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Abstract

We study an economy where intermediaries facilitate exchange between a supplier and

consumers. The set of feasible transactions is characterized by a network and an efficient

auction protocol sets prices. We examine trading networks compatible with a free-entry

equilibrium. There is under-entry of intermediary traders in equilibrium due to comple-

mentarities among traders. When intermediaries are speculators, who derive no private

value from the tradable good, equilibrium networks exhibit an asymmetric structure with

few intermediaries linking to the supplier. Generally, free-entry and competition may fail

to purge redundant intermediaries from the market.
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1 Introduction

Market intermediaries often evoke mixed reactions. Either they are praised as enablers of

valuable transactions or they are chastised as entrenched rent-seekers. But how does inter-

mediation evolve in a competitive setting? In this paper, we investigate intermediation at the

intersection of three familiar market frictions. First, intermediaries are organized in a network

that determines their potential counter-parties. Second, idiosyncratic risk constrains some

agents’ behavior and promises an intermediation rent to others. Third, entry costs shape the

trading network’s evolution as new intermediaries vie for scraps of surplus in a competitive

environment.

How do these three variables interact? When do sufficient incentives exist to encourage

entry and competition among intermediaries? Do equilibrium networks pacify or amplify

idiosyncratic risk and what are the welfare implications? Can superfluous intermediaries sur-

vive in a competitive market? Our answers offer a cautionary message. Network externali-

ties introduce a wedge between equilibrium and efficient market structures. Miscoordina-

tion among intermediaries is a recurring risk that even competition and free entry may not

eliminate. And, in fact, entry may reinforce suboptimal market structures.

Our investigation focuses on a tractable model of a trading network, which we introduce

in Section 2. Our baseline model considers a multipartite network where agents are arranged

in “rows” or “tiers.” Figure 1 presents a representative instance. One agent is the supplier of

a tradable asset or good. Others are traders. Directed links indicate feasible transactions. If

agent i is linked to agent j , then i can transfer goods to j . The traders buy and resell the as-

set via an efficient auction protocol until it is either consumed or further resale is impossible.

Traders experience idiosyncratic shocks, which impact their ability to participate in the mar-

ket. These shocks inject uncertainty into the economy—a trader may be stuck with the asset

if a shock to his usual counter-parties puts them out of the market.

Models of sequential trading networks, ours included, have flexible interpretations and

many applications. These are discussed and thoroughly documented by Choi et al. (2017) and

Manea (2018) and include over-the-counter financial markets,1 trade in agricultural goods

(Mitra et al., 2018), and international trade involving producers, exporters, importers, distrib-

utors, and consumers. Multipartite trading networks, in particular, have natural interpreta-

tions as supply chains or as multi-step production processes.2 Bilateral “buyer-seller” net-

1Models of trading networks have seen considerable application to the study of over-the-counter financial
markets (Gofman, 2014; Babus and Hu, 2017; Li and Schürhoff, 2019). Our model captures the flavor of “hot-
potato” trading (Lyons, 1997). See also Gale and Kariv (2007) and Kariv et al. (2018).

2Multipartite networks can model two distinct supply arrangements. In one interpretation, agents furthest
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Figure 1: A multipartite trading network.

works are too limiting for these applications (Bernard and Moxnes, 2018). A multipartite trad-

ing network exists for new U.S. government debt.3 Di Maggio and Tahbaz-Salehi (2015) inves-

tigate the implications of “multi-tiered” networks in a model of intermediated interbank lend-

ing. Intermediation chains can enhance efficiency in markets with adverse selection (Glode

and Opp, 2016). As explained by Economides (1996), insights derived from the analysis of

multipartite networks translate readily to more general network economies.

In Section 3 we characterize our baseline economy’s equilibrium taking its network struc-

ture as given. Closed-form expressions let us decompose equilibrium bids and prices into a

private consumption value plus a resale premium. The multipartite network structure allows

us to isolate the impact of network externalities on traders’ profits.

Our model’s tractability facilitates the study of network formation, the subject of Section

4 and our paper’s key contribution. Taking the scaffold of a multipartite economy as given,

we focus on networks compatible with a free-entry equilibrium where traders’ profits satisfy

a zero-profit condition. Such an equilibrium can be interpreted as a competitive market’s

long-run organization.4 Non-trivial configurations of traders emerge. For example, when

traders are speculators, i.e. they attach no private consumption value to the asset and profit

solely from its resale, only a few locate near the supplier in a free-entry equilibrium. This ar-

rangement exaggerates the importance of shocks experienced by traders near the supplier and

from the “supplier” are the final-good producers or retailers. The good moves between intermediaries, adding
value at each step of the production chain. A second interpretation views the “supplier” as the final-good’s pro-
ducer. His connected neighbors bid as subcontractors to provide an input; their production depends on further
subcontractors, and so on.

3Primary dealers buy Treasury bills directly from the U.S. Treasury and resell them to secondary investors
(Bikhchandani and Huang, 1989, 1993). This would be a two row network in our class of economies.

4Alternatively, it can also be interpreted as a pure-strategy equilibrium of a simultaneous entry game. Such a
game also has mixed-strategy equilibria, a case we investigate in Section 4.3.
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stems from a subtle and underappreciated asymmetry between upstream and downstream

market risk. Traders care about upstream transactions occurring; they also care about the

prices associated with downstream interactions.

Free-entry equilibrium networks are rarely socially optimal. In fact, we identify a persis-

tent bias favoring under-entry in multipartite economies. Other studies examining markets

with free-entry, such as Mankiw and Whinston (1986), suggest over-entry is the dominant out-

come due to “business-stealing.” Business-stealing is a risk in our model as traders in the

same row of a multipartite network are substitutes for one another. However, complementar-

ities among traders in different rows dominate our market’s evolution. Due to these positive

externalities, too few intermediaries enter the market relative to the first-best outcome.

In Section 5 we investigate extensions of our model. Our focus is on market structures

beyond the multipartite case. The cases considered include market segmentation in tree net-

works, disintermediation, and competing substitute paths. Many insights from the baseline

model continue to apply, though novel phenomena emerge. As one example, consider the

case of disintermediation where a new link—a “shortcut”—bypasses some intermediaries to

connect previously distant agents. For instance, consider the economy in Figure 1, but imag-

ine traders in rows 1 and 4 are also linked directly. Intuitively, competition should winnow

out the now “redundant” intermediaries located in between. Surprisingly, this outcome is not

assured. Free entry may actually solidify inefficient market structures where inessential inter-

mediaries survive in the market.

Literature This paper investigates two complementary issues: (i) trade within a fixed net-

work and (ii) the formation of the trading network.

