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Abstract
Economic growth is often associated with diversification of economic activities. Making a product in a country is dependent

on having, and acquiring, the capabilities needed to make the product, making the process path-dependent. Taking an agnostic
viewon the identity of the capabilities, we derive a probabilisticmodel to describe the directed dynamic process of capability ac-
cumulation and product diversification of countries. Using international trade data, we identify the set of pre-existing products
that enables a product to be exported competitively. This is the ecosystem of the product. We construct a directed network of
products, the Eco-Space, where the edge weight is an estimate of capability overlap between products. We uncover transition
products and a core-periphery structure, and show that low and middle-income countries move out of transition products and
into the core of the network over time. Finally, we show that our network model is predictive of product appearances.

There is strong evidence that as countries experience eco-
nomic growth, they change what they do and undergo struc-
tural transformation via diversification of their economic ac-
tivities1,2. Emergence of a particular industry in a country de-
pends on availability of different combinations of capabilities,
including various factors like capital, labour, and productive
knowledge3–5. From this viewpoint, countries grow as they
acquire productive knowledge and/or ‘capabilities’, and learn
to combine these complementary capabilities in order tomove
into new economic activities. Hence, industrialisation is a path
dependent process, whereby the appearance of new indus-
tries andeconomic activities is conditional onhavingor acquir-
ing the relevant capabilities and know-how3–8.
Drawing up an exhaustive list of capabilities and/or the pro-
ductive knowledge required for an industry is challenging. For
instance, for a country to develop the fresh cut flower indus-
try, it requires capabilities such as cold storage facilities, air-
ports, irrigation systems, suitable climate, efficient customs, a
good business environment as well as knowledge embedded
in its farmers, botanic experts, engineers, logistic specialists,
marketing professionals, bureaucrats and business executives
to name but a few. This list is by no means exhaustive and the
listed components might not be independent of each other.
Since these capabilities are difficult to observe and measure,
we take an agnostic view about their identities and seek to
quantify their existence drawing inspiration from biology and,
in particular, the study of genetics. In genetics, observed phe-
notypes are the result of genotypes encoded in genetic mate-
rial. Mendel, in his landmark study, recorded the phenotypes
present in successive generations of peas without directly ob-
serving the underlying genes andDNAstructure. Hence, valu-
able information can be gathered by observing the phenotypic
traits of individuals when the underlying genetic structure is
unknown. Furthermore, by observing which phenotypic traits
often co-occur in individuals, or which traits often follow each
other, we canuncover genetic relationships or distances9. The
genetic distance between phenotypes is relevant, for example,
to inferring relationships between diseases10.
Here we take an agnostic view on the identity of the capabil-

ities and we derive a probabilistic model to describe the di-
rected dynamic process of capability accumulation and prod-
uct diversification of countries. We use the presence and ap-
pearance of industries in countries (phenotypes) to infer capa-
bility and know-how-based (genotypic) relationships between
industries. Using our genetics-inspired industry capability dis-
tance, and modelling industrial diversification as a process by
which countries accumulate capabilities and move into new
industries that share existing capabilities, we can predict the
emergence of new industries, and hence, decipher the arrow
of development.
The genetic and phenotypic perspective can be used to rein-
terpret a number of well-established models of economics as
well. For instance, standard trade theories first proposed by
Ricardo11, and Hecksher and Ohlin12 take complementary
perspectives which can be thought as phenotypic and geno-
typic stances, respectively, to explain trade patterns between
countries. For example, a recent and celebrated version of the
Ricardian model developed by Eaton and Kortum13 proposes
that technological differences across countries, and the rela-
tive evolution of productivity across exports, determines the
pattern of production in the world. These authors do not seek
touncover the causes behind theobservedpattern, hence tak-
ing an implicitly phenotypic viewof the international trade. On
the other hand, the Hecksher-Ohlin model ties trade patterns
to factor differences between countries, and proposes that
the relative abundance of factors (labour, capital etc.) shapes
the production choices of a country. This model takes a ge-
netic perspective, however, quickly becomes intractable for
large numbers of factors and products, constraining detailed
insights into diversification processes.
Turning to models of structural transformation and diversi-
fication, understanding these processes at a detailed level
has been of keen interest for policymakers and practitioners.
However, analytical intractability andmeasurement problems
force economists to often focus on few core productive fac-
tors such as capital, labour, human capital and institutions14,15
and technological differences16–18, usually taking a genetic
perspective. But these models struggle to adequately de-
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Box 1| Toy example
A simple toy example illustrates the main concept behind the calcu-
lation of the ecosystem for a product.

Appeared in 20 
countries 

Exported in 
10 of those 
countries 

Exported in 
16 of those 
countries 

Exported in 
1 of those 
countries 

We compute the ecosystem entries for product car. HereN = 100
is the total number of countries and NA = 20 is the total number
of appearances of cars at t1. We observe NP , the total number of
presences of each product at t0, andNAP , the number of presences
of the product in countries where cars appeared at t1.

Toy Example – The Ecosystem of Cars

NA=20 appearances in t1 from N=100 countries

NPA is the number of presences in t0 given an appearance in t1 

NP is the number of presences in t0

E=log(X) for X=(NPA/NA)/(NP/N)

Product         NPA NP NPA/NA NP/N     X          E 
Bicycles  10 10    0.5           0.1      5        1.6          
Furniture  5 40    0.25         0.4      0.62     (-0.47) 
Milk                  18 90    0.9           0.9      1         0         
Tyres                 16 30    0.8           0.3      2.6 0.98        
Books  15 60    0.75         0.6      1.25 0.22         
Engines          4 10    0.2           0.1      2          0.69         
Fabric   12 40    0.6           0.4      1.5 0.4         
Pipes       18 70    0.9           0.7      1.28 0.25          
Cattle   1 80    0.05         0.8      0.06 (-2.77)      
Chemicals 1 10    0.05         0.1      0.5 (-0.69)     

15"

Cars"

