined in Section 2.2. On the
other hand, if we use yil to be the number of employees in industry i in location l and
Wl as the total employment in location l we arrive at the Location Quotient (LQ) measure
that has been widely used. We can also use yil to be the total payroll in industry i in
location l, and Wl as the total payroll in location l and come up with a new measure of
comparative advantage.

In a sense, Equation 1.1 is a decomposition of the size of an industry in a location.
It has a component that captures the dynamics in the total size of the industry (Yi), an-
other component that captures the location specific dynamics (Wl), and a portion that is
location-industry specific (ril). In our empirical analysis, we will be focusing in this inter-
action term. Normalizing output values in this way is attractive: it lets us strip out the
scaling effects that exist purely at the location level (e.g. the population size of a country)
and the industry level (e.g. the global demand for a commodity), and instead focus on
explaining the interplay between industries and locations. That is, instead of asking ques-
tions like “Why is employment growth higher in Boston than in Kansas City?” or “Why
is employment in retail services growing faster than electronics manufacturing?” we ask
questions in the class of “Why is electronics manufacturing growing relatively faster in
Boston than in Kansas City?”

Having defined our measure of industry-location intensity, we can now build a Ricar-
dian framework to model how these intensities are generated through the interaction of
industry requirements and location endowments. We will assume that the efficiency with
which industry i functions in location l depends on the distance between the requirements
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of industry i and endowments of location l. Suppose the requirements of the industry i
are characterized by a parameter ψi, which is a number on the real circle with a circum-
ference of 1, which we denote by U. 2 The endowments of location l is characterized by
a parameter λl, also on U. The output intensity of industry i in location l will depend on
the congruity between the requirements of the industry, ψi, and the endowments of the
location, λl. More concretely,

ril = f
(
d(ψi, λl)

)
(1.2)

where d is the distance on the unit circle U, and f is a strictly decreasing function of that
distance, such that f (0) = 1 and f (0.5) = 0. As can be observed, output intensity will be
maximized when ψi = λl; in the opposite case, where ψi and λl are on antipodal sides of
the circle (and distance is 0.5), output would be zero. In reality, we would not be able to
observe ψiand λl directly, but we can measure ril. The basic intuition is that information
about ψi and λl is contained in the presence of other industries in the same location or the
presence of the same industry in other locations. For example, the difference between a
location’s comparative advantage in two industries, i and i′, is an increasing function of
the distance between the ψi and ψi′ . By the same token, the difference in the intensity of
output of the same industry across two locations l and l′ would be an increasing function
of the difference in the λl and λl′ .

We can generalize this intuition by taking advantage of the information contained in
the share of output of all industries in all locations. Suppose we start with the normal-
ized output intensity ril for each industry in each location. We can calculate a matrix that
contains correlations of each industry pair across all locations. We define as the product
space similarity matrix φii′ between two industries i and i′ as the scaled Pearson correla-
tion between ri and ri′ across all locations:

φii′ = (1 + corr{ri, ri′})/2 (1.3)

Symmetrically, we define the country space proximity matrix φll′ between two loca-
tions l and l′ as the scaled Pearson correlation between rl and rl′ across all industries:

φll′ = (1 + corr{rl, rl′})/2 (1.4)

If we assume that ψiand λl are uniformly distributed on the unit circle, and if we use a

2We chose the unit circle to avoid boundary effects of the space. For instance, for an interval like [0, 1],
the boundaries, 0 and 1, will introduce break points. In reality the technological space is multi-dimensional
but here we introduce a one-dimensional version to illustrate our results. Our results are not sensitive to
choice of the technological space.
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specific productivity function, f
(
d(ψi, λl)

)
= 1− 4d2(ψi, λl), then we can derive a closed

form expression for the expected value of the φii′ as a monotonic function of the distance
between the ψis (see Appendix for the details of the calculation):

φii′ = 1− 15
(

d(ψi, ψi′)− d2(ψi, ψi′)
)2

(1.5)

Similarly, our location-location similarity φll′ is a monotonic function of the distance be-
tween the endowment parameters λl and λl′ :

φll′ = 1− 15
(

d(λl, λl′)− d2(λl, λl′)
)2

(1.6)

Note that for distance d = 0, the expected proximity would be 1. If distance is equal to its
maximum value (d = 1/2) then the expected proximity would be the minimum.

We conclude that these two matrices carry information about the similarity in the re-
quirements of pairs of industries and the endowments of pairs of locations. Thus our
proximity measures use the information contained in the industry-location matrix to re-
late the technological requirements of an industry with the endowments of a location.

1.1 Calculating the implied comparative advantage

Equipped with our industry similarity and location similarity metrics, we can now de-
velop a metric for the implied comparative advantage of an industry in a location. As-
sume that we do not observe ril, the intensity of industry i in location l. However, sup-
pose we observe a second industry, i′, which appears in extremely similar intensities to
industry i in the same locations, meaning that φii′ ≈ 1. Likewise, suppose we observe a
second location, l′, which tends to have extremely similar levels of intensity as l across all
industries, meaning that φll′ ≈ 1. Based on equations 1.5 and 1.6, we know that

φii′ ≈ 1⇒ ψi ≈ ψi′

and
φll′ ≈ 1⇒ ψl ≈ ψl′

Plugging these into our formula for ril would imply that ri′l ≈ ril and ril′ ≈ ril. That is,
even if we do not observe the intensity of industry i in location l, we can proxy it based
on the intensity of a highly similar industry in the same location, or based on the intensity
of the same industry in a highly similar location.

In the real world, however, it is rare to have nearly identical pairs of industries or
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locations; most have no perfect comparator.3 Thus, even if we base our proxy on the
single most related industry, we may be introducing a large error whenever φii′ < 1 or
φll′ < 1. In addition, there might be severe measurement errors in our outputs. If we
instead average over a subset of the most similar industries or locations, and weigh our
results by the degree of similarity, we may “average out” some of these errors. Following
this logic, our expected value of the ril would be the weighted average of the intensity
of the k nearest neighbors ri′l (Sarwar et al., 2001) where both the “nearness” and the
weights are given by the similarity parameters φii′ . We refer to this variable proxying for
the implied comparative advantage as the product space density:

r̂[I]il = ∑
i′∈Iik

φii′

∑
i”∈Iik

φii”
ri′l (1.7)

where Iik is the k nearest neighbors of industry i:

Iik = {i′|Rank
(
φii′
)
≤ k} (1.8)

We can also build a similar metric using the location similarity indices. With this,
the implied comparative advantage of an industry in a location would be the weighted
average of the intensity of that industry in the k most related locations:

r̂[L]il = ∑
l′∈Llk

φll′

∑
l”∈Llk

φll”
ril′ (1.9)

with the set Llk defined as:
Llk = {l′|Rank

(
φll′
)
≤ k} (1.10)

We refer to this variable as the country space density. We will explore the degree to which
the product space and country space densities can predict the actual value of the location-
industry cells using a toy model where we exactly know all the underlying parameters.

1.2 Simulating the estimators on a toy model

At this point, we have shown that one can construct an implied comparative advantage
proxy for a given industry and location. But what is the value of such a proxy? After
all, this information is not useful if the output patterns we observe already reflect the
true comparative advantage of each location. However, we could also imagine a world

3 See section 2.2 below for more on the distribution of the similarity values.
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in which there is a gap between a location’s true comparative advantage and its observed
comparative advantage. We can capture this in our model by incorporating an additive
random error:

r̃il = ril + εil, εil ∼ N(0, sσ2) (1.11)

Here, the“true” output of an industry, ril, is determined as before, solely by the distance
between the technological requirement of the industry ψi and the technological ability of
the location λl. We will thus now call ril the long-run equilibrium output. Let us assume
that the output of each industry-location can deviate from this equilibrium value because
of a disturbance term εil. We model εil as normally distributed, and set its variance equal
to the variance of ril times a parameter s, the noise-to-signal ratio, which we will vary in
our simulations. As a result of these assumptions, we no longer observe the equilibrium
output ril but instead observe only the current output, r̃il. We then construct the similarity
indices and densities as before, but using the observed r̃il values as inputs; since the
error term is randomly distributed (and may cancel out), the densities may be able to
capture information on the underlying equilibrium output by looking at similar industry
or location pairs. This raises the question we want to test: is our measure of implied
comparative advantage a better predictor of the long-run equilibrium output than the
observed comparative advantage?

We can now build our toy model to answer this question. We set the dimensions of the
model to Ni = 100 industries by Nl = 100 locations, and assume a uniform distribution of
the ψi and the λl along the unit circle U. We then use these parameters to calculate the Yil

values. For the error term εil, we want to see what happens as we increase its size relative
to Yil. Thus, we set s to a range of six different values, going from 0 (no error) to 1 (equal
parts signal and noise) to 4 (four times more noise than signal). We find that the average
standard deviation of ril converges to 0.298, so we use that value for σ2. Next, we build
the product space and country space densities using the r̃il values. Following Duda et al.
(2012) we set the k parameter to k =

√
Ni =

√
Nl = 10; that is, densities are built using

the 10 most similar industries or locations.4 Finally, we measure the predictive power
of the PS and CS densities (and the mean of the two) by Pearson correlating them with
the equilibrium output intensities; we can benchmark the strength of these correlations
against similar correlations between the (noisy) observed and equilibrium output values.

Table 1 gives the R2 statistics from these correlations, averaged over 5,000 simulations.
The PS and CS densities perform quite well at all error levels; the R2 values are quite high
(0.962-0.991) when the error term is smaller in magnitude than the “true” output intensity

4However, further simulations suggest that a wide range of k values yields similar results; likewise, our
empirical results are robust to changes in k.
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Table 1: Mean R2 of correlations with equilibrium output, for 5,000 simulations

Mean R2 of correlations between equilibrium output and

Noise-to-signal Output PS Density CS Density Mean of PS
ratio (s) & CS densities

0% 1.000 0.991 0.991 0.995
25% 0.941 0.984 0.984 0.990
50% 0.800 0.963 0.963 0.977
100% 0.500 0.880 0.880 0.923
200% 0.200 0.608 0.608 0.700
400% 0.059 0.124 0.124 0.166

component. The densities also hold hold well as the size of the error term grows, with R2

only decreasing greatly at the highest noise level tested (4:1 noise to signal ratio). These
values are also highly consistent, with standard errors all less then a tenth of a percentage
point.