Studies of network-based exchange assume that only certain agents can trade with one

another (Kranton and Minehart, 2001). A resulting theme is the role of intermediaries and re-

sale. Galeotti and Condorelli (2016) offer a recent survey of this literature. We assume that a

single good is bought and resold among traders in the network, a common modeling conven-

tion (Gale and Kariv, 2009; Polanski and Cardona, 2012; Condorelli et al., 2017; Manea, 2018;

Condorelli et al., 2019).5 And, our primary model considers a multipartite network. Gale and

Kariv (2009) examine symmetric multipartite trading networks where a double auction sets

prices. In laboratory experiments they show that behavior converges to the competitive out-

come. Kariv et al. (2018) extend this line of inquiry by introducing private liquidity shocks.

Unlike these papers, our model allows for asymmetric multipartite networks, a generalization

5The model of Choi et al. (2017) can also be interpreted in this way. Gale and Kariv (2007) and Blume et al.
(2009) allow multiple goods to be traded simultaneously.
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critical for our analysis of network formation. In Section 5 we introduce a novel extension of

a multipartite network allowing for more complex connections between sets of traders.

A contributor to our model’s tractability is its efficient trading protocol, which we model

as a second-price auction.6 Polanski and Cardona (2012) and Kariv et al. (2018) adopt first-

price auctions as pricing mechanisms, which are efficient in their models.7 In Condorelli et al.

(2017) and Manea (2018), prices are set via bargaining.8 At a high level, these studies conclude

that “essential” or “critical” traders can earn trading profits due to their monopolist-like po-

sitions in the network. Similar conclusions obtain when the trading mechanism uses posted

prices (Blume et al., 2009; Choi et al., 2017). Trading profits in our model, when they arise, are

due to an intermediary’s acquired monopsony power when his immediate competitors expe-

rience an adverse shock. When he is the only active buyer, a trader can acquire the asset at

the seller’s reserve price. When competitors abound, prices are bid up to the asset’s (onward)

resale value, dissipating potential intermediation rents. Expected prices rise with each sale,

though ex-post transaction prices may rise or fall with successive trades. Qualitatively, these

dynamics mirror those in Kariv et al. (2018) where a first-price auction sets prices.

The second focus of our paper is the trading network’s formation. Studies of network for-

mation include Jackson and Wolinsky (1996), Bala and Goyal (2000), Dutta et al. (2005), König

et al. (2014) and Babus (2016). Our model differs from these studies, which typically allow

agents to strategically link with others. We assume that the economy is described by a net-

work of positions, the “rows” in a multipartite market. Agents may enter the economy at any

position, subject to a fixed cost, while acquiring the associated links. A zero profit condition

defines the economy’s equilibrium, which we interpret as the market’s long-run, steady-state

organization. Thus, our model follows (many) classic studies in industrial organization. In

contrast to Mankiw and Whinston (1986), among others, our model suggests a bias toward

under-entry relative to the social optimum. This conclusion is due to the preeminence of up-

stream and downstream complementarities in a multipartite market.

Though motivated by sequential exchange, our model can also be interpreted as a supply

chain or production process, where transactions “add value” to a product. In this light, our

model is related to that of Corbett and Karmarkar (2001). They consider a multi-tier economy

6Given our pricing mechanism, our paper also contributes to the literatures on auctions with resale
(Bikhchandani and Huang, 1989) and entry (McAfee and McMillan, 1987; Levin and Smith, 1994).

7Polanski and Cardona (2012) and Kariv et al. (2018) assume different transactions timings. In Polanski and
Cardona (2012) a trader knows the bids of his downstream counter-parties prior to bidding. In Kariv et al. (2018),
bids are solicited sequentially as the asset is traded. Our model follows the latter timing.

8Manea (2018) shows that, under certain conditions, the outcome of his bargaining model converges to that
of a second-price auction as agents become arbitrarily patient.
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with Cournot competition among firms within tiers.9 Corbett and Karmarkar (2001) show that

the set of free-entry equilibrium supply chains forms a semi-lattice in the number of firms in

each tier. We derive a strict ordering of equilibrium networks in our model. In Section 5 we

study generalized trading networks, which lack the serial structure of a linear supply chain.

In independent work, Bimpikis et al. (forthcoming) extend Corbett and Karmarkar’s anal-

ysis by introducing supply shocks, which are similar to the activity shocks in our model. They

too conclude that equilibrium supply chains exhibit an under-entry of firms. In contrast to our

results, they identify a propensity of firms to favor entry at higher tiers of the supply chain. We

arrive at the opposite conclusion. We elaborate on this difference in Section 4.2.

2 Model

Consider an economy where trading possibilities are defined by a directed graph. Agents are

nodes and directed edges indicate potential transactions. If agent i is linked to agent j , then

goods can flow from i to j . When agents are not linked, transaction costs are prohibitively

large, thus preventing direct interaction between them.

As a baseline case we study multipartite networks. Figure 1 presents a representative in-

stance. One agent, the supplier, is endowed with a tradable good or asset that he values at zero

(a normalization). The supplier is passive and serves only as a source of tradable goods. The

remaining agents are traders. Traders who acquire the asset may either consume or resell it.

Some traders are directly linked to the supplier; others are indirectly linked via intermediaries.

More precisely, in a multipartite network each trader belongs to a tier or row r ∈ {1, . . . , R } and

trading possibilities conform to the following principle.

A row-R trader may purchase the asset from the supplier; he may (re)sell the asset

to any trader in row R − 1. More generally, each row r < R trader can purchase

goods from any trader in row r +1 and can sell goods to any trader in row r −1. No

other transactions are feasible.

The resulting network assumes a lattice-like structure, as illustrated in Figure 1, with row 1

farthest from the supplier. A row-r trader is downstream of traders in row r ′ > r ; he is up-

stream of traders in row r ′ < r . We summarize the economy’s configuration by the vector

n= (n1, . . . , nR )where nr is the number of traders in row r .10 The configuration of the network

9Nava (2015) introduces a general model of network-based trade with oligopolistic quantity competition.
10As usual, n−r refers to the vector n excluding the r -th component.
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in Figure 1 is n = (2, 3, 1, 2). We adopt the convention that the supplier alone inhabits “row

R +1.” Accordingly, we henceforth assume that nR+1 = 1.

All traders in row r attach a consumption value of vr to the asset and we assume agents

farther from the supplier value the asset more.

(A1) Consumption value monotonicity: v1 ≥ · · ·≥ vR ≥ 0= vR+1.