In this case engines, bicycles and tyres were the most ’over-
produced’ in the earlier period by countries who later had an ap-
pearance of car as shown by NPA/NA. LR is the likelihood ra-
tio of this compared to what would be expected (NP /N ). Finally,
E = log(LR) contains the ecosystem entries. Note: entries less
than 0 correspond to a ratioLR less than one.

scribe structural transformation at a disaggregate level. Here,
we can exploit the fact that we can observe and measure the
phenotypes, namely the presence of industries in countries,
and propose a phenotypic approach to modelling the process
underlying structural transformation at a detailed level.
To date, two coupled but distinct modelling approaches have
emerged aiming to describe the path-dependent process of di-
versification using capabilities and productive knowledge us-
ing a phenotypic view. The first is focused on empirically es-
timating the ’number’ of complementary capabilities, or com-
plexity, needed to make a product (or present in a technology
or place)4,19. While a variety of approaches have been pro-
posed, the foundational method to estimate product complex-
ity4,20 uses information on which countries make what prod-
ucts to infer capability requirements under the assumption
that complex products can only be made by countries which
havemany capabilities, andhence, alsomakemanyother prod-
ucts. It has been shown that the aggregate complexity level
of a country is a strong predictor of its future income growth
compared to standard variables often associatedwith country
sophistication such as education and quality of government.
A second class of models seeks to map the path dependent
dynamical process by which countries move into new prod-
ucts3. These are connected, both theoretically and method-
ologically, to the study of regional and urban industrial diver-
sification7,8,5, and are based on the assumption that countries
will move into products similar to their current export (capa-
bility) basket. At the forefront of thesemodels, theThe Product
Space3 is a network of products with edges based on cross-
sectional export data. Under the assumption that a product
pair requiring similar capabilities will be co-exported by many
countries, the (cross-sectional) co-export probability of any
two products is assumed to be related to the capability over-
lap. The location of a country in this network (e.g., its sub-
graph of existing products) determines its future diversifica-
tion potential. Countries in denser parts of the network have
more options, while those on the periphery share capabilities

with few other products. The ability of this network model,
and others like it, to generate detailed metrics related to di-
versification processes has propelled the field into develop-
ment and industrial policy-making at the global, national and
regional level2,21.
Yet, these dualmodelling approaches, capturing slightly differ-
ent elements of the same underlying process, have not been
unified to date. Additionally, they do not address the tempo-
ral aspect of the diversification process as a result of capa-
bility accumulation directly. Furthermore, they omit a large
amount of available information on the patterns of diversifi-
cation observed over the past couple of decades worldwide.
Here we seek to develop a unified model, which is theoreti-
cally grounded with the path dependent accumulation of ca-
pabilities and products, and utilises the available data for in-
ternational export diversification since themid 1980s.
Building on Hausmann and Hidalgo22, who developed a
capability-based Leontief-like production function, we pro-
pose a model to describe the pattern of product appearances
within and across countries based on capability accumulation.
Within this framework, a country will jump to a new product
with probability decreasing with the number of missing capa-
bilities. We measure the capabilities possessed by a country
by looking at the capabilities of the products it currently pro-
duces. The ability of a country to diversify is, hence, depen-
dent on its current product basket. Countries with many ex-
isting products will have few missing capabilities, and many
options for diversification. Hence, the pattern of product ap-
pearances contains information about the underlying capabil-
ity overlap between products. We derive the relationship be-
tween the probability of a product presence (say product i)
given the subsequent appearance of product j, and use this
to infer the extent of capability overlap between the product
pair i and j. The ecosystem of a product i is then the overlap of
product i with all other products j. We empirically estimate
this capability overlap using product presences and appear-
ances in international export data from 1984 to 2015.
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Figure 1: (A)We create a single composite ecosystemmatrix using data from 1984-2008. Rows contain the ecosystem entries for each product. Products
are sorted by ubiquity or rarity on both axis. We can see that rare products require many inputs (top rows are densely filled), and common products
are inputs to many products (right-hand columns are densely filled). (B-C) We confirm these observations by showing a negative relationship between
the row-sum of positive entries vs product ubiquity, and a positive relationship between the column-sum of positive entries for each column vs product
ubiquity. (D-E) We also consider an alternative measure of product complexity 9,10, the product complexity index (PCI - computed in 1984). We observe
a similar pattern: large ecosystems are associated with complex products, and less complex products contribute to many ecosystems.

In order to explore path dependent diversification pro-
cesses, we construct a weighted directed network, the Eco
Space. The direction of the edges connecting nodes (prod-
ucts) represents export precedence, and the edge weight
is given by our estimate of capability overlap. We anal-
yse a range of network characteristics including between-
ness centrality, a measure of the number of shortest paths
that transition through a node. Such nodes exhibit both
high in- and out-degree - they are transition products typi-
cally produced by low and middle income countries as they
move into more sophisticated products. Nodes with high
in-degree, on the other hand, are typically complex prod-
ucts, requiring many inputs. We observe a core-periphery
structure25 whereby a densely connected core composed
of high in-degree products is surrounded by a less con-
nected periphery. Such a structure has previously been ob-
served in world trade networks26,27. We show that low and
middle-income countries move over time out of transition
products and into the core.

Finally, using an out-of-sample approach, we show that our
model (empirically estimated from export data for the pe-
riod 1984-2008) is informative in predicting the emergence
of new products in the exports of countries for the period
2009-2015. We can interpret this result as suggesting that
a country with an export basket proximate (in terms of ca-
pability gap) to a particular product is more likely to com-
petitively export that product in the future. This model
compares favourably in comparison to the Product Space9

in terms of the prediction of export appearances. Impor-
tantly, together these measures provide significant predic-
tive power, suggesting that this model contains comple-
mentary information, which we hypothesise includes addi-
tional information on capability accumulation not captured
by the cross-sectional Product Space.

In related work, Zaccaria et al 28, similarly inspired by the
capability-based model, created a taxonomy of products
based on the excess conditional probability of producing a
product in the presence of other products. Like the Product
Space, this method computes the probabilities using cross-
sectional export data. By selecting the maximum among
the excess probabilities, they generate a product hierarchy
tree and use this tomodel the dynamics of product diversifi-
cation of countries. Although the underlying justification is
based on the capability model, neither the Product Space
nor the taxonomy method explicitly take capabilities into
account in their modelling approach.