Most importantly, the density indices also perform well compared to the observed
output intensity (the r̃il values). As expected based on their construction, r̃il values also
correlate with the underlying equilibrium output (the ril values); when the error term is
nonexistent, observed output intensity is identical to equilibrium output intensity. How-
ever, as we increase the ratio of noise to signal (s), observed intensity becomes an in-
creasingly weak correlate of equilibrium output. The explanatory power of the PS and
CS densities also decreases with increasing noise, but at a much slower rate; at s = 100%,
the densities are still strongly associated with the equilibrium output (R2= 0.88). This
confirms our prediction: in a “noisy” world, where industry-locations are far from their
equilibrium output, the implied output intensities may be a better predictor of the equi-
librium than the observed output intensities, since some of the noise will average out.

Finally, note that the explanatory power of the PS and CS densities are virtually iden-
tical; this is expected, since their formulas are mirror images of each other (and since we
set the number of locations and industries to be the same). Note also that the mean of the
two densities is a slightly stronger predictor than either one individually; this suggests
that there is some information in each that is not captured by the other.
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1.3 Hypotheses

Before beginning our empirical investigation, we can use these outcomes from our theo-
retical model and simulations to set some hypotheses:
H1: The implied comparative advantage measures (CS and PS density) should be strongly
correlated with current output intensities.
H2: The implied comparative advantage measures contain information on the long-run
equilibrium output intensities of industry-locations; as such, the gap between implied
comparative advantage and observed comparative advantage (i.e. the regression residu-
als) will be correlated with industry-location growth over long periods.
H3: The implied comparative advantage can be calculated for even the products that
a location does not currently make. Therefore, the implied comparative advantage is
predictive of which industries will emerge in a country.
H4: From the simulation results, the PS and CS density variables will have some non-
overlapping information, meaning that we expect higher explanatory power from regres-
sions which include them both.

2 Data and Methods

We now turn to the application of our approach to real data using both international
and subnational datasets, which cover different countries, time periods and economic
variables. After constructing our density indices, we separate our analysis between the
exploration of the intensive and extensive margins. We first study the growth rates of
industry-location cells, which can only be defined for cells that start with a nonzero out-
put. Later, we study the extensive margin by looking at the appearance of industries that
were not initially hosted in a particular location. For each analysis, we fit the density
variables for the implied comparative advantage to current output levels, and then con-
duct out-of-sample regressions to explain either output growth or the appearance and
disappearance of industries.

2.1 Data

We begin by using trade data to study the industry-location relationship at an interna-
tional scale. Here we use UN COMTRADE data, cleaned according to the process de-
tailed in Bustos and Yildirim (2019). Exports are disaggregated into product categories
according the Harmonized System four-digit classification (HS4), for the years 1995-2016
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(earlier years are available, but use a different product classification system, and might in-
troduce error due to major continuity breaks when converting). We restrict our sample to
countries with population greater than 1.2 million and total exports of at least $1 billion in
2008. We also remove Iraq (which has severe quality issues), Serbia-Montenegro (which
split into two countries during the period studied), and Namibia and Botswana (which
lack customs data for the initial five years of the period). We drop two products, “Natu-
ral cryolite or chiolite” (HS4 code 2527), and “Vegetable materials used for brooms” (HS
1403) as their world trade both fall to zero in the mid-2000s; we also exclude the miscella-
neous code HS 9999 (“Commodities not specified according to kind”). These restrictions
reduce the sample to 122 countries and 1240 products that account for 94.4% of world
trade and 93.3% of the world population in 2016.

In addition to the international trade data, we test our model on three national datasets
that quantify the presence of industries in subnational locations. We use the US Census
County Business Patterns (CBP) database from 2003-2011. It includes data on employ-
ment and number of establishments by county, which we aggregate into 708 commuting
zones (CZ; Tolbert and Sizer (1996)), and 1,086 industries (NAICS 6-digit). This dataset
also provides annual payroll data for 698 CZ and 941 NAICS industries.5 Our Chile
dataset comes from the Chilean tax authority, Servicio de Impuestos Internos, and includes
the number of establishments based on tax residency for 334 municipalities and 681 in-
dustries, from 2005 to 2008 (Bustos et al., 2012). Lastly, we study India’s economic struc-
ture using the Economic Census, containing data on employment for 371 “super-districts”
and 209 industries, for the years 1990, 1998 and 2005.6 For all the datasets above, we in-
clude only industries and regions that have non-zero totals for each year (as we do with
the international export data). This approach effectively removes discontinued or obso-
lete categories.

2.2 Constructing the model variables

First, we build the similarity and density indices for the implied comparative advantage
introduced above for each dataset. Our first step is to normalize the export, employment
and payroll data to focus on the intensity of each industry-location link (as discussed
above), and to facilitate comparison across location, industry and time. We use the ex-

5The discrepancy between employment and establishment versus payroll sample sizes comes from the
data suppression methods of Census Bureau. To protect the privacy of smaller establishments, the CBP
occasionally discloses only the range of employment of an industry in a location, e.g., 1 to 20 employees.
In these censored cases, we use the range’s midpoint as the employment figure (see Glaeser et al. (1992)).
However, the CBP offers no payroll information in these cases, leaving a smaller payroll sample.

6This dataset was constructed by Sam Asher and Paul Novosad, who kindly shared it with us.
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ports per capita as a share of the global average in that industry. This can be seen as a
variant of Balassa’s revealed comparative advantage (RCA) index (Balassa, 1964), but us-
ing the population of a location as a measure its size rather than its total production or
exports (Bustos et al., 2012) This change is valuable because it eliminates the impact of the
movement in output or prices of one industry on the values of other industries. However,
our results are robust to the use of standard RCA instead of RpCA ? see Appendix. We
formally define the Revealed per-Capita Advantage (RpCA) of location l in industry i in
year t0 as:

Ril,t0 =
yil,t0/popl,t0

∑l yil,t0/ ∑l popl,t0

(2.1)

where yil,t0 is the export, employment or payroll value, popl is the population in location
l, and t0 is the base year. Note that locations with very low populations will tend to have
higher Ril values. To address the potential bias against high-population locations, we cap
Ril at Rmax = 5 when building our similarity indices (Equations 2.2 and 2.3 below). 7 We
do not normalize the data for the number of establishments.

At this point, we can use the normalized industry intensity values, Ril, to build the
similarity indices defined above:

φii′ = (1 + corr{Ri, Ri′})/2 (2.2)

φll′ = (1 + corr{Rl, Rl′})/2 (2.3)

In other words, two industries are similar if different locations tend to have them in sim-
ilar intensities. Likewise, two locations are similar if they tend to harbor the same in-
dustries with a similar intensity. Though we use the Pearson correlation here, we obtain
comparable results using other similarity measures, namely cosine distance, Euclidean
distance, the Jaccard index, minimum conditional probability (Hidalgo et al., 2007) and
the Ellison-Glaeser co-agglomeration index (Ellison and Glaeser, 1999).

Tables 2 and 3 show the top ten most similar pairs of countries and products in 2010.
We note that the most similar are countries in close geographic proximity, a phenomenon
that can be explained by geological and climate effects as well as regional knowledge
spillovers (Bahar et al., 2012). The list of most similar pairs of products is dominated by
machinery products, especially those in the “Boilers, Machinery and Nuclear Reactors,”
category (HS2 code 84). This matches the observation in Hausmann et al. (2011) that the

7We specifically set the ceiling at Rmax = 5 because this is the highest possible RpCA value for the
most populous country in the world, China. In a hypothetical industry i where China exports the entire
industry’s output, then Ri,China = popWorld/popChina ≈ 5 on average over the period studied.
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machinery-related industries are highly interconnected.

Table 2: Most similar location pairs, international trade, 2010

Location l Location l′ Location Similarity

COD Congo, DR COG Congo 0.8081
CIV Côte d’Ivoire CMR Cameroon 0.7987
CIV Côte d’Ivoire GHA Ghana 0.7844
SWE Sweden FIN Finland 0.7640
KOR South Korea JPN Japan 0.7631
SDN Sudan ETH Ethiopia 0.7622
KHM Cambodia BGD Bangladesh 0.7543
LTU Lithuania LVA Latvia 0.7526
GHA Ghana CMR Cameroon 0.7519
DEU Germany AUT Austria 0.7499

Table 3: Most similar industry pairs, international trade, 2010

Industry i Industry i′ Industry Similarity

8481 Valves 8413 Liquid Pumps 0.9808
8409 Engine Parts 8483 Transmissions 0.9808
8485 Boat Propellers 8484 Gaskets 0.9784
8481 Valves 8409 Engine Parts 0.9754
7616 Aluminium Products 7326 Iron Products 0.9752
8481 Valves 8208 Cutting Blades 0.9747
8483 Transmissions 8413 Liquid Pumps 0.9747
8413 Liquid Pumps 8409 Engine Parts 0.9745
8208 Cutting Blades 8207 Interchangeable Tools 0.9743
8503 Electric Motor Parts 7326 Other Iron Products 0.9740

Figure 1 show the full distribution of the similarity values; also shown are the subsets
of the k most similar industries or locations, where k is set to the square root of the total
number of industries (

√
Ni) or locations (

√
Nl). In Figure 1 left, we see that the overall

distribution of the industry similarity values is quite broad, with most values in the 0.6
to 0.9 range. However, if we focus on each industry’s single most similar comparator
industry, then the values are much greater and tighter, mainly rising above 0.9. Values are
similarly high when we extend the scope to each industry’s 35 most similar comparators.
Figure 1 right shows the distribution of the location similarity values. Compared to the
industry similarity values, these values appear much lower overall, with the distribution
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peaking at around 0.5 (which corresponds to a correlation of zero).8 However, we see
much improvement by limiting the scope to most similar location pairs, and (to a lesser
degree) the top 11 most similar locations. For both industries and locations, this illustrates
our motivation for including the nearest neighbor filters to remove poor comparators
from consideration.

Figure 1: Distribution of similarity values.