Though we call vr a consumption value, it should be interpreted broadly capturing the asset’s

next best use in lieu of immediate resale within the network. For instance, it may be the asset’s

resale value to agents or consumers outside the model. When our model is interpreted as a

production process, (A1) reflects the good’s increasing value as additional steps in its produc-

tion are completed. Remarks 3 and 4, presented after Theorem 1, discuss relaxations of (A1),

including non-monotonic or idiosyncratic values.

Each trader has an idiosyncratic market status or type. With probability pr ∈ (0, 1) trader

i in row r is active; with probability 1 − pr he is inactive. An inactive agent eschews trade

altogether. This may be because of a random cost shock that prevents market participation.

Given the network context, inactivity may model (in reduced form) a breakdown of trust or

a damaged reputation. In contrast, an active agent is willing and able to transact. An agent’s

status—active or inactive—is his private information, but the probability of each event and

the network configuration are common knowledge. Agents’ types are independent.

Trade occurs as follows. When agent i in row r (including the initial supplier) has the

asset, he may consume or resell it. We model his decision as the outcome of a second-price

auction with a reserve price vr . Each of agent i ’s active downstream neighbors (if any) submits

a bid.11 If all bids are strictly less than vr , the asset is not sold. Agent i derives a benefit of vr

(his private value) and the game ends.12 Otherwise, the highest bidder receives the asset and

makes a payment equal to the second-highest bid (or vr if others bid less than vr ) to agent i .

A uniform lottery resolves ties. Thereafter, the process repeats.

Several considerations motivate our adoption of a second-price auction as the pricing pro-

tocol. Foremost, it is rhetorically befitting as it captures the flavor of a competitive bidding

process. Moreover, the selling procedure’s efficiency ensures that any market inefficiencies

11To minimize notation, we assume inactive agents make no bids. Formally, we can model an inactive agent’s
“choice” to not participate by assuming he submits a (possibly negative) bid below the reserve price.

12Gale and Kariv (2009), Kariv et al. (2018), and Condorelli et al. (2019) also adopt this modeling convention.
Alternatively, we could assume that an unsuccessful seller attempts to sell the asset again in the “following pe-
riod” (our model makes no reference to the passage of time). If traders’ market status is persistent, further resale
attempts will not change our analysis. If traders’ types are drawn anew each period, allowing multiple resale at-
tempts increases the asset’s value, which will be reflected in the equilibrium bids derived in Section 3. However,
the qualitative conclusions concerning network formation remain unaffected.
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can be attributed to the network structure constraining resale and trade.13 Finally, its analytic

convenience (equilibria are in pure strategies) cannot be overlooked. Importantly, however,

our results are robust to other pricing mechanisms. Our model of network formation relies

only on a trader’s ex-ante expected profits, which are stated in (2) below. Any protocol leading

to the same expression leaves the analysis unchanged. This includes the first-price auction or

any other payoff-equivalent efficient mechanism. The first-price auction’s equilibrium is in

mixed strategies and presents a far more cumbersome exposition.

Final payoffs are simple. An agent who does not trade gets a payoff of zero. A row-r agent

who consumes the asset receives a payoff of vr less his payment. An agent who resells the

asset receives a payoff equal to the resale price less his payment. Everyone is risk-neutral.

3 Exchange in a Fixed Network

We first characterize trade in a network given the configuration n. As our model embeds mul-

tiple second-price auctions, it necessarily admits multiple equilibria. Following tradition, we

select an equilibrium where active agents “bid their value” (inclusive of potential resale prof-

its) when given the opportunity buy the asset. We focus only on equilibria conforming to this

principle.

The “bid your value” equilibrium is defined inductively, starting with row 1. For active row-

1 agents it is a dominant strategy to bid b ∗1 = v1 if given the chance to acquire the asset, as in a

typical second-price auction. A row-2 trader will resell the asset for a price of b ∗
1

only if there

are at least two active agents in row 1. Otherwise, a row-2 trader resells the asset at a price of

v2 or consumes it for a private benefit of v2. Thus, if

δ(nr , pr ) := 1− (1−pr )
nr −nr pr (1−pr )

nr−1

is the probability that at least two row-r traders are active, the expected value of the asset to a

row-2 trader isδ(n1, p1)b
∗
1
+(1−δ(n1, p1))v2. By standard reasoning, this value will be an optimal

bid for an active row-2 agent. Proceeding inductively, we arrive at the following equilibrium

of the trading game.

Theorem 1. Suppose consumption values satisfy (A1). There exists a perfect Bayesian equilib-

rium of the trading game where, when given the chance to buy the asset, each active trader in

13Gofman (2014) provides an example of trade via second-price auctions in a network where the outcome can
be ex-post inefficient. His example aligns with the tree networks examined in Section 5.1.
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row r bids

b ∗
r
=

⎧

⎨

⎩

v1 if r = 1

δ(nr−1, pr−1)b
∗
r−1
+ (1−δ(nr−1, pr−1))vr if r ≥ 2

. (1)

As with all formal results, the proof of Theorem 1 is presented in the Appendix.

Though intuitive, the strategy described in Theorem 1 demands considerable sophistica-

tion since traders must anticipate downstream equilibrium bids. Experiments by Gale and

Kariv (2009) and Kariv et al. (2018) show that human subjects are surprisingly good at antic-

ipating others’ behavior in multipartite markets. These experiments did not test our specific

model, but they are indicative of a general pattern in multipartite economies.

Remark 1. It is instructive to rewrite (1) as14

b ∗
r
= vr +

r−1∑

k=1

%
r−1∏

ℓ=k

δ(nℓ, pℓ)

'

(vk − vk+1). (1′)

Thus, the equilibrium bid of a row-r agent equals his consumption value vr plus a resale pre-

mium, which is a weighted sum of downstream marginal consumption values.

Remark 2. Our notation suppresses the dependence of b ∗r on n = (n1, . . . , nR ), p = (p1, . . . , pR ),

and v= (v1, . . . , vR ). The function b ∗
r

is nondecreasing in (n1, . . . , nr−1), (p1, . . . , pr−1), and (v1, . . . , vr ).

It is constant in the remaining parameters.

Remark 3. Theorem 1 extends to an economy with non-monotone consumption values. Now,

if vr > b ∗r−1, a trader in row r will consume the asset rather than resell it. Hence, (1) becomes

b ∗
r
=

⎧

⎨

⎩

v1 if r = 1

max
(

δ(nr−1, pr−1)b
∗
r−1
+ (1−δ(nr−1, pr−1))vr , vr

)

if r ≥ 2
. (1′′)

Remark 4. The logic of the bid-your-value equilibrium generalizes to an economy where val-

ues are idiosyncratic. Suppose each row-r agent’s private consumption value is indepen-

dently distributed on the interval [v r , v r ] according to the continuous cumulative distribution

function Fr . Suppose gains from trade occur with positive probability: v r > v r+1 for each r .