Our framework can be applied to a range of other set-
tings where path-dependent diversification occurs. The
first obvious extension is to the regional setting where
firms/industries need specific locally available capabilities
to flourish. This will result in a path-dependent process of
diversification, and underlies some of the forces behind in-
dustrial cluster formation29 and urban agglomeration16. In
a second extension, technology adoptions by countries30

also follow a path-dependent process: many technologies
require other technologies to be present in advance in a

3

Figure 1: (A)We create a single composite ecosystemmatrix using data from 1984-2008. Rows contain the ecosystem entries for each product. Products are
sorted by ubiquity or rarity on both axis. We can see that rare products require many inputs (top rows are densely filled), and common products are inputs
to many products (right-hand columns are densely filled). (B-C) We confirm these observations by showing a negative relationship between the row-sum of
positive entries vs product ubiquity, and a positive relationship between the column-sum of positive entries for each column vs product ubiquity. (D-E) We
also consider an alternative measure of product complexity3,4 , the product complexity index (PCI - computed in 1984). We observe a similar pattern: large
ecosystems are associated with complex products, and less complex products contribute to many ecosystems.

In order to explore path dependent diversification processes,
we construct a weighted directed network, the Eco Space.
The direction of the edges connecting nodes (products) rep-
resents export precedence, and the edge weight is given by
our estimate of capability overlap. We analyse a range of net-
work characteristics including betweenness centrality, a mea-
sure of the number of shortest paths that transition through a
node. Such nodes exhibit both high in- and out-degree - they
are transition products typically produced by low and middle
income countries as they move into more sophisticated prod-
ucts. Nodes with high in-degree, on the other hand, are typ-
ically complex products, requiring many inputs. We observe
a core-periphery structure23 whereby a densely connected
core composed of high in-degree products is surrounded by
a less connected periphery. Such a structure has previously
been observed in world trade networks24,25. We show that
low and middle-income countries move over time out of tran-
sition products and into the core.
Finally, using an out-of-sample approach, we show that our
model (empirically estimated from export data for the period
1984-2008) is informative in predicting the emergence of
new products in the exports of countries for the period 2009-
2015. We can interpret this result as suggesting that a coun-
trywith an export basket proximate (in termsof capability gap)
to a particular product is more likely to competitively export
that product in the future. This model compares favourably
in comparison to the Product Space3 in terms of the predic-

tion of export appearances. Importantly, together these mea-
sures provide significant predictive power, suggesting that
thismodel contains complementary information, whichwehy-
pothesise includes additional information on capability accu-
mulation not captured by the cross-sectional Product Space.
In related work, Zaccaria et al26, similarly inspired by the
capability-basedmodel, createda taxonomyof products based
on the excess conditional probability of producing a product in
the presence of other products. Like the Product Space, this
method computes the probabilities using cross-sectional ex-
port data. By selecting the maximum among the excess prob-
abilities, they generate a product hierarchy tree and use this
to model the dynamics of product diversification of countries.
Although the underlying justification is based on the capability
model, neither the Product Space nor the taxonomy method
explicitly take capabilities into account in their modelling ap-
proach.
Our framework can be potentially applied to a range of
other settings where path-dependent diversification occurs.
The first obvious extension is to the regional setting where
firms/industries need specific locally available capabilities to
flourish. This will result in a path-dependent process of di-
versification, and underlies some of the forces behind indus-
trial cluster formation27 and urban agglomeration8. In a sec-
ond extension, technology adoptions by countries28 also fol-
low a path-dependent process: many technologies require
other technologies to be present in advance in a country. In
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A BLARGEST ECOSYSTEMPRODUCTS
Agricultural, horticultural & forestry machinery
Mineral tars & their distillation products
Type-setting & founding machinery
Fatty acids, oils from animal or vegetable waxes
Motor vehicles for transport of ten or more persons
Machinery & specialised machinery
Lubricating oils from petrol & bitumin
Organic & inorganic compounds
Corrugated paper
Leather articles used in machines & appliances
Whole bovine skin leather
Wood and resin based chemical products
Strand wire, iron, steel, copper, aluminium
Electric, laser or other light or photon beam
Silver work

TOPCONTRIBUTING PRODUCTS
Worn clothing & other worn textile articles/rags
Synthetic filament
Machinery parts not containing electric connectors
Calculating machines, postage-franking
Hand tools, pneumatic or motor & parts
Radio-broadcast receivers
Birds’ eggs, and egg yolks
Plywood sheets not over 6mm thick
Concrete pumps
Acyclic alcohols & halogenated derivatives
Electric filament or discharge lamps, lamps & parts
Whey, products of natural milk constituents
Fans & cooker hoods incorporating a fan
Malt, whether or not roasted (including malt flour)
Works trucks, tractors, & parts

Table 1: (A) Here we show the top 15 products in terms of positive ecosystem entries (e.g., the number of positive entries on the rows of Ê). (B) The top
15 products in terms of contribution to product ecosystems (e.g., the number of positive entries on the columns of Ê). In the first case we observe a range of
sophisticated products including engines, chemicals, equipment and vehicles. In the second case, overall we have less complex products including food, textiles,
metals and basic chemicals.

biology, from where we borrow the term ecosystem, organ-
isms require the presence of other animals or plants to popu-
late a location, and, hence, this mechanism also leads to path-
dependent dynamics. This process is intimately linked to ob-
served nested structure emphasised in the ecology (and eco-
nomics) literature29–31,20.