0.4 0.6 0.8 1.0

Most similar
Top 35 most similar
All similarity values

Industry similarity

0.4 0.6 0.8 1.0

Most similar
Top 11 most similar
All similarity values

Location similarity

Having built our similarity indices, we can use them to recreate our density indices
from equations 1.7 and 1.9, replacing the ril,t0 with Ril,t0 :

w(u)[PS]
il = ∑

i′∈Iiu

φii′

∑
i”∈Iiu

φii”
Ri′l,t0 (2.4)

where Iiu is the u nearest neighbors of industry i. Similarly

w(v)[CS]
il = ∑

l′∈Llv

φll′

∑
l”∈Llv

φll”
Ri′l,t0 (2.5)

with the set Llv is is the v nearest neighbors of location l. As before, we set the neighbor-
hood size u for product space to

√
Ni ≈ 35 and v to

√
Nl ≈ 11 nearest neighbors following

8Note also that there are no cases in which industry or location similarity is close to 0: the minimum
is 0.345, the similarity between the US and China’s export intensities. If there were in fact many similarity
values near 0, then it would be possible to build an implied comparative advantage measure using the most
“perfectly dissimilar” pairs. Instead, the pairs seem to range from highly similar (at best) to unrelated (at
worst).
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Duda et al. (2012). These indices serve as our proxies for a location’s implied comparative
advantage in an industry.

3 Estimating the initial industry-location cells from the val-

ues of all other industry-location cells

As argued above, the density variables derived above are the expected value of the output
intensity of any cell, given the values of other cells. To see how well they fit, we estimate
the following equation:

log(Ril,t0) = α + βPS log
(

w(u)[PS]
il

)
+ βCS log

(
w(v)[CS]

il

)
+ εil,t0 (3.1)

where εil,t0 is the residual term.

Table 4: OLS regression of international exports by industry-location, 1995

(1) (2) (3)

Exports, 1995
(Revealed Comparative Advantage, log)

Product Space Density (log), 1995 0.962*** 0.765***
(0.013) (0.019)

Country Space Density (log), 1995 0.965*** 0.292***
(0.038) (0.021)

Adjusted R2 0.627 0.485 0.645

N = 93, 979. Country-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05, * p < 0.1

Table 4 shows that both the product space density and the country space density terms
are highly significant (p < 0.01), with coefficients very close to unity. As expected, the
terms also explain a very large fraction of the variance of the country-product export
intensity, though the product space density generates a significantly higher R2 than the
country space density. Together, they explain nearly two thirds of the variation in export
intensity. Table 5 shows the regressions for the US, India and Chile datasets. In all, both
product space density and country space density are significant (p < 0.01 in all cases), and
yield coefficients that sum to 0.990 on average (from 0.81 to 1.29). As with the export data,
R2 values are substantial, especially for the establishment count datasets. This suggests
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that the value of an industry-location cell in our data can be estimated with some accuracy
based on the values of other industry-location cells in the matrix. However, as with any
estimation, errors are made. Are these errors just noise, or do they carry information
about the evolution of the system? We turn to this question in the next section.

Table 5: OLS regression of initial employment, payroll and establishments by
industry-location.

(1) (2) (3) (4) (5)

USA, 2003 USA, 2003 India, 1990 USA, 2003 Chile, 2005
employees payroll employees establishments establishments

Revealed comparative advantage (log) log log

Product Space 0.620*** 0.476*** 0.530*** 0.293*** 0.306***
density (log) (0.010) (0.016) (0.018) (0.021) (0.015)
Country Space 0.556*** 0.363*** 0.759*** 0.517*** 0.531***
density (log) (0.010) (0.018) (0.013) (0.018) (0.011)

Observations 279,439 89,378 49,651 278,946 50,373
Adjusted R2 0.267 0.355 0.376 0.787 0.601

Country-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05, * p < 0.1

4 Growth regressions

The fact that our density variables for the implied comparative advantage can explain
current locational intensities is interesting, but more surprising is the fact that the residual
is informative of future industry-location growth. Formally, we test for this by regressing
the growth rate of the industry-location pair on the residuals that we obtain from the first
stage introduced in the previous section. 9 We construct the variables as follows. We use
the standard definition of the annualized growth rate of yil:

ẏil =
1

t1 − t0
log
(

yil,t1/yil,t0

)
(4.1)

where t0 and t1 are the initial year and final year, respectively. However, there are a
large number of locations with initial output of zero for which we cannot define a growth
rate. Likewise, cases in which final output is zero (i.e., yil,t1 = 0) are also problematic
because it introduces a hard boundary that would bias the estimates. We manage these

9Instead of the residual, if we put the implied comparative advantage value, our results improve. But
here, we want to show that even the residual term is predictive of the future growth.
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issues by separately analyzing the intensive and extensive margins. In this section, we
examine growth in the intensive margin by restricting our regression sample of industry-
locations to those in which yil,t0 6= 0 and yil,t1 6= 0. In Section 6, we use a probit regression
model to examine the probability of industry appearance (i.e., growth from zero) and
disappearance (i.e., collapse into zero).

Our growth regression takes the following form:

ẏil = α + βεεil,t0 + γcl + δdi + eil (4.2)

where α is the constant, βε is the regression coefficient on the residual, γ and δ are the
coefficients on location and industry control variables and eil is the error term of the re-
gression.

Table 6 shows a set of growth regressions using our international export data. The
dependent variable is the growth rate in the industry-location cell. The first three columns
in Table 4 use as independent variable the error terms from the three regressions in Table
6. They show that the residual using both product space and country space densities, as
well as both of them combined are highly significant predictors of growth and explain
between 15 and 18 percent of the variance of growth between 1995 and 2016. The residual
terms for PS and CS density explain roughly equal parts of the variance; as before, the
highest R2 value comes from both terms together, suggesting that their residuals also
contain non-overlapping information. Both terms have the expected negative sign, and
are significant at p < 0.01.

We now look at the robustness of these equations with respect to the inclusion of other
relevant industry and location variables. First we include some basic controls regarding
the initial global size of the industry in question as well as the total initial exports and
population of the location; these correspond with the industry-level and location-level
components of the decomposition in equation 1.1. Note that these variables are con-
structed using information from the base year of the regression alone. Column 4 shows
that these variables, on their own, are significantly related to subsequent growth, as noted
by Glaeser et al. (1992); however, Column 5 indicates that they do not substantially affect
the magnitude and significance of the density residuals, and instead see their own signif-
icance decrease.
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Table 6: OLS regression of export growth of an industry in a country (1995-2016)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Growth in exports (log), 1995-2016

Residual, Product -0.023*** -0.013*** -0.012*** -0.019*** -0.018***
Space density, 1995 (0.001) (0.002) (0.002) (0.002) (0.001)
Residual, Country -0.020*** -0.012*** -0.009*** -0.007*** -0.009***
Space density, 1995 (0.001) (0.002) (0.002) (0.001) (0.001)
Industry-location -0.012*** -0.003** -0.011*** 0.001 -0.021*** -0.000
exports, 1995 (log) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Location population 0.012*** 0.005 0.011*** 0.002
1995 (log) (0.003) (0.003) (0.002) (0.002)
Global industry total 0.014*** 0.006*** 0.011*** 0.001
1995 (log) (0.001) (0.001) (0.001) (0.001)
Radial industry growth 0.928*** 0.969***
1995-2016 (log) (0.019) (0.017)
Radial location growth 0.748*** 0.944***
1995-2016 (log) (0.112) (0.114)

Industry FE Yes Yes
Location FE Yes Yes

Adjusted R2 0.151 0.154 0.178 0.121 0.184 0.234 0.325 0.411 0.439

N = 93, 979. Country-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05, * p < 0.1
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Next, we introduce controls that account for information beyond the base year, namely
the overall rate of growth for each location and each industry; we refer to these controls
as the radial growth variables. We show that the information captured by the error term is
orthogonal to radial growth of the industry and the location. To express radial industry
growth, we first calculate the global industry growth rate, ḃi, as the rate of growth for
each industry’s total (summed across all locations):

ḃi =
1

t1 − t0
log

(
∑l yil,t1

∑l yil,t0

)
(4.3)

Likewise, we calculate the average location growth rate, ḃl, by adding up all the industries
in each location and calculating the location growth rate:

ḃl =
1

t1 − t0
log

(
∑i yil,t1

∑i yil,t0

)
(4.4)

Note that these variables would account for all the variance in growth rates of the
industry-country cell if all industries within a country grew at the same rate or if all
countries maintained their industry market share in the world. Deviations from balanced
location growth mean that some industries are increasing or decreasing their share in the
location’s exports. Deviations from the radial industry growth mean that countries are
changing their global market share in that industry. We use these radial growth variables
for multiple purposes. First, they are an intuitive benchmark comparator for our density
indices, as they represent an alternative theory of growth dynamics (balanced growth).
Second, they are also useful to determine to what extent the density variables related to
implied comparative advantage are capturing a dynamic that is orthogonal to balanced
radial growth. Finally, we note that Equation 1.1, when using the RCA functional form,
implies that

ẏil = ṙil − ḃi − ḃl + Ẇ

where as before the dot operator denotes the changes in each logged variable between ini-
tial and final period. Specifically, ṙil is the change in RpCA; this would mean we are then
evaluating our residual densities’ ability to predict the change in output intensity over
time. Nevertheless, it is important to note that benchmarking the performance of the
density residuals against radial growth is not a fair comparison, since the density vari-
ables are calculated with only base year data to explain growth, while the radial growth
variables use information from the final period as well.

Column 6 shows the effect of radial growth and initial size variables on subsequent
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growth. As expected, they are all statistically significant and economically meaningful.
Column 7 includes these variables together with the density variables. The latter sub-
stantially maintain their economic and statistical significance while they increase the R2

relative to column 6 by over nine percentage points.
In addition to the radial growth variables, we also test our model using industry and

location fixed effects. These capture all industry and location effects, subsuming the size
and radial growth control variables as well as any other source of variation at the purely
location level or industry level. Thus, any additional explanatory power after controlling
for the initial size of the industry-country cell and these fixed effects must come entirely
from industry-location interactions.

Column 8 shows the baseline growth equation with both location and industry fixed
effects as well as the initial location-industry size. Column 9 reintroduces the density
variables and shows that their economic and statistical significance is undiminished. It is
important to again point out that the product and country space residuals can be calcu-
lated using only base year data and thus contain no information regarding future growth,
while the coefficients on the fixed effects can only be calculated ex post. This means that
the residuals of the first-stage density regressions still carry new information related to
industry-location growth in the subsequent 21 years, even after controlling for all possible
industry and location effects.