The value of the good to each trader (inclusive of resale possibility) is increasing in his own

valuation. Thus, when active traders in row r bid their expected value for the asset, it will

be acquired by the trader with the highest private value, conditional on his bid exceeding the

14Throughout we follow standard conventions:
∑r−1

k=r (·) = 0 and
∏r−1

k=r (·) = 1.

9



seller’s private value. When the highest bid does not exceed the seller’s private value, which in-

cludes the event that no trader in row r is active, then the seller retains the good. Equilibrium

bids can again be identified inductively, starting with row 1. Condition (A1) can be viewed as

a limiting case of this setting where the “noise” in private values vanishes.15

Further insight can be found by computing the ex-ante equilibrium expected payoff of a

row-r agent, πr (n). This value is central in our study of network formation and our notation

emphasizes its dependence on the network configuration n. If

µ(nr , pr ) := 1− (1−pr )
nr

is the probability that there is at least one active trader in row r , then we can writeπr (n) as the

product of four terms,

πr (n) =

%
R∏

k=r+1

µ(nk , pk )

'

︸ ︷︷ ︸

[A]

× pr
︸︷︷︸

[B]

× (1−pr )
nr−1

︸ ︷︷ ︸

[C]

×
0

b ∗
r
− vr+1

1

︸ ︷︷ ︸

[D]

. (2)

We explain each term in detail.

• Term [A] captures the positive externality enjoyed by a row-r agent from the presence of

traders at upstream positions in the economy. An agent profits only if the asset reaches

his row. With increased upstream competition, this event becomes more likely.

• Term [B] is the probability that a particular row-r trader is active. If he is inactive, his

payoff is zero; otherwise, he can acquire the asset for a positive profit.

• Term [C] is the probability that agent i is the only active agent in row r . It is decreasing in

nr . When i is the only active trader in row r , he enjoys monopsony power and acquires

the asset at a price of vr+1. If two (or more) traders are active, competition bids the price

up to the asset’s expected value b ∗
r

, leaving all surplus to the seller.

• Term [D] is the expected surplus of a row-r trader when he is the only active agent in

row r , b ∗
r
− vr+1. Any change that invigorates the downstream market increases b ∗

r
, thus

reflecting the positive externality from a thicker downstream market.

Overall, πr (n) is nondecreasing in n−r , p−r and (v1, . . . , vr ). It is single-peaked in pr . If pr is low,

a trader is unlikely to be active; if pr is high, he likely faces intense competition from others

15Suppose valuations for traders in row r are distributed on [vr −ε, vr +ε]where v1 > · · ·> vR . Now take ε→ 0.
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in his row. Thus, as pr → 0 or pr → 1, ex-ante payoffs are zero. Therefore, idiosyncratic risk is

essential for traders’ profitability. Differences in profitability determine traders’ incentive to

enter the market, as explained in the following section.

4 Free-Entry Equilibrium

Consider an economy where R , p, and v are given. Suppose there is a large pool of potential

market participants who may enter the economy at any of the R rows while forming links to

all agents in adjacent rows. An agent entering row r incurs a cost of κr > 0 and entry occurs at

the ex-ante stage, before agents learn their private types.16 We interpret κr as an irreversible

investment in market-specific skills or technology. For example, it may be the cost of forming

the relevant relationships to be a part of the trading community. Let κ = (κ1, . . . ,κR ) be the

vector of entry cost parameters.

Definition 1. The network configuration n∗ = (n ∗
1
, . . . , n ∗

R
) is a free-entry equilibrium if

πr (n
∗)−κr ≥ 0>πr (n

∗
r
+1, n∗−r

)−κr

for all r such that n ∗
r
≥ 1, and 0>πr (n

∗
r
+1, n∗−r

)−κr for all r such that n ∗
r
= 0.

Per classic intuition, entry drives profits to (essentially) zero and no additional agent can

enter the market profitably. Definition 1 is related to the “equilibrium configurations” ana-

lyzed by Gary-Bobo (1990). Our model lies outside that paper’s purview since payoffs do not

satisfy the required monotonicity condition. Corbett and Karmarkar (2001) also study a free-

entry equilibrium in their model of supply chains with Cournot competition.

An equilibrium n∗ is empty if n ∗
r
= 0 for all r . Otherwise it is nonempty.

Theorem 2. There exists a nonempty free-entry equilibrium if and only if there exists a config-

uration n= (n1, . . . , nR ) such that if nr ≥ 1, then πr (n)−κr ≥ 0. Otherwise, there exists an empty

equilibrium.17

Example 1. Consider an economy where R = 5, v= (1, 2/3, 1/3, 0, 0), and κr = 0.02 and pr = 0.5

for all r . This economy has three free-entry equilibrium configurations:

n1 = (0, 0, 0, 0, 0), n2 = (2, 2, 3, 2, 1), and n3 = (3, 4, 4, 4, 4). (3)

16McAfee and McMillan (1987) and Levin and Smith (1994) study auctions with a similar model of entry.
17Theorem 2 implies an equilibrium always exists. Note that an empty equilibrium may not exist.
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Example 1 illustrates three facts. First, empty and nonempty equilibria may coexist. Sec-

ond, in general, there is no pattern concerning the number of traders per row within an equi-

librium. A row may have more or fewer traders than an adjacent row. Third, there is a pattern

concerning the number of traders per row across equilibria. Equilibria in Example 1 are or-

dered from less to more competitive, n1 ≤n2 ≤ n3—a general occurrence.

Theorem 3. If n and n′ are free-entry equilibrium configurations, then n≥ n′ or n′ ≥ n.

An equilibrium configuration is maximal if it has at least as many traders in each row as

every other equilibrium configuration. Since limnr→∞πr (n) = 0, Theorem 3 implies that there

exists a unique maximal free-entry equilibrium configuration.

Free-entry equilibria exhibit the following comparative statics. If entry costs fall, then

there exists an equilibrium with uniformly more traders in each row. An analogous compara-

tive static does not apply with respect to p sinceπr (n) is not monotone in pr . An increase in vr

may lead to a larger or smaller equilibrium.18 However, from inspection of (1′), if all marginal

consumption values vr − vr−1 rise as well, a greater equilibrium is assured.

Remark 5. Theorems 2 and 3 continue to apply if valuations are not monotonically increasing.