Results
Productive Ecosystems
In order tomodel the process of product diversification via ca-
pability accumulation, we build on Hausmann and Hidalgo22.
According to this Leontief-likemodel, products require a large
number of capabilities in order to be made, and countries can
only make a product if they possess all the required capa-
bilities. We denote the vector of capabilities of a product i,
pi ∈ {0, 1}mwherem is thenumberof capabilities andpik = 1
if product i requires capability k. Analogously, the capability
vector cn ∈ {0, 1}m encodes the capabilities present in coun-try n.
We assume that country n will start making a product i at a
future time t1, which it does not currently make, with a prob-ability that decreases with the number of capabilities that are
not present in the country at some initial time t0. Formally, weare concerned with the capability ’gap’ between the capabil-
ity vector of the country and capability requirement vector of
the product: |pi| − cn · pi. The probability that country n willstart making product i decreases as size of this gap increases.
Following Hausmann and Hidalgo22, we can assume that the
probability of acquiring a capability is binomial with mean q.
Hence,

P (Jn,i = 1) = q|pi|−cn·pi (1)

where Jn,i = 1 if product i appears in countryn at time t1, and0 otherwise.
We show in the Methods section that, if we assume that the
probability of a country having each capability isw, we can ex-
press the the capability overlap between i and j as
Ei,j = log

(
P (Mn,j = 1|Jn,i = 1)

P (Mn,j = 1)

)
= −|pji |(1− w) log(q)

(2)
whereMn,i = 1 if product i is present in country n at t0, and
E is the ecosystemmatrix. Therefore, the probability that the
product j is already produced in a country, given the country
started making the product i, increases with the overlap be-
tween the capability requirements of these two products, cap-
tured by |pji | up to a constant multiplicative factor.
We refer to the vector Ei = {Ei,j}j=1,...,n as the ecosystemof a product i. This captures the extent of capability overlap
between product i and all other products j, and is calculated
based on the probability that product j was already present
when product i appeared. In the Methods section we outline
howweempirically estimate the ecosystemmatrix using prod-
uct presences and appearances (based on revealed compara-
tive advantage32) in international trade data. In order to study
long term diversification trends, we create a single composite
ecosystem matrix Ê using data from 1984-2008 for 674 4-
digit SITC products.1,2 A toy example illustrating the method
is shown in Box 1.
Products with large ecosystems (e.g, many non-zero entries
in their ecosystem vector) share capabilities with many other
products. These are sophisticated products, likely made by
few countries. Drawing on previous work20, we investigate
whether rare products have larger ecosystems, and common
products tend to be part of many ecosystems. Figure 1 (A)
presents a visual representation of the entries in matrix Ê.
Products are sorted by the number of countries making them

1We construct the ecosystem using data from 1984-2008. Belowwe use an out-of-sample approach to predict product appearances for the period 2009-
2015.

2Negative values are set to 0 in this matrix. This corresponds to a ratioP (Mn,j = 1|Jn,i = 1)/P (Mn,j = 1) less than 1.
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CORK & WOODCORK & WOOD MANU

CRUDE ANIMAL/VEG MATERIALS

CRUDE FERTILIZERS & MINERALS

CRUDE RUBBER 
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Figure 2: (A-B) For visualisation purposes, we show the directional relationship between 2-digit products. The edges are the mean edges weights between
2-digit node groupings in the 4-digit product network (not shown). Nodes are coloured by node community. On the right-hand-side, we show the node colour-
ing by 1-digit product sector. (C) We show the mean in-degree vs out-degree for nodes in each k-core of the 4-digit network. The marker for each core is
sized proportional to the number of nodes in the core. We can clearly see what there is a single densely connected large core, surrounded by smaller layers,
containingmainly high in-degree (large ecosystem) nodes. (D)We compute the betweenness centrality of each node (in the 4-digit network), a measure of the
number of times a shortest path between any two nodes traverses the node, and visualise the mean for each 2-digit sector. These ’transition’ products have
high in and out degree - and include mainly processed foods, beverages, non-fuel crude materials, basic chemicals and manufacturing such as textiles. These
are primarily located outside the core on the left-hand side of the network. (E) Finally, we show the mean betweenness centrality vs total nodes in core for
2-digit sectors (markers are coloured by community, and sized by the share of nodes in the core). We observe distinct behaviour for machinery (blue markers
tend to havemany nodes in the core) and processed food/materials and basic chemicals/plastics (yellow and pink tend to be transition sectors).

(ubiquity) on both axis. Hence, products occupying the top
rows, and left-most columns, are rare. We observe that rare
products requiremany inputs (top rows aredenselyfilled), and
common products functions as stepping stones to many prod-
ucts (right-hand columns are densely filled). SetX = Ê > 0
(e.g., an indicatormatrix for the positive entries of Ê). We con-
firm theseobservationsby showing anegative relationship be-
tween the row-sum ofX and product ubiquity, and a positive
relationship between the column-sum ofX and product ubiq-
uity in Figure 1 (B) and (C). This behaviour is consistent with
the nested pattern observed in cross-sectional data for prod-
uct presences by Bustos et al20.
As discussed above, a range of approaches have been pro-
posed to quantify the complexity of a product. The product
complexity index (PCI)4, a widely-used measure of product
sophistication, is derived from export data based on the hy-
pothesis that rare or ’complex’ products are only made by few
countries that possess many capabilities. Echoing the nested
behaviour discussed above, higher complexity products are
mostly associatedwith (rare) developed countries while lower
complexity products are produced in countries at all levels of
development. Figure 1 (D) and (E) show more complex prod-

ucts are associated with larger ecosystems, and less complex
products contribute to many ecosystems.
Table 1 shows the top 15 products in terms of positive ecosys-
tem entries (e.g., the row-sum of X), and the top 15 prod-
ucts in terms of contribution to product ecosystems (e.g., the
column-sum ofX). In the first case we observe a range of so-
phisticated products including machinery engines, chemicals,
equipment and vehicles. In the second case, overall we have
less complex products including food, textiles, simple machin-
ery and basic chemicals.