Finally, it should also be pointed out that the robust and negative signs in the Columns
4-8 for initial industry-location exports confirm Rodrik (2013)’s observation of uncondi-
tional convergence at the industry level. But the significance of our density measures
imply a richer structure in the convergence patterns of countries.

Next, we apply the same process to our US, Chile and India datasets, over the maxi-
mum period for which we have data (Table 7). We find that the product space and coun-
try space residuals are highly significant predictors of industry-location growth, both be-
fore and after controlling for initial output, industry and location size, and radial growth
(p < 0.01 for all cases).
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Table 7: OLS regression of employment, payroll and establishments growth by industry-location.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

USA, 2003-2011 Chile, 2005-2008 India, 1990-2005

Employment growth Establishments growth Payroll growth Establishments growth Employment growth

Residual, Product -0.018*** -0.027*** -0.007*** -0.002*** -0.012*** -0.045*** -0.027*** -0.031*** -0.209*** -0.264***
Space density (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.005) (0.008) (0.009)
Residual, Country -0.026*** -0.025*** -0.022*** -0.024*** -0.034*** -0.024*** -0.009*** -0.020*** -0.104*** -0.064***
Space density (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.002) (0.002) (0.009) (0.007)

Initial industry 0.008*** -0.003*** 0.016*** 0.007 -0.013
-location level (log) (0.001) (0.000) (0.001) (0.005) (0.008)
Initial location -0.014*** 0.003*** -0.026*** 0.014*** -0.017
population (log) (0.001) (0.000) (0.002) (0.002) (0.012)
Initial global -0.009*** -0.000 -0.023*** 0.023*** 0.039***
industry total (log) (0.001) (0.000) (0.002) (0.001) (0.009)
Radial industry 0.383*** 0.331*** 0.379*** 0.681*** 1.047***
growth (log) (0.004) (0.004) (0.004) (0.013) (0.010)
Radial location 0.324*** 0.283*** 0.210*** 0.423*** 0.519***
growth (log) (0.013) (0.009) (0.012) (0.042) (0.079)

Observations 279,439 278,946 89,378 50,373 49,651
Adjusted R2 0.150 0.213 0.092 0.226 0.162 0.340 0.059 0.310 0.199 0.427

Location-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05, * p < 0.1
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5 The extensive margin: Discrete industry appearances and

disappearances

In previous sections we analyzed the rate of growth of exports, employment, payroll and
number of establishments in industry-locations that already exist. In this section, we
focus on the extensive margin, looking at the appearance and disappearance of industries in
locations.

To do this, we first need to establish which industry-locations are present and which
are absent. The case is simple when using the US and Chilean datasets because they
report the number of establishments. In these cases, an industry is present in a location if
at least one establishment is reported to exist there. Formally, we capture this signal with
the binary presence variable Mil:

Mil,t0 =

 1 yil,t0 ≥ 1
0 yil,t0 = 0

(5.1)

where, as before, yil,t0 is the number of establishments in industry i and location l in
year t0. In this notation, we refer to an industry location as present when Mil,t0 = 1 and
absent when Mil,t0 = 0. Likewise, an appearance between years t0 and t1 is defined as
Mil,t0 = 0→ Mil,t1 = 1, while a disappearance is defined as Mil,t0 = 1→ Mil,t1 = 0.

To study the extensive margin in the international trade dataset we need to decide on
an equivalent definition of presence and absence. Here, the concern is that the data may
include errors that imply the presence of an industry when it is simply a case of small
re-exports or clerical error. We define an industry to be absent in a location if Ril,t0 <

0.05, meaning that exports are less than 1/20th of the average per capita exports for the
world. We will consider an industry to be present if Ril is above 0.25. We will define an
appearance as a move from Ril,t0 < 0.05 to Ril,t1 > 0.25 and a disappearance as a move
from Ril,t0 > 0.25 to Ril,t0 < 0.05 as originally used by Bustos et al. (2012). Thus, our
definition of extensive margin change represents a fivefold increase or decrease in output
around very low levels. While these thresholds are somewhat arbitrary, we obtain similar
results using different thresholds.
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Table 8: Probit regression of industry-location extensive margin, US, Chile and International

(1) (2) (3) (4) (5) (6) (7) (8) (9)

USA (establishments) Chile (establishments) International (exports)
Industry presences in 2003 Industry presences in 2005 Industry presences in 1995

Product Space 0.266*** 0.022*** 1.191*** 1.165*** 0.397*** 0.306***
density, initial year (0.001) (0.002) (0.005) (0.006) (0.006) (0.007)
Country Space 0.795*** 0.772*** 0.939*** 0.822*** 0.348*** 0.160***
density, initial year (0.004) (0.005) (0.005) (0.006) (0.004) (0.004)

All industry-locations 768,888 227,454 159,960
Present industries 324,622 55,347 47,337
Presence rate 42.22% 24.33% 29.59%

Area Under the Curve 0.924 0.940 0.940 0.815 0.900 0.911 0.933 0.859 0.914
Pseudo R2 0.341 0.493 0.495 0.357 0.193 0.454 0.353 0.226 0.376

Location-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05, * p < 0.1
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We apply these definitions to the US and Chilean establishment data and to the inter-
national trade data. In the US, we classify 324,622 industry locations as present in 2003,
or 42% of the total sample of industry locations. Of these present industries, 45,108 be-
came absent by 2011, yielding a disappearance rate of 14%. Likewise, 37,681 industries
that were absent in 2003 became present by 2011, resulting in an appearance rate of 8.5%.
In Chile, 55,347 industries were present in 2005, or 24% of the sample. By 2008, 4,762
of these industries became absent (a disappearance rate of 8.6%) while 11,496 initially
absent industries became present (an appearance rate of 6.7%). Internationally, 47,337 in-
dustries were present in our base year of 1995, or 29.6% of the sample. By 2010, 7,089 of
these present industries became absent (a disappearance rate of 7.5%) while 3,648 initially
absent industries became present (an appearance rate of 7.7%).

We can now use our density indices for the implied comparative advantage to ex-
plain the appearance and disappearance of industries by location. First, we use our den-
sity variables to generate an expected presence or absence estimation for each industry-
location cell by using a probit model. In particular, we regress Mil on product space and
country space density. Our probit model estimates the probability of industry presence
in a location in the base year:

P
(

Mil,t0 = 1
)
= Φ

(
α + βPSw[PS]

il + βCSw[CS]
il

)
(5.2)

where Φ is a normal cumulative distribution function. Note that as for the intensive mar-
gin, the model in Equation 5.2 uses only information from the base year. Going forward,
we denote the expected presence or absence of an industry in a location at time t0 as Mil,t0 :

Mil,t0 = M̂il,t0 + εil,t0 (5.3)

where M̂il,t0 is the expected probability of industry presence and εil,t0 is the residual error
term. We then use the residual to predict changes to Mil,t0 , i.e., industry appearances and
disappearances. Our predictive criterion is that Mil,t0 will approach M̂il,t0 as time passes,
that is, Mil,t0 approaches the values that are signaled by the country space and product
space densities.
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Table 9: Probit regression of changes in industry-location extensive margin, US, Chile and international

(1) (2) (3) (4) (5) (6) (7) (8) (9)

USA (establishments) Chile (establishments) International (exports)
Industry appearances, 2003-11 Industry appearances, 2005-08 Industry appearances, 1995-2010

Residual, Product -2.858*** -2.636*** -1.903***
Space density (0.026) (0.037) (0.059)
Residual, Country -3.004*** -1.757*** -1.327***
Space density (0.017) (0.038) (0.032)
Residual, hybrid -2.994*** -2.389*** -1.786***
density (0.017) (0.031) (0.044)

Initially absent 444,266 172,107 94,547
Industry appearances 37,681 11,496 7,089
Appearance rate 8.48% 6.68% 7.50%

Area under the curve 0.801 0.832 0.834 0.757 0.747 0.803 0.750 0.692 0.723
Pseudo R2 0.059 0.145 0.144 0.064 0.021 0.073 0.019 0.027 0.028

(10) (11) (12) (13) (14) (15) (16) (17) (18)

USA (establishments) Chile (establishments) International (exports)
Industry disappearances, 03-11 Industry disappearances, 05-08 Industry disappearances, 1995-2010

Residual, Product 2.953*** 0.929*** 1.213***
Space density (0.018) (0.039) (0.032)
Residual, Country 2.265*** 1.435*** 1.630***
Space density (0.009) (0.038) (0.050)
Residual, hybrid 2.272*** 1.368*** 1.265***
density (0.009) (0.030) (0.031)

Initially present 324,622 55,347 47,337
Industry disappearances 45,108 4,762 3,648
Disappearance rate 13.90% 8.60% 7.71%

Area under the curve 0.840 0.854 0.855 0.625 0.708 0.722 0.746 0.716 0.742
Pseudo R2 0.231 0.249 0.250 0.022 0.066 0.081 0.080 0.068 0.087

Location-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05, * p < 0.1
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In addition to the pseudo-R2 statistic, we evaluate the accuracy of these predictions
using the area under the receiver-operating characteristic (ROC) curve. The ROC curve plots
the rate of true positives of a continuous prediction criterion (the residual εil,t0 in our case)
as a function of the rate of false positives. The area under the curve (AUC) statistic is
equivalent to the Mann-Whitney statistic (the probability of ranking a true positive ahead
of a false positive in a prediction criterion). By definition, a random prediction will find
true positives and false positives at the same rate, and hence will result in an AUC = 0.5.
A perfect prediction, on the other hand, will find all true positives before giving any false
positive, resulting in an AUC = 1.

Table 8 applies our probit regression model to the US and Chilean establishment data
and international export data to the first year for which we have information in the re-
spective datasets. In the initial regression, we see that our product space and country
space density terms explain between one third and one half of the variance in industry-
location. Also, coefficients on all terms are positive and highly significant, meaning that
a high value for density is strongly indicative of the presence of an industry in a location.
The AUC are very high (AUC between 91% and 94% for hybrid models).

Next, we use the residual term from these regressions to predict industry appearances
and disappearances over long-term horizons in each dataset (Table 9). For all cases, the
coefficients are highly significant, and have the expected sign. In the US, over an 8-year
period, the hybrid model predicts industry appearances with an AUC of 83% and disap-
pearances with an AUC of 86%. For the Chilean data over a 3-year horizon, the hybrid
model’s AUC is 80% for appearances and 72% for disappearances. For the international
trade data over a 15-year horizon, the AUC is 72.3% for appearances and 74.2% for disap-
pearances. This suggests that the “unexpectedly absent” industries tend to preferentially
appear over time while the “unexpectedly present” industries tend to disappear.