In this case, equilibrium bids are given by (1′′). If b ∗
r−1
< vr , a row-r agent consumes the asset

rather than resell it to traders in row r −1. Thus, (2) generalizes to

πr (n) =

%
R∏

k=r+1

1(b ∗
k
≥ vk+1) ·µ(nk , pk )

'

×pr × (1−pr )
nr−1×
2

1(b ∗
r
≥ vr+1) ·
0

b ∗
r
− vr+1

1 3

where 1(·) is the indicator function. Despite the generalized profit expression, the theorems’

proofs are essentially unchanged.

4.1 Welfare

The aggregate expected payoffs at configuration n are the sum of agents’ expected payoffs,

Π(n) :=
R∑

r=1

nrπr (n)+πR+1(n). (4)

18For example, consider a two-row network where v = (v1, v2). If v1 increases, holding v2 fixed, there will exist
an equilibrium with uniformly more agents in each row than originally. In contrast, if v2 increases to the point
where v1 = v2, no trader will enter row 1 in any equilibrium. To acquire the asset, a row-1 trader would have to
pay exactly his value, leaving no surplus to cover the fixed entry costs.
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In (4), each πr (n) is given by (2) and πR+1(n) =
∑R

k=1

2∏R

ℓ=k
δ(nℓ, pℓ)
3

(vk − vk+1) is the expected

payment accruing to the supplier. After some algebra and substitutions involving (1′), Π(n)

can be rewritten as,

Π(n) =
R∑

r=1

%
R∏

ℓ=r

µ(nℓ, pℓ)

'

(vr − vr+1). (4′)

Expression (4′) rephrases (4) as a sum of expected added values and highlights the fact that

transfers among traders cancel out without affecting aggregate payoffs. From (4′) we conclude

that Π(n) is nondecreasing and concave in n.19

The aggregate welfare at configuration n is the aggregate payoffs net of entry costs, Ω(n) :=

Π(n)−κ ·n. A network configuration is efficient if it maximizes aggregate welfare.

Theorem 4. Let n∗ be the maximal free-entry equilibrium configuration.

(a) If n′ ! n are free-entry equilibrium configurations, then Ω(n′) < Ω(n). Thus, the maximal

free-entry equilibrium maximizes aggregate welfare among free-entry equilibria.

(b) If n̂ is an efficient network configuration, then n̂≥n∗. Thus, all free-entry equilibria feature

under-entry of traders relative to the efficient benchmark.

To develop an intuition for Theorem 4(a), recall that aggregate profitsΠ(n) are increasing in

n, as transfers among traders cancel out. Adding more traders, however, increases aggregate

entry costs. In a free entry equilibrium, each trader’s profits cover these costs, i.e. πr (n
∗)−κr ≈

0. Thus, aggregate welfare, Ω(n) =
∑R

r=1 nr (πr (n)−κr )+πR+1(n), reduces to

Ω(n∗)≈πR+1(n
∗) =

R∑

r=1

%
R∏

ℓ=r

δ(n ∗ℓ , pℓ)

'

(vr − vr+1).

Since δ(nℓ, pℓ) is increasing in nℓ and vr ≥ vr+1, the maximal equilibrium configuration maxi-

mizes aggregate welfare among equilibrium configurations.20

The decomposition of a trader’s payoff in (2) provides intuition for part (b). Two competing

forces determine these payoffs. First, a trader competes with others in his row for every scrap

of surplus. This “business stealing” incentive can lead to over-entry relative to the social opti-

mum (Mankiw and Whinston, 1986). However, and second, a trader complements others by

reducing supply and resale-price uncertainty. Agents contemplating entry do not internalize

19The function Π(n) is concave because each µ(nℓ, pℓ) is a concave function of nℓ and the sum and product of
concave functions is also concave.

20The actual proof of Theorem 4 follows a more complex argument due to the model’s discrete nature.
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these externalities and under-entry from a social point of view is also possible. Theorem 4(b)

shows that the latter effect dominates. Agents enter as long as their profits exceed entry costs.

While this cuts into others’ profits, it does so only by redistributing rents upstream without

reducing the propensity of agents already in the market to provide intermediation services.

Under-entry relative to the social optimum is the implication.

Example 1 (Continued). Recall that there are three free-entry equilibrium configurations, n1 ≤

n2 ≤ n3, defined in (3). The associated aggregate welfare isΩ(n1) = 0,Ω(n2) = 0.053, andΩ(n3) =

0.378. The efficient network configuration is n̂ = (3, 4, 5, 5, 5) and Ω(n̂) = 0.396. The efficient

configuration requires more traders in rows 3, 4, and 5, than can be sustained in any free-entry

equilibrium. While some traders incur a loss net of entry costs, their presence increases the

likelihood that the asset is successfully relayed to agents in rows 1 and 2, who value it highly.

On balance, aggregate welfare rises.

The under-entry of traders relative to the social optimum is due to a predominance of up-

stream and downstream complementarities in a multipartite market. The positive externali-

ties between successive rows always dominate the business stealing effects within each row.

Similar results have been identified by Ghosh and Morita (2007) and Bimpikis et al. (forth-

coming) in models of Cournot competition in supply chains. Traders compete on price in our

model suggesting the phenomenon applies to a broad range of pricing protocols. Notwith-

standing, Theorem 4 can fail in markets without a linear structure, as shown in Section 5.

4.2 Speculators

An important special case of our model concerns intermediaries who derive no consumption

value from the asset. Consider the following strengthening of (A1).

(A2) Speculator intermediaries: v1 > 0= v2 = · · ·= vR = vR+1.

In an economy satisfying (A2), traders in rows 2, . . . , R are speculators who profit solely through

resale. Assumptions similar to (A2) are common in the literature. Rubinstein and Wolinsky

(1987), Gale and Kariv (2007, 2009), Polanski and Cardona (2012), Kariv et al. (2018), Manea

(2018), among others, all posit “middlemen” who derive no consumption value from the econ-

omy’s tradable goods. When our model is interpreted as a supply chain or a sequential pro-

duction process, (A2) captures a “weakest-link” scenario where the good has no value unless

each step in its delivery or assembly is completed. In this special case we can derive a sharper

characterization of equilibrium and efficient networks.
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Theorem 5. Consider an economy satisfying (A2). Suppose pr = p and κr = κ for all r .

(a) If n̂ is an efficient configuration, then n̂1 = · · ·= n̂R .

(b) If n is a free-entry equilibrium configuration, then n1 ≥ · · ·≥ nR .

Theorem 5 shows that efficient configurations in markets with speculators distribute traders

uniformly. However, equilibrium configurations assume a pyramid structure with a wide base

in row 1 and a narrow peak near the supplier. Intuition for the first result is simple. In a sym-

metric market with speculators, (4′) reduces to Π(n) =
2∏R

k=1
µ(nk , p )
3

v1. As each row makes

an equal contribution to the market’s value, a uniform distribution of traders is best.