The Arrow of Development
Countries diversify into new products that are similar (in
terms of required capabilities) to what they currently pro-
duce. In order to model this process, we construct a network
of products. Directed edges connect the products: there is
an arrow from node j to node i if product j is in the ecosys-
tem of product i, i.e., j tends to be produced before i appears.
The weight of the edge is an estimate of capability overlap be-
tween i and j as determined by the corresponding ecosystem
entry.
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Number of neighbours

Figure 3: (A) Here we show the mean PCI of products in 2-digit sector. High complexity nodes, as we have seen, correlate with products exhibiting a large
ecosystem. (B)We are interested to see whether the directionality of edges moves from lower to higher PCI products. For each product, we compute the PCI
of the product minus themean PCI of its top x = 10 incoming neighbours. The histogram shows a clear bias towards positive values - the PCI of the product is
higher than its incoming neighbours. (C) By looking at the mean of the distribution across a range of x, we find, as expected, this mean moves towards zero as
we increase the number of neighbours.

Wecan ask questions such as: dowe observe clusters of prod-
ucts sharingmany capabilities? Whichproducts aremost likely
to be part of a development path? How do countries diversify
in this network?
Formally, we consider a network with n nodes (or vertices).
The structure of a network is represented by the adjacency
matrixA ∈ Rn×n where entriesAij correspond to theweightof the directed edge from node i to node j. In this case,
A = ÊT is the adjacency matrix for the Eco Space. Us-
ing this adjacency matrix we can compute a host of network
metrics, including, for example, the in-degree for each node i,
di =

∑
j Xji, and the in-strength si =

∑
j Aji

3.
For visualisation purposes, we compute a reduced version
of this network, calculating the mean edge weight between
products in 2-digit sectors (there are 63 2-digit product sec-
tors). Figure 2 (A) illustrates the directional relationship be-
tween sectors, showing mean edge weights over a thresh-
old of 0.15 (this includes about the top 12% of edges)4. We
can examine clustering of sectors with shared capabilities in
this network via community detection. While there are a va-
riety of approaches, here we apply the Stability algorithm34,
a multi-scale generalisation of the well-known modularity al-
gorithm35. This method is based on the dynamics of a ran-
dom walker on a network - the walker gets trapped in re-
gions of high connectivity to unearth community structure.
We observe clear groupings, with food/animals/crude materi-
als dominating the yellow community on the right-hand-side.
Aswemove to the leftweobserve clusters of processed goods
(orange) and fuels (brown), beforemoving into basic chemicals
(pink) and advanced chemicals/manufacturing (blue). Notably,
this node partition based on clustering of empirical develop-
ment paths is relatively consistent with the official 1-digit sec-
tor classification shown in Figure 2 (B).
We now analyse in more detail the base 4-digit network (not
shown). We can explore the overall structure of the net-
work by applying a k-core algorithm23, typically used to ex-

tract nested network layers. A k-core is a maximal connected
subgraph in which all nodes have degree at least k. Hence,
as k increases we get a more densely connected subgraph. A
core-periphery structure such as this has been observed for
other economic networks such as trade networks24,25, where
a small dense core, composedof countrieswith a very high vol-
ume of trade, induces stability in global trade dynamics. In Fig-
ure 2 (B) we show themean in-degree vsmean out-degree for
each k-core. The marker for each core is sized proportional
to the number of nodes in the core. We can clearly see what
there is a single large core (far right), surrounded by smaller
layers. In this case, nodes in the largest core tend to have high
in-degree - e.g., they require many inputs. Hence the core of
this network is composed of sophisticated products requir-
ing many overlapping capabilities. We expect that, as shown
below, only advanced economies possessingmany capabilities
will be able to reach the core.

We can also extract information about intermediate steps. We
compute the betweenness centrality of each node, a measure
of thenumber of times a shortest path between any twonodes
traverses the node. These ’transition’ products tend to have
high in and out degree - they are stepping stones. Figure 2
(D) and (E) show that this measure is largest for processed
food, beverages, non-fuel crudematerials, basic chemicals and
manufacturing such as textiles. Consistentwith the capability-
based view of economic growth, whereby oil is a natural en-
dowment that rarely promotes the local knowledge acquisi-
tion needed for economic growth (related to the so-called ’re-
source curse’36), fuel is not a stepping stone product. Coun-
tries that make high-betweenness products are expected to
be primed to move into new, more sophisticated products. As
is evident from Figure 2 (E), we note that sectors tend to ei-
ther be dominated by transition products or core products (or
neither) - with virtually no sectors exhibiting both characteris-
tics. This finding emphasises the role of network structure in
the diversification process, and sheds light on product charac-

3The in-degree is exactly the sum of the positive ecosystem entries shown Figure 1. Similarly, the node out-degree is the ecosystem contribution.
4The software programmeGephi33 has been used to generate the network layout (using the automated Force Atlas algorithm).
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Figure 4: (A-C) First, we show the mean GDP per capita for countries with products in each 2-digit sector. As expected, the average GDP per capita falls as
wemove towards the right of the network dominated by food, animals and crudematerials. Next, we showmaps with countries shaded bymean betweenness
centrality of their products, and total products in the core, in 2015. (D-G) The poorest countries dominate products with a large out-degree (contribute to
many ecosystems), and transition products with high betweenness centrality. On the other hand, wealthy countries have highest mean in-degree (products
with the largest ecosystems), and most products in the core (all data for 2015). (H-I) Over time, from 1984-2015, we observe that poor countries moved out
of transition products with high betweenness centrality, andmiddle and high income countries increased their share of products in the core.