6 Robustness Checks

6.1 Choice of base year and end year

In our growth regression models, we chose the base year to be the initial year of the avail-
able data and the end year as the final year of the available data. We test the sensitivity
of our results reported in Table 6 depending on the choice of different base years and
end years. Figure 2 shows the adjusted R2 values for our international trade regressions
(including the base-year controls) over all possible year combinations. Each regression
explains a sizable portion of the variation in export growth, with the lowest adjusted
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R2 exceeding 8.6%, and a mean R2 of 14.8%. Interestingly, we find that predictive power
appears to generally improve as the prediction interval increases (barring a possible conti-
nuity break between 1999 and 2000). This indicates that the density indices do not capture
a short-term mean reversion effect, but a longer-term shift in economic structure.
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Figure 2: Heat map of out of sample predictions of export growth, hybrid density model.

6.2 Product and Country Groups

We can also ask if this theoretical framework is more powerful within certain subsets of
industries or locations. We begin by calculating the similarities and densities as before,
using the full set of the 1995 export data. Next, we calculate the stage one and two regres-
sions as before (and with the base-year and radial growth controls), but restricted only
to the subsamples. We then report the resulting adjusted R2. That is, our results for the
wood products subsample measures how well our standard density variables can predict
export growth for goods in the wood products category alone.

Table 10 shows the results. For product subsamples (based on the HS chapters), it
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Table 10: Cross-sectional Regressions for Product and Country Groups.

Products Countries

HS Chapter Adjusted R2 By income Adjusted R2

Electronics, Machinery 0.449 Low income 0.379
& Equipment Upper middle income 0.355
Medical, Consumer & Other 0.435 High income 0.327
Plastics & Rubbers 0.393 Lower middle income 0.296
Processed Metals 0.326
Processed Stone & Glass 0.323 By region Adjusted R2

Chemicals & Related 0.319 North America 0.427
Apparel & Textiles 0.302 East Asia & Pacific 0.414
Wood Products 0.299 Europe & Central Asia 0.398
Automotive, Planes, 0.292 South Asia 0.308
Ships & Related Middle East & North Africa 0.266
Processed Foodstuffs 0.285 Latin America & Caribbean 0.259
Agricultural Products 0.251 Sub-Saharan Africa 0.255
Extractives 0.202

appears that the most easily-explained categories are “high-tech” goods like electronics
or medical devices. The worst predictions are in the extractives and agricultural cate-
gories; this makes sense, since shifts in these commodities may have more to do with
geographic luck (e.g. oilfield discoveries) than shared technological requirements. Next,
we can divide countries by income level (according to World Bank Group classifications):
the groups are relatively close to each other, though low-income countries are the most
predictable under our framework (possibly because they are less likely to shift their com-
parative advantage over the period). Finally, the results by region appear to fall roughly
in order of (non-oil) income (unlike looking at income directly); this would make Latin
America and the Caribbean somewhat less predictable than expected based on income
alone.

6.3 Double-out-of sample robustness check

In order to calculate our density variables (measuring implied comparative advantage),
exclude the location or industry being proxied from the weighted average. However,
other information regarding that location or that industry is also used in the calculations
of the similarity matrices. This may create some concerns regarding endogeneity. We can
address this issue by splitting our data into a training set and a testing set, a process
referred to as “cross validation” in the computer science literature. In this approach,
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we build the density indices using only information found in the training set. For the
product space, we estimate the similarity between industries using half of the locations.
Likewise, for the country space, we estimate the similarity between locations using half
of the industries. This approach leaves one quarter of the industry-location observations
completely outside of the sets we used to build our similarity indices. Finally, we use
these similarity indices to build density indices for the testing set. Having built our out-
of-sample predictors, we can repeat the regressions using only the testing data.

Table 11: Out-of-sample OLS regression of international exports by industry-location,
1995.

(1) (2) (3)

Exports, 1995
(revealed comparative advantage, log)

Product Space density (log) 0.916*** 0.940***
out-of-sample, 1995 (0.025) (0.065)

Country Space density (log) 0.150*** 0.063
out-of-sample, 1995 (0.038) (0.046)

Product Space density (log) 0.830*** -0.035
in-sample, 1995 (0.029) (0.066)

Country Space density (log) 0.357*** 0.121**
in-sample, 1995 (0.049) (0.053)

Adjusted R2 0.622 0.557 0.622

N = 23, 794. Country-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05, * p < 0.1

Tables 11 and 12 apply this process to our international trade dataset over the 1995-
2010 period. We find that the explanatory power of our out-of-sample hybrid model is
comparable to that of the in-sample model (R2 values are 62.2% and 55.7% for regressions
of current export levels, and 18.7% versus 18.5% for regressions of export growth). Fur-
thermore, adding the in-sample density terms to the out-of-sample dataset yields a neg-
ligible marginal contribution to R2. Finally, combining the in-sample and out-of-sample
predictors shows a marginally higher R2 but with drastically reduced significance, indi-
cating a high degree of co-linearity between the two types of variables. This suggests that
endogeneity is not driving our results.
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Table 12: Out-of-sample OLS regression of growth in international exports by
industry-location, 1995-2010

(1) (2) (3)

Growth in exports (log), 1995-2010

Residual, Product Space -0.012*** -0.006***
density, out-of-sample, 1995 (0.002) (0.002)

Residual, Country Space -0.014*** -0.009**
density, out-of-sample, 1995 (0.002) (0.004)

Residual, Product Space -0.012*** -0.006***
density, in-sample, 1995 (0.002) (0.002)

Residual, Country Space -0.014*** -0.006
density, in-sample, 1995 (0.002) (0.003)

Adjusted R2 0.187 0.185 0.189

N = 23, 794. Country-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05, * p < 0.1

6.4 Excluding the same 2-digit industries in calculating densities.

We have thus far shown evidence that the intensity of an industry in a location can be
proxied using the output of highly similar industries in that same location. However, our
results could also be explained by how industries are defined: if a classification system
arbitrarily splits a single economic activity into two industry categories, then we would
expect to see them in similar intensities. In the classification of the international trade
data, for example, we can see that HS6101 contains “Men’s overcoats” whereas HS6102
contains “Women’s overcoats.” In fact, in Table 3, 7 out of 10 product pairs have the same
2-digit Harmonized System codes. To explore the possibility that our results are driven by
such trivial cases, we calculate an adjusted product space density that excludes industries
from same 2-digit Harmonized System categories; we then perform the same regressions
as before.

Table 13 shows the result for the initial stage. As the table shows, the adjusted density
is still highly significant, R2 values decrease only slightly (from 62.7% to 60.7%), and with
the coefficients of the standard and adjusted density terms are statistically indistinguish-
able (at the 5% level).

We also find little to no effect of this adjustment in the second stage: when we use
the residuals from the first stage to predicting export growth between 1995 and 2016,
excluding the same 2-digit industries from density does not hurt the predictive power.
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Table 13: OLS regression of international exports by industry-location, 1995 excluding
the same 2-digit industries

(1) (2)

Exports, 1995
(Revealed Comparative Advantage, log)

PS density (all products) 0.962***
1995 (log) (0.013)
PS density (excluding same 2-digit category) 0.944***
1995 (log) (0.014)

Adjusted R2 0.627 0.607
N = 94, 046. Country-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05, * p < 0.1

Comparing Columns 1 to 2, 3 to 4, 5 to 6 and 7 to 8 of Table 14, the coefficients of the
residual terms are not statistically different from each other at 5% level. Moreover, the ex-
planatory power, which is captured by the R2 term, is not affected by excluding the same
2-digit products (decreases under 0.01). These results thus appear to reject the possibility
that our findings are an artifact of the industry classification used.

7 Conclusions

In this paper we have shown that the intensity of an industry-location cell follows a pat-
tern that can be discerned from the presence of related industries in that location (product-
space density) or of that industry in related locations (country-space density). Moreover,
the error term in the predicted pattern is not pure noise but instead carries information re-
garding the future level, and hence the growth rate, of that industry-location cell. These
dynamics include components that are orthogonal to pure industry or location effects,
but instead capture industry-location interactions. These results can be found using in-
ternational trade data as well as sub-national data for the USA, India and Chile. We have
shown evidence that they operate both at the intensive as well as the extensive margin,
that they are not due to endogeneity in the information and that they operate most in-
tensely at long horizons of over a decade.
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Table 14: OLS regression of export growth of an industry in a country excluding the same 2-digit industries

(1) (2) (3) (4) (5) (6) (7) (8)

Growth in exports (log), 1995-2016

Residual, PS density (all products) -0.023*** -0.017*** -0.022***
1995 (0.001) (0.001) (0.001)
Residual, PS density (excluding same 2-digit) -0.022*** -0.016*** -0.022***
1995 (0.001) (0.001) (0.001)
Industry-location exports -0.006*** -0.006*** -0.001 -0.001 -0.004*** -0.005***
1995 (log) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Location population 0.007** 0.007** 0.004** 0.004*
1995 (log) (0.003) (0.003) (0.002) (0.002)
Global industry total, 1995 (log) 0.009*** 0.009*** 0.004*** 0.003***
1995 (log) (0.001) (0.001) (0.001) (0.001)
Radial industry growth 0.981*** 0.978***
1995-2016 (log) (0.018) (0.018)
Radial location growth 0.964*** 0.968***
1995-2016 (log) (0.110) (0.111)

Industry FE Yes Yes
Location FE Yes Yes

Adjusted R2 0.151 0.149 0.172 0.169 0.319 0.316 0.431 0.426
N = 94, 046. Country-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05, * p < 0.1
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Our methodology successfully combines the methods from international trade and
relatedness-based measures often used in the regional development. We motivated our
approach with a modified Ricardian model in which the industry productivity parame-
ters of each location are correlated among technologically similar industries. This means
that whatever determines the comparative advantage of a location in an industry also af-
fects technologically related industries. In this case, product space density is informative
of the advantage of a location in technologically related industries while country space
density is informative of the presence of the industry in technologically similar locations.
We can use these density variables to estimate an implied comparative advantage value.
This information can be obtained even if the location does not currently host the industry.