Theorem 5(b), in contrast, shows that asymmetric equilibria emerge in an otherwise sym-

metric environment. This result is due to a subtle and underappreciated asymmetry between

upstream and downstream market uncertainty. We can isolate this difference by examining a

row-r trader’s expected profit. When (A2) holds, (2) simplifies to

πr (n) =

%
R∏

k=r+1

µ(nk , p )

'

︸ ︷︷ ︸

[A]

× p
︸︷︷︸

[B]

× (1−p )nr−1

︸ ︷︷ ︸

[C]

×

%
r−1∏

k=1

δ(nk , p )

'

v1

︸ ︷︷ ︸

[D]

. (5)

In (5), we follow Theorem 5 and assume that pr = p for all r . For a row-r trader to profit, two

things must happen. First, the asset must reach row r . For this to occur, there must exist at

least one active trader in each row en route. This upstream uncertainty is captured by term [A]

in (5). And second, the trader must profitably resell the asset. Surplus from resale is given by

term [D] in (5) and is determined by the intensity of competition among downstream traders,

and not just the presence of one trader per row. If traders are uniformly distributed across

rows, traders in row 1 enjoy the highest expected profits since their downstream resale price

risk is minimized.21 All else equal, these positions attract the most entrants and a pyramid

market structure emerges in equilibrium. This arrangement agrees with the empirical regu-

larity that most markets feature few upstream wholesalers and many downstream retailers.22

Theorem 5 offers a cautionary message concerning welfare in markets with speculators.

Generally, the under-entry of intermediaries (Theorem 4) produces a welfare loss relative to

the first-best. That loss is compounded by the specific configuration emerging in equilibrium,

21Recall that µ(n , p )≥δ(n , p ).
22Gofman et al. (2018) provide empirical evidence using U.S. data supporting the pyramid market organization

we have identified. They offer other complementary explanations for this conclusion, such as the differential
exposure of firms to aggregate productivity shocks. This feature is absent from our model.
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which is disproportionately sensitive to the shocks experienced by the few traders locating

near the supplier. These traders have few close substitutes in the market and the relative im-

portance of their idiosyncratic risk is high in equilibrium.

The pyramid structure identified in Theorem 5(b) contrasts with the “reverse pyramid”

proposed by Bimpikis et al. (forthcoming). Bimpikis et al. (forthcoming) introduce supply

shocks (similar to our activity shocks) into a model of serial Cournot competition. Firms are

arranged in tiers and the output of firms in tier r + 1 is the input for firms in tier r . State-

contingent prices ensure that markets clear given the realized aggregate output in a tier. As

Bimpikis et al. (forthcoming) explain, the lower supply uncertainty at higher tiers renders

those positions relatively more attractive. Supply uncertainty in our model is less important—

one active intermediary is sufficient to ensure the good transits a row. Instead, a desire to

minimize downstream price risk dominates our market’s evolution.

4.3 Stochastic Entry

A free-entry equilibrium involves a fixed number of traders in each position in the economy.

Beyond its interpretation as a long-run steady state, it can also be viewed as a reduced-form

description of the pure-strategy (asymmetric) equilibrium of a more complex simultaneous

entry game. Our main results continue to apply. Specifically, suppose there are N̄r potential

row-r entrants, each of whom selects a probability of entry. An entering row-r trader incurs a

cost ofκr prior to learning his type (activity status). Once the realized network configuration is

known, the market operates as above. This model of entry is common in the related literature;

see Levin and Smith (1994) or Corbett and Karmarkar (2001), among others.

Posit a symmetric equilibrium where potential row-r traders enter the market with the

same probability, say qr . When there is a finite number of potential entrants, the number

of entering agents is a binomial random variable. For tractability, however, assume a large

pool of potential entrants. If the number of potential entrants becomes large (N̄r →∞), but

the expected number of entrants mr = qr N̄r remains constant, then the number of entering

row-r traders converges to a Poisson random variable (Nr ) with mean parameter mr , Pr[Nr =

nr ] =mnr
r

e −mr /nr !. As entry decisions are independent, the ex-ante expected payoff of a row-r

agent is now

π̂r (m) :=

%
R∏

k=r+1

µ̂(mk , pk )

'

×pr × e −pr mr ×
0

b̂ ∗r − vr+1

1
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where, in analogy to previously defined terms,

µ̂(mr , pr ) :=![µ(Nr , pr )] = 1− e −pr mr ,

δ̂(mr , pr ) :=![δ(Nr , pr )] = 1− e −pr mr −pr mr e −pr mr , and

b̂ ∗
r

:= vr +

r−1∑

k=1

%
r−1∏

ℓ=k

δ̂(mℓ, pℓ)

'

(vk − vk+1).

The profile m = (m1, . . . , mR ) is a stochastic free-entry (SFE) equilibrium if π̂r (m) = κr for each

r such that mr > 0 and κr ≥ π̂r (m) for each r such that mr = 0.

In Online Appendix A we show that analogues of Theorems 2–5 apply to SFE equilibria. The

results translate nearly verbatim with the expected number of agents per row (m) assuming

the role of the number agents per row (n). We also compute all SFE equilibria in Example 1.

Again, there are three equilibria with uniformly increasing levels of expected competition.

5 Generalized Market Structures

Markets sometimes depart from the multipartite structures we have focused on thus far. For

example, many firms attempt to reach consumers directly, bypassing traditional middlemen.

Similarly, when governments erect trade barriers, they divert trade flows along alternative

paths. These changes suggest a rewiring of the trading network. In a production context, a

network rewiring may correspond to managerial innovations or technological improvement.

An extension of our model allows us to investigate such cases.

We continue to consider an economy where agents are partitioned into enumerated sets

or rows,+ = {1, 2, . . ., R , R+1}. Set R+1 contains only the supplier. The vectors n= (n1, . . . , nR ),

p= (p1, . . . , pR ), and v= (v1, . . . , vR ) are defined as before. Trading opportunities are defined by

a trading possibility graph Γ = 〈+ ,-〉. In this graph, the sets+ are the nodes and a directed

edge from r to r ′, i.e. (r, r ′) ∈ - ⊂+×+ , means that every agent in set r is connected to every

agent in set r ′. We assume that if (r, r ′) ∈ - , then r > r ′. This description of the market gener-

alizes the model from Section 2. A multipartite market has a line trading possibility graph, as

in Figure 2(a). Below we investigate three further cases of interest: (i) “market segmentation”

in a tree network, (ii) “disintermediation” via shortcuts between rows, and (iii) “competing

paths” converging on the same terminal set of agents. Figures 2(b)–2(d) illustrate representa-

tive instances of these cases.
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(a) A multipartite

network.
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(b) A tree network.
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(c) A multipartite

network with a

shortcut.