teristics only available through network analysis.
If capability accumulation underlies the development process,
we expect countries to move from less complex products to-
wards sophisticated products over time. Hence, we expect di-
versification from low complexity to high complexity products
as countries upgrade their complexity level. We look at the
edges between nodes of different complexity levels and ask,
is it more likely that a directed edge connects a lower com-
plexity node to a higher complexity node? In other words, are
the input products within a product’s ecosystem less complex
than the product itself? To reduce issues surrounding endo-
geneity, we consider the relative PCI of product pairs. Fig-
ure 3 (A) shows the distribution of PCI within the Eco Space
(e.g., the mean PCI of products within the 2-digit sectors). As
seen above, high PCI products coincide with technologically
advanced products (those with a large ecosystem) on the left-
hand side. We are interested to seewhether the directionality
of edges moves from lower to higher PCI products. For each
nodewe compute the difference between its ownPCI, and the
mean PCI of its top x = 10 incoming neighbours (by subtrac-

tion of the latter). Considering the histogram of values, we ob-
serve a clear bias towards positive values - thePCI of theprod-
uct is higher than its incoming nodes. In fact, in this case, 72%
of products have a higher PCI than the mean of their top 10
ecosystem products. Next, we vary the number of neighbours
x. By looking at the mean of the distribution across a range of
x, we find, as expected, this mean moves towards zero as we
increase the number of neighbours.
How do these product attributes relate to the diversification
of countries on this network? Figure 4 (A) shows the mean
GDP per capita (2015) for countries5 with products in each
2-digit sector. This measure is similar to the PRODYmetric of
Hausmann, Hwang and Rodrik (2007)37 which associates an
average income level to individual products. As expected, the
average income falls as we move towards the right of the net-
work dominated by food, animals and crude materials. Next
we explore node metrics for the products of individual coun-
tries. Themap in Figure 4 (B) shows countries shadedbymean
betweenness centrality. We observe that darker blue and
blue-green countries, those with higher betweenness central-

5While the ecosystemmatrix was constructed from data including only 109 countries, here we look at the product basket and dynamics for a larger set of
123 countries. The 109 countries were present for the whole period 1984-2008, and have population greater than 1million people and exports greater than
one billion US dollars in a year. The sample increases to 123 if we include countries that were formed during this period.
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(1) (2) (3) (4) (5) (6) (7)
VARIABLES
Eco Density 4.581*** 4.540*** 5.828*** 4.231*** 4.309*** 3.972***

(0.196) (0.265) (0.275) (0.568) (0.208) (0.569)
PS Density 1.505*** 0.434*** 1.762***

(0.0952) (0.116) (0.262)
Constant -5.863*** -5.397*** -6.095*** -4.298*** -2.332*** -5.698*** -4.117***

(0.164) (0.234) (0.283) (0.469) (0.0197) (0.169) (0.469)
Observations 46,919 39,193 27,178 22,748 47,576 46,919 22,748
Country FE No Yes No Yes No No Yes
Product FE No No Yes Yes No No Yes
Pseudo R2 .072 .115 .128 .178 .022 .074 .184
AUC .736 .789 .792 .830 .664 .738 .836

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 2: (A) We seek to predict appearances during the period 2009-2015. For a standard probit model, we see that the ecosystem density metric has pre-
dictive power for country-product appearances with AUC=0.736 (column 1), rising to AUC=0.83 when fixed effects are included, and compares favourably
to a similar metric based on the Product Space (column 5). (B) Heat map for the AUC values for various combinations of parameters τ0 (absences) and τ1(presences). The AUC corresponds to an equivalent regression to column 1 of the table.

ity primed for transition into more complex products, are lo-
cated inAfrica andLatinAmerica. Figure4 (C) shows the share
of core products, with concentrations in Northern and Cen-
tral European countries as well as Latin America. Overall, as
shown in Figures 4 (D)-(G), the poorest countries dominate
products with a large out-degree (contribute to many ecosys-
tems), and transition productswith high betweenness central-
ity. On the other hand, wealthy countries have highest mean
in-degree (products with the largest ecosystems), and most
products in the core. Figures 4 (H)-(I) explore the evolution of
these metrics over time (1984-2015), dividing countries into
four equally-sized income groups. We observe that during
this period poor countries moved out of transition products
with high betweenness centrality, andmiddle and high income
countries increased their number of products in the core.

Predicting Product Appearances
Beyond analysing network properties and diversification
paths, we wish to assess whether the model is informative in
predicting the appearance of new products, or equivalently
the export of new products with comparative advantage, for
the set of all countries.
To predict the likelihoodof an appearance of product i in coun-
try c, as shown in theMethods section, we estimate the capa-
bility gap in the exponent of Equation (1) via

dEi,n = qmaxj Êi,j−maxj∈Jn Êi,j (3)
where Jn is the set of products present in country n. Wenote that the ecosystemencoded inmatrix Ê was constructed
using data from 1984-2008. Product presences in Equa-
tion (3) are measured in 2009, and seek to predict appear-
ances during the period 2009-2015. For a standard probit
model, Table 2 shows that this metric has predictive power
for country-product appearances with AUC=0.736, increas-
ing to AUC=0.83 when country and product fixed effects are
included.6

We compare the ability of this metric to predict product
appearances with the Product Space density3,38, an analo-
gous predictive metric based on the structure of the Product
Space (see Methods for details). We find that our ecosystem
based metric outperforms the Product Space density which
has AUC=0.664 (column 5, no fixed effects). When both mea-
sures are included together, bothmeasures remain significant
(both with andwithout fixed effects) suggesting each contains
complementary information.
Product appearances are dependent on two thresholds: one
for product absences (τ0) and one for product presences (τ1),see Equations (6) and (7) in theMethods section. The default
values of these, discussed below, are τ0 = 0.05 and τ1 = 0.25.
As we decrease τ0, we have fewer absences (and hence fewerpossible appearances). As we increase τ1, we also have fewerappearances. In order to explore variation in the predictive
ability of ourmodel for variation in these parameters, we show
a heat map for the AUC values for various combinations of τ0and τ1 corresponding to column 1 of the table. We observe,for reasonable combinations τ0 and τ1, the base-line (no fixedeffects) AUC scores are consistently at least 0.73.

Discussion
Classical growth and trade theory has struggled to reconcile
macro variables such as factor endowments with differences
in the productive structure and know-how of nations. One ap-
proach would be to increase the number of factors measured
and write downmore detailed production functions to under-
stand the dynamics. A complementary approachmight take an
agnostic stance towards the identity of the capabilities or fac-
tors but focus on the development paths associated with this
deeply granular process. In this paper, we took the latter ap-
proach and, inspired by early approaches to the study of ge-
netics, we develop a model for product diversification based
on capability accumulation, and investigate path dependance
in economic development via network analysis.