An important question is why is it that our two density variables would carry in-
formation about the future level of the industry, even after controlling for location and
industry effects and the overall growth rate of the location and the industry in question.
One interpretation is that each industry-location cell is affected by a zero-mean indepen-
dent and identically distributed (i.i.d.) shock that causes a deviation of its output from
their equilibrium levels. In this interpretation, since over time the expected value of the
i.i.d. shock is zero, then the underlying fundamentals become expressed and it is these
that are captured by our approach. An alternative interpretation is that what we are ob-
serving is the consequence of inter-industry spillovers such as Marshallian and/or Jacobs
externalities (Glaeser et al., 1992; Ellison et al., 2010; Beaudry and Schiffauerova, 2009). In
this case, the productivity of an industry-location cell is affected by the presence of related
industries through spillovers. The fact that these take time is what would explain why
our predictive power peaks at time periods of a decade or more. Future research would
need to test for these alternative hypotheses.

Our results are also informative for models of unbalanced growth. Much of growth
theory has been based on the exploration of solutions around a balanced growth path,
but there has been a growing literature that tries to cope with structural transformation,
along the Kuznets facts, i.e. the secular decline of agriculture in employment and out-
put, the rising share of services and the inverted U shaped path of manufacturing. To
cope with these features, some models use non-homothetic demand, as in a minimum
level of food consumption or a hierarchy of needs. Other models use differential capi-
tal intensities across industries that are then rebalanced as capital deepens (Baumol, 1967;
Acemoglu and Guerrieri, 2008). However, the stylized facts uncovered in this paper show
a more subtle and fine-grained structure of predictable transformations. First, the struc-
ture is observable in exports and not just in employment and output, meaning that what
drives these regularities is changes in supply rather than changes in domestic demand.
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Secondly, the patterns we observe are too intricate to be determined by differences in cap-
ital intensity. So this paper suggests that at least some drivers of differential growth lie
elsewhere.

From a Ricardian viewpoint, the conjecture would be that mastery of specific technolo-
gies affects the productivity of related industries, a feature that is not incorporated into
current Ricardian models that productivity draws are completely random (Eaton and Ko-
rtum, 2002), or sector specific (Costinot et al., 2012). Efforts to improve on one industry’s
productivity spillover into other related industries. The unexploited aspects of techno-
logical relatedness are reflected in the difference between a country’s output structure
and the international norm. These differences get diminished over time as firms exploit
technological spillovers.

Ricardian models are reduced-form models, where other elements are subsumed in
the labor productivity parameters. In the Appendix, we show that we can motivate our
approach also with a model with an indeterminate number of factors of production. From
a factor based model point of view, the intensity of output in an industry-location cell
should be related to the adequacy of the match between the factor requirements of the
industry and the factor endowments of the location. Industries with similar factor re-
quirements should be similarly present across locations while similarly endowed loca-
tions should host a similar suite of industries. Hence, the correlation between the inten-
sity of presence of pairs of industries across all locations is informative of the similarity
of their factor requirements while the correlation between output intensity of pairs of
locations across all industries is informative of the similarity in their factor endowments.

From the perspective of factor-based models like Hecksher-Ohlin-Vanek model, the
explanation requires an understanding of forces that affect the differential accumulation
of multiple factors and not just their reallocation, which should happen at shorter time
horizons. One conjecture is that the world is characterized by many factors of production
that enter differentially in different industries with a complex set of complementarities.
At any point in time, the endowment of the many factors is not consistent with an equal-
ization of their rates of return, causing differential factor accumulation. Furthermore,
given complementarity, the accumulation of one factor, in response to an initial disequi-
librium will affect the return to other factors triggering further factor accumulation. The
pattern of factor proportions that equalize returns is better reflected in the international
average than in the country’s own history. As a consequence, the output composition
derived from the experience of others can be informative of the long-term trends in a par-
ticular country. Future research should test whether any of these conjectures hold true.
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8 Appendix

8.1 Using RCA instead of RpCA.

We chose to use RpCA rather than more traditional RCA measure because RCA could
be affected by the price movements in other industries. To be explicit, suppose that a
country is a successful exporter of a product in year t0 with RCA > 1. And suppose it is
share remains the constant in the world in a later year, but because of the movements in
the commodity prices, the country’s total exports increase as a share of the world exports.
Although nothing fundamental changes in the country’s ability to make this product be-
cause of the price movements in other products the country’s RCA becomes smaller.

As a robustness check, we developed all our measures with Balassa’s RCA as well.
Table 15 shows that both Product Space and Country Space based on RCA are significant
predictors, yet, the explanatory powers of these variables are lower than their counter-
parts using RpCA in Table 4.

Table 15: OLS regression of international exports by industry-location using RCA
based density, 1995

(1) (2) (3)

Exports, 1995
(Revealed Comparative Advantage, log)

Product Space Density (log), 1995 0.967*** 0.811***
(0.013) (0.019)

Country Space Density (log), 1995 0.726*** 0.232***
(0.038) (0.021)

Adjusted R2 0.416 0.258 0.432

N = 93, 984. Country-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05, * p < 0.1

When we do the growth regressions as reported in Table 6, the residual in the first
stage performs equivalently with its RcPA counterpart (Table 16).
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Table 16: OLS regression of export growth of an industry in a country using RCA based density

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Growth in exports (log), 1995-2016

Residual, Product -0.023*** -0.015*** -0.015*** -0.016*** -0.016***
Space density, 1995 (0.001) (0.002) (0.002) (0.001) (0.001)
Residual, Country -0.020*** -0.009*** -0.003* -0.009*** -0.009***
Space density, 1995 (0.001) (0.002) (0.002) (0.002) (0.001)
Industry-location -0.012*** -0.005*** -0.011*** 0.000 -0.021*** -0.003***
exports, 1995 (log) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Location population 0.012*** 0.007** 0.011*** 0.004**
1995 (log) (0.003) (0.003) (0.002) (0.002)
Global industry total 0.014*** 0.009*** 0.011*** 0.003**
1995 (log) (0.001) (0.001) (0.001) (0.001)
Radial industry 0.928*** 0.976***
growth, 1995-2016 (log) (0.019) (0.017)
Radial location 0.748*** 0.982***
growth, 1995-2016 (log) (0.112) (0.105)

Industry FE Yes Yes
Location FE Yes Yes

Adjusted R2 0.146 0.135 0.156 0.121 0.174 0.234 0.320 0.411 0.438

N = 93, 984. Country-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05, * p < 0.1
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8.2 Calculation of Expected Similarity Coefficient

In this Technical Appendix, we will derive the expected similarity coefficient between
two locations (products) given that the revealed comparative advantage of industry i in
location l is:

ril = 1− 4d2(ψi, λl) (8.1)

where d is the shortest distance between independent and uniformly distributed ψi and
λl parameters on a circle of perimeter 1. We can define the similarity φii′ between two
industries i and i′ given by

φii′ = (1 + corr{ri, ri′})/2 (8.2)

where corr is defined as

corr{ri, ri′} =
∑l(ril − ri)(ri′l − ri′)√

∑l(ril − ri)2 ∑l(ri′l − ri′)2
(8.3)

Since each ψi and λl are independently distributed, using law of large numbers, the
sums in the correlation expressions can be converted to expectation values, namely:

corr{ri, ri′} =
E[(ril − ri)(ri′l − ri′)|ψi, ψi′ ]√

E[(ril − ri)2|ψi]E[(ri′l − ri′)2|ψi′ ]
(8.4)

Since ψiand ψi′ are identical independently variables, the correlation becomes:

corr{ri, ri′} =
E[(ril − ri)(ri′l − ri′)|ψi, ψi′ ]

E[(ril − ri)2|ψi]
(8.5)

To make the calculations more tractable, if we use r̃il = (1− ril)/4 = d2(ψi, λl) instead
of ril, the similarity measure will remain the same. Using the identity:

E[(r̃il − r̃i)
2|ψi] = E[r̃2

il|ψi]− E2[r̃il|ψi] (8.6)

we can calculate the denominator in Equation 8.5 using these separate terms. First,

E[r̃il|ψi] =

1∫
0

d2(ψi, λl)dλl = 2
1/2∫
0

y2dy = 2[y3/3]1/2
0 = 1/12 (8.7)

and
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E[r̃2
il|ψi] =

1∫
0

d4(ψi, λl)dλl = 2
1/2∫
0

y4dy = 2[y5/5]1/2
0 = 1/80 (8.8)

hence, the denominator in Equation 8.5 becomes:

E[(r̃il − r̃i)
2|ψi] =

1
80
−
(

1
12

)2

=
1

180
(8.9)

We can write the numerator in Equation 8.5 as:

E[(ril − ri)(ri′l − ri′)|ψi, ψi′ ] =

1∫
0

(
d2(ψi, λl)−

1
12

)(
d2(ψi′ , λl)−

1
12

)
dλl

=

1∫
0

[d(ψi, λl)d(ψi′ , λl)]
2dλl −

1
144

(8.10)

To calculate the integral, we will measure all the distances on the circle relative to ψi.
Let’s define ∆ii′ ≡ d(ψi, ψi′). We can write the integral in Equation 8.10 as

1∫
0

[d(ψi, λl)d(ψi′ , λl)]
2dλl =

1/2∫
0

[y(y− ∆ii′)]
2dy

+

1/2+∆ii′∫
1/2

[(1− y)(y− ∆ii′)]
2dy

+

1∫
1/2+∆ii′

[(1− y)(1− y + ∆ii′)]
2dy

(8.11)

The first integral in Equation 8.12 is:

1/2∫
0

[y(y− ∆ii′)]
2dy =

20∆2
ii′ − 15∆ii′ + 3

480

The second integral in Equation 8.12 is:

1/2+∆ii′∫
1/2

[(1− y)(y− ∆ii′)]
2dy =

16∆5
ii′ − 80∆4

ii′ + 160∆3
ii′ − 120∆2

ii′ + 30∆ii′

480
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Finally, the third integral in Equation 8.12 is:

1∫
1/2+∆ii′

[(1− y)(1− y + ∆ii′)]
2dy =

−16∆5
ii′ + 20∆2

ii′ − 15∆ii′ + 3
480

Hence

1∫
0

[d(ψi, λl)d(ψi′ , λl)]
2dλl =

−80∆4
ii′ + 160∆3

ii′ − 80∆2
ii′ + 6

480
=

1
180
− 1

6

(
∆ii′ − ∆2

ii′

)2

(8.12)
Plugging back calculated numerator and denominator into Equation 8.5, we obtain:

corr{ri, ri′} =
E[(ril − ri)(ri′l − ri′)|ψi, ψi′ ]