•

◦ ◦ ◦
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◦ ◦ ◦

5

4
3

2

1

(d) A network with

competing paths.

Figure 2: Example trading possibility graphs. The supplier is located at the top of each figure.
As an illustration, each economy has three traders in each of the remaining positions.

5.1 Market Segmentation

Definition 2. A trading possibility graph Γ is a tree if for every r ̸= R + 1 there exists a unique

path in Γ from the supplier (set R +1) to set r .23

Figure 2(b) presents an economy with a tree trading possibility graph. Of course, more

elaborate branching patterns are permissible.24 Tree networks arise when markets are seg-

mented by geography or other variables. The graph’s terminal nodes25 may represent pools

of consumers and each “fork in the road” involves competition among increasingly special-

ized intermediaries. A European importer may resell goods to French, German, or Swedish

distributors. More narrowly, distinct stores may target high- or low-income consumers.

Theorem 1 translates readily to a tree network. Again, a “bid your value” equilibrium exists

and it can be identified inductively starting at the trading possibility graph’s terminal nodes.

Burdensome computations arise only at branching points. Consider a market where (A1)

holds and suppose that set-r agents are linked to agents in sets r1, . . . , rK . Suppose that ac-

tive traders in those positions bid b ∗
r1
> · · · > b ∗

rK
. A recursive formula lets us compute the

asset’s value to a set-r agent. First, let ν∗r ({b
∗
rK
}) := δ(nrK

, prK
)b ∗rK
+ (1−δ(nrK

, prK
))vr be the as-

set’s value conditional on the set-r agent being able to sell only to set-rK counter-parties. If

he can sell to traders in sets rK −1 and rK , a trader in set rK −1 acquires the asset if he is active

because b ∗
rK −1
> b ∗

rK
. He pays b ∗

rK −1
if there is another active trader in set rK −1; else, he pays b ∗

rK

23Formally, there exists a unique sequence of distinct indices (r1, r2, . . . , rK ) ∈+ such that r1 = R+1, rK = r , and
(rk , rk+1) ∈- for all k < K .

24Polanski and Cardona (2012) examine trading networks that are “symmetric trees.” Trees in our model may
be asymmetric.

25Set r ∈+ is terminal in Γ = 〈+ ,-〉 if there does not exist r ′ ∈+ such that (r, r ′) ∈ - .
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if a set-rK trader is active. If no one in set rK −1 is active, the expected resale value reverts to

ν∗
r
({b ∗

rK
}). Inductively accounting for all contingencies, we see that for each k ′ < K ,

ν∗
r
({b ∗

rk ′
, . . . , b ∗

rK
})

:=δ(nrk ′
, prk ′
)b ∗

rk ′

+nrk ′
prk ′
(1−prk ′

)nrk ′
−1

4
K∑

k=k ′+1

%
k−1∏

ℓ=k ′+1

(1−prℓ)
nrℓ

'

µ(nrk
, prk
)b ∗

rk
+

K∏

k=k ′+1

(1−prk
)nrk vr

5

+ (1−prk ′
)nk ′ν∗

r
({b ∗

rk ′+1
, . . . , b ∗

rK
}). (6)

The final resale value and equilibrium bid is b ∗
r
= ν∗

r
({b ∗

r1
, . . . , b ∗

rK
}).

In a tree trading network, miscoordinated entry can solidify an inefficient market by favor-

ing branches with inferior fundamental value, as illustrated by the following example.

Example 2. Consider the trading possibility graph in Figure 2(b). The supplier is located at

position 4. Suppose v1 = 1, v2 = 1/2, and v3 = 0. Let pr = 0.5 and κr = 0.05 for each r . There

are two free-entry equilibria. In the first, entry is concentrated in row 2: n1 = (0, 3, 0). Due to a

coordination failure, individual entry into rows 1 and 3 is not profitable. In the second, entry

is concentrated in rows 1 and 3: n2 = (4, 0, 3). It is not profitable for an agent to enter row 2

since he is consistently outbid by traders in row 3. The efficient configuration is n̂ = (4, 0, 4).

In this market, Ω(n1) = 0.433, Ω(n2) = 0.470, and Ω(n̂) = 0.479.

5.2 Disintermediation

In our model, disintermediation involves introducing links between otherwise distant sets of

agents thereby bypassing traditional intermediaries.

Definition 3. A trading possibility graph Γ = 〈+ ,-〉 is a multipartite network with a shortcut

between rows r and r if - = {(R +1, R ), (R , R −1), . . . , (2, 1)}∪ {(r , r )} and r ≥ r +2.

Figure 2(c) presents a multipartite network with a shortcut between rows 4 and 2.

A single shortcut can be profoundly disruptive, changing many traders’ strategic calculus.

First, an agent in row r has many opportunities to acquire the asset. He may purchase it from a

row-r agent or he may feign inactivity to buy it later from someone in row r +1. Second, agents

in the bypassed rows must infer why a row-r agent failed to purchase the asset on his first

attempt. Is it part of his equilibrium strategy? Or, is it because of inactivity? The latter conveys

bad news concerning the asset’s market value. Finally, a trader in row r has a portfolio of resale
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options due to his connections to multiple rows. This feature is reminiscent of a branching

point in a tree trading network and we can use formula (6) to compute his equilibrium bid.

Theorem 6. Consider a multipartite trading network with a shortcut (r , r ) and suppose con-

sumption values satisfy (A1). There exists a perfect Bayesian equilibrium of the trading game

where, when given the opportunity to acquire the asset, each active trader in row r ̸= r bids

b ∗
r
=

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

v1 if r = 1

δ(nr−1, pr−1)b
∗
r−1
+ (1−δ(nr−1, pr−1))vr if r ∈ {2, . . . , r }

vr if r = r +1

δ(nr−1, pr−1)b
∗
r−1+ (1−δ(nr−1, pr−1))vr if r > r +1, r ̸= r

, (7a)

and the bid of an active row-r trader is

b ∗r =δ(nr , pr )b
∗
r +nr pr (1−pr )

nr−1
0

µ(nr−1, pr−1)b
∗
r−1+ (1−µ(nr−1, pr−1))vr

1

+ (1−pr )
nr
0

δ(nr−1, pr−1)b
∗
r−1
+ (1−δ(nr−1, pr−1))vr

1

. (7b)