6The AUC is the Area Under the Curve of the Receiver Operating Characteristic (ROC) which plots the rate of true positives of a continuous prediction
criterion as a function of the rate of false positives.
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We propose a new metric, the ecosystem of a product, which
contains information on other products sharing a high-level of
capability overlap. Empirically, this is the set of pre-existing
products that are typically necessary for a future appearance
of that product. Given the temporal natureof thismeasure,we
construct a directed network to describe probable develop-
ment paths. Exploiting tools fromnetwork science, we identify
product clusters, transition sectors, and a tightly connected
core, governing diffusion on the network. Finally, we show
that the model is a good predictor of export diversification,
performing favourably compared to the well-known Product
Space framework3.
This work contributes to both the theoretical literature on
themodelling of capabilities and knowledge accumulation, and
more generally the processes underlying economic growth. It
is particularly relevant for the literature on economic com-
plexity4, and the on-going search for empirical methods to
quantify, measure and validate complexity3,39,40,19. Similarly,
it is embedded in the literature on path dependent diversifi-
cation7,5,3, including regional dynamics and ’related varieties’
similarly derived fromanevolutionary or capability-basedper-
spective. Future work could include estimating this model for
industry employment or establishment data, which provides
additional information on domestic production (and by exten-
sion domestic and service capabilities) not contained in export
data38,41.
Finally, as doubt in market efficiency has wained, particularly
since the 2008-9 financial crisis, industrial policy has enjoyed
somewhat of a global resurgence42. We hope that the ecosys-
tem metric is helpful to policy-makers seeking to analyse the
preparedness of a nation or region to move into a new prod-
uct, or trying to identify key transition sectors which could
open up future opportunities.

Methods
TheModel
LetMn,i = 1 if product i is present in country n, and other-
wise 0. Similarly, let Jn,i = 1 if product i appeared in country
n, and otherwise 0.
For a product i and a country n, pi ∈ {0, 1}m is the capabilityrequirement vector of product i, and cn ∈ {0, 1}m representsthe capabilities present in countryn. FollowingHausmannand
Hidalgo22, the country nmakes the product i if n has all nec-
essary capabilities to make i. Formally:

Mn,i = 1 ⇐⇒ |pi| = cn.pi.

We assume that the country will jump to the product upon
successful completion of all the capabilities itsmissing tomake
the product. So, the probability of jump will depend on the ca-
pability gap between the country and the product capability
vectors:

∆n,i = |pi| − cn.pi.

We wish to quantify the likelihood of producing product i
given the country is already producing product j. We can split
the capability vector of product i into two parts, one which
contains the capabilities overlapping with j, and other the
non-overlapping capabilities. Wewrite pi = pji + p̄ji , where
• pjik = 1 if both pik = 1 and pjk = 1 and 0 otherwise, and
• p̄jik = 1 if pik = 1 and pjk = 0 and 0 otherwise.

Since country n is already making product j, it has all the nec-
essary capabilities for it. Hence, the probability that country n
starts making product i can be expressed as:

P (Jn,i = 1|Mn,j = 1) = q|p̄
j
i |−cn·p̄

j
i

where q is themean probability of acquiring a capability under
a binomial model. We can apply Bayes’ Rule:
P (Mn,j = 1|Jn,i = 1) =

P (Jn,i = 1|Mn,j = 1)P (Mn,j = 1)

P (Jn,i = 1)

=
q|p̄

j
i |−cn·p̄

j
i

q|pi|−cn·pi
P (Mn,j = 1)

= q−(|pj
i |−cn·p

j
i )P (Mn,j = 1)

and take logarithms:
log

(
P (Mn,j = 1|Jn,i = 1)

P (Mn,j = 1)

)
= (|pji | − cn · p

j
i ) log(1/q).

If we assume that the probability of a country having each ca-
pability isw, this expression becomes
Ei,j = log

(
P (Mn,j = 1|Jn,i = 1)

P (Mn,j = 1)

)
= −|pji |(1− w) log(q).

(4)

Algorithm
We construct the ecosystemmatrix Ê using export data from
the Standard International TradeClassification (SITC) revision
4 at the 4-digit level beginning in 1984.
In order to estimate the matricesM and J , we measure prod-
uct presences and appearances via international export com-
petitiveness. In particular, we measure the intensity with
which a country exports each product by computing its Re-
vealed per-Capita Comparative Advantage (RpCA), which is
a variant of revealed comparative advantage measure of Bal-
assa32 adjusting for population. The RpCA that a country has in
a product is defined as the ratio between the share of total ex-
ports that the product represents in the country’s export bas-
ket and the share of global population. Congruently, we can
also think of RpCA as the per capita export of the country in
the product divided by the total per capita export in theworld.
A product is over-represented in a country’s export basket if
its RpCA is above a threshold.
Formally, ifXn,i is equal to the export of country n in product
i and popn is the population of country n, then the RpCA ofcountry n in product i is defined as:

Rn,i =
Xn,i/

∑
k Xk,ipopn/∑k popk (5)
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Mn,i =

{
1 ifRn,i > τ1 in t
0 otherwise (6)

An appearance of product i in country n is defined as:
Jn,i =

{
1 ifRn,i < τ0 in t0 andRn,i > τ1 in t1
0 otherwise (7)

Hence, we compute the entries Êi,j as follows:
Êi,j = log

(∑
n∈Ki

Mn,j

|Ki|

/∑
nMn,j

N

)
(8)

where Ki = {n|Jn,i = 1} is the set of all countries where i
appeared at t1, andM corresponds to presences measured at
t0.
In order to create a single composite ecosystemmatrix (using
data 1984-2008), we aggregate the data as follows. Looping
over each product:
1. For a product i: we search for the set of countries Kiand the years (in the interval [1989, 2008]) in which it ap-
peared. A product appeared in a country at time tk if itwas absent at tk−5 (i.e.,Ri,c < τ0) and present at tk (themean RCA for years tk , tk+1 and tk+2 is greater than τ1).

2. We then identify the products j that were present in
countriesKi in the years preceding the product appear-ance at tk: a product j was present at tk−5 if the meanRCA for years tk−5, tk−4 and tk−3 is greater than τ1.