E[(ril − ri)2|ψi]
=

1/180−
(

∆ii′ − ∆2
ii′

)2
/6

1/180

= 1− 30
(

∆ii′ − ∆2
ii′

)2
= 1− 30

(
d(ψi, ψi′)− d2(ψi, ψi′)

)2
(8.13)

Then the similarity between industries i and i′ is:

φii′ = (1 + corr{ri, ri′})/2 = 1− 15
(

d(ψi, ψi′)− d2(ψi, ψi′)
)2

(8.14)

8.3 Motivation Based on Factor Content of Production

8.3.1 Relation to the Heckscher-Ohlin Model

This paper is related to the controversy surrounding the Leontief Paradox which has been
as a major handicap of the Hecksher-Ohlin trade models. For analytical tractability, eco-
nomic models are often written with few factors of production and are then extended to
see if the theorems derived in the simpler setting hold for an arbitrary number of factors.
But to test theories empirically, it has been necessary to take a stand on the relevant factors
of production in the world. In his seminal papers, Leontief found evidence against the
Heckscher-Ohlin prediction that the basket of exports of a country should be intensive in
the relatively more abundant factors (Leontief, 1953, 1956). He did so by decomposing the
factor content into two factors: capital and labor. Testing a multi-factor world required
an extension of the Heckscher-Ohlin model, derived by Vanek (1968). The question then
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moved onto which factors to take into account when testing the theory empirically. 10 In
most cases, it was not possible to list all factors related to the production and the tests
were limited to the factors that can be measured. But these models have implications
about the world that need not take a stand on what are the relevant factors of the world
but can eschew that issue. The thought experiment above illustrates this idea. Products
that have similar production functions should tend to be co-exported by different coun-
tries with similar intensities. Countries with similar factor endowments should tend to
have similar export baskets. We can use these implications of the HOV model to estimate
the missing data in our thought experiment.

In the HOV tradition, the factor endowments of a location determine which indus-
tries will be present there. To set up this model, we will make following standard HOV
assumptions:

1. There is full employment of all factors in each location.

2. Factor prices are equalized across all locations.

3. All locations have access to the same technologies for all industries.

4. Production technologies exhibit constant returns to scale. Note that requirements 2-
4 imply that there would be a fixed optimal combination of factor inputs to produce
each output.

With these assumptions, we can write the full employment condition for all factors in
all locations as a linear function:

AY = F (8.15)

where
10This opened up a long literature on the relative factor content of trade (Antweiler and Trefler, 2002;

Bowen et al., 1987; Conway, 2002; Davis et al., 1997; Davis and Weinstein, 2001; Deardorff, 1982; Debaere,
2003; Hakura, 2001; Helpman and Krugman, 1985; Leamer, 1980; Maskus and Nishioka, 2009; Reimer, 2006;
Trefler, 1993, 1995; Trefler and Zhu, 2000, 2010; Zhu and Trefler, 2005). For example, Bowen et al. (1987)
test it with 12 factors. Davis and Weinstein (2001) argue that HOV, “when modified to permit technical
differences, a breakdown in factor price equalization, the existence of nontraded goods, and costs of trade,
is consistent with data from ten OECD countries and a rest-of-world aggregate (p.1423). Clearly, all of these
modifications can be construed as involving other factors, such as technological factors causing measured
productivity differences, factors associated with geographic location and distance that affect transport cost,
or factors that go into making nontraded goods that are used in the production of traded goods. Trefler and
Zhu (2010) argue that there is a large class of different models that have the Vanek factor content prediction
meaning that a test of the factor content of trade is not a test of any particular model.
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• A = N f × Ni is a matrix of factor inputs required to produce one unit of output in
each industry.

• Y = Ni × Nl is a matrix where ri,l represents location l’s output in industry i.

• F = N f × Nl is a matrix where Ff ,l represents location l’s endowments of factor f .

From an empirical point of view, we can only observe Y is the matrix of industry-
location outputs. Empirically, we do not observe either the factor requirements of each
industry A or factor endowments of each location F. In fact, we do not even have an
exhaustive list of all factors. Following Equation 2.4 of Feenstra (2003), it is convenient to
put the observable Y matrix on the left and leave the unobservable matrices on the right.
In order to achieve this, we assume that Ni = N f and the A matrix is invertible. We define
B = A−1 such that B× A = IN f , where IN f is the N f × N f identity matrix. The B matrix
indicates how much output is generated by the employment of each factor in an industry.
If we multiply both sides of Equation 8.15 by the B matrix, we obtain:

Y = BF (8.16)

What can be inferred about the B and F matrices given that we can only observe matrix
Y? Obviously, we will not be able to get information about individual elements of these
matrices. Yet, we will show that the similarities in the factor requirements of two indus-
tries or the similarity between the factor endowments of two locations can be obtained
from the information in the Y matrix. In subsections below, we first develop similarity
measures between the factor requirements of pairs of industries and between the factor
endowments of pairs of locations. This will prove instrumental for our purposes.

8.3.2 Similarities between the factor requirements of two industries

We will now derive a measure of input similarity of two industries, using Equation 8.16.
We will assume that two industries, i and i′, are similar if their associated row vectors in
the B matrix, namely Bi and Bi′ , are similar. Each element of the Y matrix can be written
as:

ril = ∑
f

Bi f Ff l (8.17)

If we denote ri and Bi as the row vectors of Y and B matrices, this equation can be
rewritten in vector notation for all locations as:

44



ri = BiF (8.18)

We will now calculate the covariance across all locations of a given industry. For this
we first need to calculate the average production of each industry. Given Equation 8.18,
average production of industry i can be calculated as:

ri =
∑l ril

Nl
= ∑

f
Bi f

∑l Ff l

Nl
= ∑

f
Bi f F f (8.19)

where F f is the average presence of factor f across all locations. Subtracting the last two
expressions from one another, we arrive at:

ri − ri = Bi(F− F) (8.20)

where F is a N f × Nl matrix that repeats in each row f the average endowment of the
world in that factor F f . Using Equation 8.20, we can relate the observed covariance of the
rows of the Y matrix to those of the unobserved B matrix:

(ri − ri)(ri′ − ri′)
t = Bi(F− F)(F− F)tBt

i′ (8.21)

C ≡ (F − F)(F − F)t matrix is the covariance matrix of rows of F matrix and, by
definition, it is a square and symmetric matrix. The C matrix can be written as:

C = UΣUt (8.22)

where U is a unitary matrix formed by the eigenvectors of C and Σ is a diagonal matrix
whose elements are eigenvalues of C. If we define B̃i = BiU, then we can write the right
hand side of Equation 8.23 as

(ri − ri)(ri′ − ri′)
t = ∑

f
B̃i f B̃t

i′ f σf (8.23)

where σf is the f th (largest) eigenvalue of the covariance matrix, C. In one extreme, we
can assume σf = σ for all f . This would happen, for instance, If all rows of the F matrix
are independently and identically distributed (i.i.d.). An interpretation of this assump-
tion is that locations accumulate factors separately and independently. This assumption
is unlikely to be true about the world but it simplifies our proof considerably; we give
evidence of the generality of this approach in our simulations. Using this assumption,
the right hand side becomes
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∑
f

B̃i f B̃t
i′ f σf = σB̃iB̃t

i′ = σBiUUtBt
i′ = σBiBt

i′ (8.24)

Dividing both sides of Equation 8.24 by the standard deviation of ri and ri′ , we can
relate the correlation of the rows of the Y matrix to elements of the B matrix:

corr{ri, ri′} =
(ri − ri)(ri′ − ri′)

t

σri σri′
≈ σ

σri σri′
BiBt

i′ (8.25)

where corr represents the Pearson correlation between vectors. Since this is a variable
with a range (−1, 1) we renormalize it to build a similarity metric between 0 and 1.
Hence, we can estimate a measure of the similarity between the factor requirements of
two industries, i and i′:

φii′ = (1 + corr{ri, ri′})/2 (8.26)

Following Hausmann and Klinger (2006) and Hidalgo et al. (2007), we refer to this
industry-industry similarity matrix as the product space.

8.3.3 Similarities between factor endowments of two locations

To quantify the similarities between the factor endowments of two locations, we will
use an analogous approach. For two locations l and l′, we would like to measure the
similarity between their factor endowment vectors, Fl and Fl′ . If we denote rl and Fl as
the lth column vectors of Y and F matrices respectively, the output of a location is related
to its factor endowments by:

rl = BFl (8.27)

Note that our calculations in Section 2.1.1 can be replicated here because if we take
the transposes of both sides in Equation 8.27, we will arrive to an expression similar to
Equation 8.18. Assuming that the columns of B matrix are independently and identically
distributed, we can write (akin to Equation 8.25):

corr{rl, rl′} =
(rl − rl)

t(rl′ − rl′)

σrl σrl′
≈ σ′

σrl σrl′
Ft

l Fl′ (8.28)

where rl is the average production of location l, σrl is the standard deviation of rl, σ′ is
the diagonal of the covariance matrix ((B − B)t(B − B) ≈ σ′ IN f ). We renormalize the
correlation to build a similarity metric between 0 and 1 by adding 1 and dividing by 2.
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Hence, we can estimate a measure of the similarity between the factor endowments of
two locations, l and l′ as:

φll′ = (1 + corr{rl, rl′})/2 (8.29)

where corr represents the Pearson correlation between vectors, rl and rl′ . Following Bahar
et al. (2014), we refer to this location-location similarity matrix as the country space.

8.3.4 Scaling the matrices

Locations and industries differ greatly in size. It is often useful to normalize each location
and each industry using, for example, the revealed comparative advantage (Balassa, 1964)
or location quotient or the relative per capita output of each industry in each location.
We can show that the correlations calculated over the normalized data have the same
information regarding the input similarity of industries or the endowment similarity of
locations. To show this, let us assume that we divide each industry by its relative size, si,
and each location by its corresponding size, sl. We define the r̂, Â and F̂ matrices such
that r̂il = ril/(sisl), Â f i = si A f i and F̂f l = Ff l/sl then

Âr̂ = F̂ (8.30)

All the previous results will follow in this renormalized space.
Unfortunately, for the world as a whole we do not have the production data for each

industry in each country. The closest data source that we can readily obtain is data on
country exports. Here we will show how by using the normalized version of the export
dataset we can obtain a very good approximation to their production correlation coun-
terparts. Production is the sum of locally consumed and exported portions of outputs of
industries in that location. Mathematically, we can write this as:

ril = Xil + Cil (8.31)

where Xil represents net exports and Cil represents local consumption. Subtracting the
mean output of the industry i in all locations we obtain:

ri − ri = (Xi − Xi) + (Ci − Ci) (8.32)

Assuming homothetic preferences worldwide, and normalizing each industry element
by its size, we can assume that Ci = Ci. Therefore, correlations of columns of Y can be
inferred from correlations of columns of X. Similarly, we can also look at the column
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vectors of Y and X:

rl − rl = (Xl − Xl) + (Cl − Cl) (8.33)

Again, assuming homothetic preferences worldwide, and normalizing each location by its
size then each country would consume the same share of products, implying that Cl = Cl.
Consequently, correlations between the columns of Y can be inferred from the correlations
between the columns of X.

8.4 Extended simulations

We illustrate how well density variables for implied comparative advantage based on the
presence of related industries in the same row or the value of the same industry in related
columns predict the value of each entry in the ril matrix by simulating a toy model with
100 countries and 100 products and assume a uniform distribution of the ψi and the λl on
the unit circle U. In the toy model, we exactly know the underlying parameters; hence,
we can experiment with the model choice parameters. First, we verify that our industry
similarity index captures the distance between the factor requirements of industries, and
that our location similarity index captures the distance between the factor endowments
of locations. Next, we estimate how well our density measures predict the output of
each industry-location. We will then study the impact of different neighborhood filters at
different levels of noise.

We first use our variables for implied comparative advantage to estimate the intensity
of output of each industry-location cell. To do this, we estimate the product space density
of industry i in location l by calculating the weighted average of the intensities of the k
most similar industries in location l with the weights being the similarity coefficients of
each industry i′ to industry i. We also calculate the country space density of industry i
in location l by estimating the weighted average of the intensity of industry i across the k
most similar locations. Setting k = 50 and iterating the simulation through 5,000 trials, we
find that our hybrid density model (i.e., a regression including both industry density and
location density) is a powerful predictor of industry-location output (mean R2 = 0.784,
with 95% confidence interval of [0.7150.853] across all simulations). However, we need
not fix the neighborhood filter at k = 50. In Figure 1, the uppermost line shows the effect
of neighborhood size on the R2. We see that the highest R2 value is found at k = 4.

This result implies that it is possible to predict the value of any entry in the ril matrix
looking at the presence of related industries in the same row or the value of the same in-
dustry in related columns. This in itself is an interesting implication of our approach. But,
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as we will show in Section 4, not only do the product space and country space densities
perform well at predicting the ril matrix, but more surprisingly, the errors in the relation-
ship between actual and fitted values of the ril matrix are predictive of future growth,
both when looking at the intensive margin as well as the extensive margin. It is as if the
rest of the matrix has more information about what the value of a cell should be than the
cell itself and deviations from this expectation are corrected through subsequent growth
or decline.

Finally, we can extend our simulation to examine the effect of noise in the observed
output. Until now, we have assumed that the output of an industry-location, r̃il, is deter-
mined solely is determined solely by the distance between the technological requirement
of the industry ψi and the technological ability of the location λl. We can call this the
equilibrium output. Let us assume instead that the output of each industry-location can
deviate from this equilibrium value because of a disturbance term εil that is normally dis-
tributed. We will explore the possibility that the disturbance term enters either linearly
or exponentially. As a result of these assumptions, we no longer observe the equilibrium
output ril, but instead observe only the current output, r̃il.

Because the error term is not correlated across location or industry, we can expect that
averaging our density index over several neighbors will reduce the effect of noise on our
results. That is, we can achieve a better estimate of the noise-free output ril by averaging
the observed, noisy output r̃il of the most similar industries and locations, since the error
in their output levels might cancel out. Our simulations confirm this hypothesis. We test
three levels of noise in the output. Given that the standard deviation of ril in our surrogate
data is 1.994 (median value from 5,000 trials) we set the standard deviation of the noise
term to 1, 2 and 4 which are, respectively half, the same or twice the standard deviation
of ril.

Now that the observed output incorporates an error component over the equilibrium
output, the density variables are better estimates of the underlying fundamental param-
eters ψi and the λl than the parameters that would be inferred using the actual produc-
tion. We illustrate this using a simulation of our toy model with 100 locations and 100
industries, where we now vary the standard deviation of the error term. We can then
use the above formulas to calculate simulated output, proximities, and densities, setting
u = v = 50. Figure 3 illustrates the explanatory power of our three density variables both
for the additive and the exponential error models. We graph the correlation between
observed output and equilibrium output as a measure of how well the model is able to
implicitly capture the values of the fundamental variables ψi and the λl. When the error
term has a standard deviation near zero, observed output is almost perfectly related to the
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Figure 3: Simulation of association between underlying output and hybrid density model, by
size of neighborhood and noise level.

underlying equilibrium output as estimated using the density variables. However, as the
size of the error term increases, the observed output becomes increasingly less correlated
with equilibrium output. The density variables are better able to capture the underly-
ing structural variables and hence are better able to predict equilibrium output, with the
Hybrid density outperforming either the product space or the country space densities
because they average over a broader set of observations.

In Figure 1, we see the effect of increasing the size of the error term on the correlation
between the density variables and the actual product intensity. First, we note that, as
expected, a larger error term does reduce the R2 of our estimates, though the decline is
relatively small. Second, as noise increases, the R2 peak tends to move toward mid-range
k values, suggesting that the tradeoff between focusing on more related industries and
averaging over a broader set of observations moves in favor of the latter. At the same
time, the relationship between k and R2 levels out as noise increases. For example, with
a noise level of 2, the R2 curve is fairly flat with predictive power roughly equal between
k values of 4 and 150. When the neighborhood size gets larger, the predictive power de-
creases because the measure of density incorporates increasingly irrelevant information.
This result suggests that finding the optimal neighborhood size may not be a first-order
concern for our empirical tests.
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8.4.1 Simulating the estimators on an HOV toy model

We test the effectiveness of our estimators of ril by creating a surrogate dataset using a
toy model based on our HOV model. First, we verify that our industry similarity index
captures the distance between the factor requirements of industries, and that our location
similarity index captures the distance between the factor endowments of locations. Next,
we estimate how well our density measures predict the output of each industry-location.
We will then study the impact of different neighborhood filters at different levels of noise.

To create our surrogate dataset, we set the number of industries Ni and the number of
locations Nl both equal to 200. We also set the number of factors N f equal to 200 to ensure
that the A matrix is invertible. We then populate the A and F matrices using a uniform
random distribution with values between zero and one. From these factor requirement
and endowment matrices, we can produce a 200 by 200 matrix of output values ril using
the equation Y = A−1F.

We can now explore whether the correlation between pairs of Y rows is related to the
correlation between pairs of A−1 rows, meaning that the similarity of production or ex-
port intensity of products across all locations carries information about the similarity of
their factor requirements, as indicated by Equation 8.25. We randomly select 5,000 A−1

and F matrices and test the validity of this equation. We note that the random selec-
tion of both matrices simultaneously puts no inherent structure into these matrices and
in reality we expect to observe more structures matrices. Even in the random case, the
correlation between the actual and estimated numbers exhibit is 0.532∓ 0.014. We also
test whether the correlation between pairs of columns of Y is related to the correlation be-
tween the corresponding columns of factor endowments F as suggested by Equation 8.28
and obtained the same correlation coefficient. These results confirm that the correlations
of rows (columns) in the Y matrix are informative about the correlation between rows in
the A−1 matrix (columns in the F matrix). When we put more structure into the model by
introducing higher order correlations in the A−1 matrix or the F matrix, our correlation
coefficients increase significantly.

Next, we use our density index to estimate the intensity of output of each industry-
location cell. To do this, we estimate the product space density of industry i in location
l by calculating the weighted average of the intensities of the k most similar products in
location l with the weights being the similarity coefficients of each industry to industry
i. We also calculate the country space density of industry i in location l by estimating the
weighted average of the intensity of industry i across the k most similar locations. Setting
k = 50 and iterating the simulation through 5,000 trials, we find that our hybrid density
model (i.e., a regression including both industry density and location density) is a power-
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ful predictor of industry-location output (mean R2 = 0.784, with 95% confidence interval
of [0.7150.853] across all simulations). However, we need not fix the neighborhood filter
at k = 50. In Figure 4, the uppermost line shows the effect of neighborhood size on the
R2. We see that the highest R2 value is found at k = 4.
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Figure 4: Simulation of association between underlying output and hybrid density model, by
size of neighborhood and noise level.

Finally, we can extend our simulation to examine the effect of noise in the observed
output. Beginning with the Y = A−1F used above, suppose that observed output, r̃il, is
affected by a random error term, εil, with a normal distribution around a mean of zero:

r̃il = ril + εil (8.34)

Because the error term is not correlated across location or industry, we can expect that
averaging our density index over several neighbors will reduce the effect of noise on our
results. That is, we can achieve a better estimate of the noise-free output ril by averaging
the observed, noisy output r̃il of the most similar industries and locations, since the error
in their output levels might cancel out. Our simulations confirm this hypothesis. We
test three levels of noise in the output. Given that the standard deviation of ril in our
surrogate data is 1.994 (median value from 5,000 trials) we use assign the noise term
standard deviations equal to 1, 2 and 4, which are approximately half, equal to and double
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the standard deviation of ril, respectively.
In Figure 4, we see the effect of increasing the size of the error term on the correlation

between the density variables and the actual product intensity. First, we note that, as
expected, a larger error term does reduce the R2 of our estimates, though the decline is
relatively small. Second, as noise increases, the R2 peak tends to move toward mid-range
k values, suggesting that the tradeoff between focusing on more related industries and
averaging over a broader set of observations moves in favor of the latter. At the same
time, the relationship between k and R2 levels out as noise increases. For example, with a
noise level of 2, the R2 curve is fairly flat with predictive power roughly equal between k
values of 4 and 150. This result suggests that finding the optimal neighborhood size may
not be a first-order concern for our empirical tests.
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