3. For each i and j, we compute the total number of pres-
ences of each product j (given an appearance of product
i), and divide it by the number of appearance countries
(e.g. the size of setKi).

4. We then compute the number of presences of product
j at tk in the set of all countries (e.g., repeat step 3 forall countries), and divide it by the total number of coun-
tries.

5. Finally, the ecosystem is a log of the ratio of product
presences given an appearance (step 3) and product
presences overall (step 4).

Notes:
• Unless otherwise specified, following Hausmann et al38
we set standard values for parameters for absence and
presence: τ0 = 0.05 and τ1 = 0.25.

• The full SITC database has 185 countries in 1984. Fol-
lowing Hausmann et al38, we restrict our sample to
countries with population greater than 1.2 million and
total exports of at least $1 billion in 2008. We also re-
move Iraq (which has severe quality issues) and Serbia-
Montenegro, which split into two countries during the
period studied. The sample reduces to109 countries for
the ecosystemmatrix computation.

• The full SITCdatabase has 7864-digit products in 1984.
We omit 6 products with one-digit code ’9’ (’Commodi-
ties and transactions not classified elsewhere in the
SITC’), and drop to 780 products.

• We discard products if less than or equal to 5 appear-
ances are observed during the period 1989-2008 in an
effort to reduce error in the ecosystemmetric.
• Weend upwith 674 products at the 4-digit level, and 63
when aggregated to the 2-digit level.

Predicting Product Appearances
A countryn has capabilities cn, and products j ∈ Jn. Wewantto compute the probability of that country n will acquire the
missing capabilities for the appearance of product i:

P (Jn,i = 1) = q|pi|−cn·pi

We do not know which capabilities the country n already has,
butwe canproxy it by products already present in the country:

cn = 1

∑
j∈Jn

pj


where the function 1 takes the elements of a vector to be 1 if
the elements are greater than or equal to 1. I.e., the entry j of
cn is 1 if at least one product that country n is present in hascapability j.
Nowwewill assume that the lengthoverlapbetween theprod-
ucts areuniformlydistributed, i.e., |pji | is uniformly distributed.Wehaveameasure for |pji |butwedonot know |pi|. ThenMax-imum Likelihood estimator up to a multiplicative factor is:

|̂pi| = max
j
|pji |

Hence, we estimate the number of capabilities needed for i by
computing its maximum overlap with all other products j.
The maximum likelihood estimator (up to the samemultiplica-
tive factor as above) for the overlap pi.cn is then:

p̂i.cn = max
j∈Jn

|pji |

This is themaximum overlap between product i and any prod-
uct j which is present in country n. Hence we estimate the
total capabilities required via the overlapping capabilities be-
tween product i and all countries, and subtract those already
shared by country n.
Empirically, we estimate |̂pi| as maxj Êi,j and p̂i.cn as
maxj∈Jn Êi,j . Therefore, we estimate the likelihood of an ap-pearance in the of product i in country c as

dEi,n = qmaxj Êi,j−maxj∈Jc Êi,j

where q is the probability of acquiring a new capability, andJnis the set of products j for which country n is present. In prac-
tice, in order to reduce noise, we take themean value over the
top 3 entries for eachmaxj Êi,j andmaxj∈Jn

Êi,j .
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The Product Space
The Product Space3 is a network that models the process of
industrial diversification of nations, where nodes represent
products, and edges broadly represent overlap. The Product
Space is built from a cross-section of data - as opposed to the
time-series data required to build the Eco Space. The edge
weight between twonodes is estimated using ameasure of co-
export - i.e., a pair of products is connected by an edge if they
are exported by a similar set of countries. It has been shown
that the Product Space is a good predictor of product appear-
ances3,38.
The Pearson correlation is used to infer similarity of export38,
with adjacency matrix P such that

Pi,j = corr(Ri, Rj)

where Ri is the vector of RpCA values for product i (e.g.,columns ofRn,i defined above). The logic behind this approx-imation is that if a pair of products is co-exported by a large
subset of countries, then these products must require a simi-
lar capability base.
Consequently, countries are expected to move into sectors
which are ’close’ or similar to activities they are already suc-
cessful at. From a network perspective, this is equivalent to
saying that the probability of a product appearance in the fu-
ture is dependent on the RpCA that the country currently en-
joys in neighbouring products. Mathematically, we write the
Product Space density of product i in country n as

dPi,n =

∑
j Pj,iRn,j∑

j Pj,i
. (9)

where thematrixP represents the network proximity or adja-
cency matrix for the Product Space as defined above.

Probit Model
We perform a standard Probit regression for the probability
of a product appearance of the form:

Jn,i = Φ(α+ βEd
E
n,i + βP d

P
n,i + γi + ηn) (10)

where the binary variable Jn,i is defined by Equation (7), Φis a normal cumulative distribution function, dE corresponds
to the Eco Space density, and dP corresponds to the Product
Space density, and γi and ηn are product and country fixed ef-fects respectively.
We construct the ecosystem for years 1984-2008, and use
RpCAvalues from the year 2009, to compute the densitymet-
rics as given by Equation (9) for both the Eco Space and the
Product Space. Our dependent variable is defined for appear-
ances during the 6-year period 2009-2015. Note: we con-
dition on the product being absent at the start of the period,
e.g., we only include country-product pairs that were absent
in 2009.

In order to quantify the predictive power of each density met-
ric, and their combination, we compute the AUC or Area Un-
der the Curve of the ROC (Receiver Operating Characteris-
tic). The ROC curve plots the rate of true positives of a con-
tinuous prediction criterion as a function of the rate of false
positives. The area under the curve (AUC) statistic is equiva-
lent to the Mann-Whitney statistic (the probability of ranking
a true positive ahead of a false positive in a prediction crite-
rion). By definition, a randompredictionwill find true positives
and false positives at the same rate, and hence will result in an
AUC= 0.5. A perfect prediction, on the other hand, will find all
true positives before giving any false positive, resulting in an
AUC = 1.
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