Theorem 6 generalizes Theorem 1; however, agents’ beliefs play a more prominent role in

supporting the equilibrium. In a multipartite network, the asset’s trading history is irrelevant

and resale values are computed with reference to the prior p. In an economy with shortcuts,

information is revealed. Given (7a), the failure of a row-r trader to buy the asset from a row-r

trader reveals that there must be no active traders in row r , conditional on everyone following

the prescribed bidding strategy. Thus, conditional on acquiring the asset, a trader in row r +1

infers that resale is impossible and adjusts his bid accordingly. A similar adjustment occurs in

a common-value auction. A trader in row r +1 shades his bid to avoid a winner’s curse, which

is more descriptively called a reseller’s curse in this application.26

Example 3. Consider a multipartite trading network where R = 3 (Figure 2(a)). Suppose v1 =

1 and v2 = v3 = 2/3. Let pr = 0.5 and κr = 0.05 for each r . This market’s only free-entry

equilibrium, n1 = (0, 0, 3), supports traders only in row 3, next to the supplier. This is also the

efficient network configuration and Ω(n1) = 0.433.

26Bose and Deltas (2007) identify a similar winner’s curse effect in their analysis of a second-price auction with
resale. In their analysis, a seller may trade exclusively via resellers or non-exclusively via resellers and directly
with one consumer. They argue that exclusive dealing prevents the revelation of “bad news” and leads to higher
seller profits. In our model, exclusive dealing via resellers does not guarantee higher expected profits for the
supplier. Higher profits may obtain if certain intermediaries are bypassed (see Example 3).
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Now introduce a shortcut directly linking the supplier to agents in row 2, as in Figure 2(c).

The configuration n1 = (0, 0, 3) continues to be an equilibrium; however, two other equilibria

arise: n2 = (1, 1, 2) and n3 = (2, 3, 0). For these networks, Ω(n2) = 0.342 and Ω(n3) = 0.552. The

efficient network configuration is now n̂= (2, 4, 0) and Ω(n̂) = 0.559.

Example 3 shows an interesting fact. Redundant intermediaries may survive in a highly

competitive market. Row-3 traders are non-existent in an efficient network and are inferior

to traders in row 2 since they cannot access high-value row-1 agents. Nevertheless, free-entry

may entrench the presence of agents in row 3, as the n1 and n2 equilibria illustrate.

Speculators fair poorly when bypassed by a shortcut. Speculators rely solely on resale to

earn a profit and the magnitude of the strategic adjustment necessary to avoid the reseller’s

curse means they will not be able to cover the costs of entry.

Theorem 7. Consider a multipartite trading network with a shortcut (r , r ). Suppose (A2) holds.

Let n∗ be a free-entry equilibrium configuration. If r < r < r , then n ∗
r
= 0.

5.3 Competing Paths

A shortcut directly links otherwise distant agents. A generalization of this idea allows agents

to be linked indirectly through multiple paths, each with several intermediaries.

Definition 4. A trading possibility graph Γ = 〈+ ,-〉 has K competing paths if there exist sets

+1, . . . ,+K such that

(i) + =
⋃K

k=1+k ;

(ii) For all k ̸= k ′,+k ∩+k ′ = {1, R +1}; and,

(iii) If (r, r ′) ∈ - , then r, r ′ ∈+k for some k and "r ′′ ∈+k such that r > r ′′ > r ′.

The network in Figure 2(d) has two competing paths, +1 = {1, 2, 3, 5} and +2 = {1, 4, 5}.

Each path k connects linearly the positions in+k .27

Long competing paths can simplify traders’ interactions. Recall that in a market with a

shortcut traders must account for a “reseller’s curse.” Curiously, this concern disappears in a

market where competing paths each involve at least one intermediary trader. (The network

in Figure 2(d) has this property.) As the supplier interacts only with intermediaries—and not

27Definition 4 posits all paths start at the supplier and terminate at set 1. More generally, we may consider a
multipartite network where competing paths diverge at set r and reunite at set r . In this case, trade above r and
below r proceeds as in a multipartite network. We omit analysis of this case for brevity.
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simultaneously with agents further downstream—initial transactions do not reveal informa-

tion about downstream demand. Thus, additional intermediaries can eliminate the adverse

selection associated with a shortcut. We formalize this implication in the following theorem.

Its proof is nearly identical to that Theorem 1 and is therefore omitted.28

Theorem 8. Consider a trading network with K competing paths. Furthermore, suppose no

path is a shortcut linking the supplier and traders in row 1 directly.29 There exists a perfect

Bayesian equilibrium of the trading game where, when given the opportunity to acquire the

asset, each active trader in row r ∈+k bids

b ∗
r
= vr +
∑

r ′∈+k

r ′<r

⎛

⎜
⎝

∏

ℓ∈+k
r ′≤ℓ<r

δ(nℓ, pℓ)

⎞

⎟
⎠ (vr ′ − vr ′+1). (8)

While agents’ bids echo those from a multipartite market, countervailing spillovers imply

that equilibrium configurations are far less predictable. For example, in Figure 2(d) entry in

row 4 harms traders in row 3, since these agents compete to acquire the asset from the supplier.

However, entry in row 4 can spur further entry in row 1 since supply risk declines. But, greater

demand from row 1 increases the returns of agents in rows 2 and 3. And so on. Feedback

effects mean that many free-entry equilibria are possible. Some lead to a de facto multipartite

economy. Others segment the market, much like a tree. The following example illustrates

some important outcomes.

Example 4. Consider an economy with two competing paths: +1 = {1, 2, 3, 5}and+2 = {1, 4, 5}.

This topology is sketched in Figure 2(d).30 Suppose v= (1, 3/5, 2/5, 0). Traders along+1 value

the asset while along+2 speculators can “flip” the asset between the supplier and agents in

row 1. Suppose pr = 0.5 and κr = 0.05 for all r .

Figure 3 summarizes this economy’s five free-entry equilibria. Sometimes, all paths are

populated. Occasionally, entire paths are dormant. The networks na and nb are noteworthy.

In these cases, it is possible for a speculator to shorten the distance between the supplier and

the high-value agents in row 1 through entry at row 4. Yet, this does not occur and the market

operates in equilibrium as a multipartite economy. Partial paths are possible too, leading to

a de facto tree network (Figure 3(c)). This economy’s efficient configuration is n̂ = (4, 0, 0, 4).

28The equilibrium bid, defined in (8), is essentially a restatement (1′). The only difference is that the summa-
tion and product are restricted to the relevant path.

29That is, there exists some r ∈+k for each k such that 1< r < R + 1.
30We provide a derivation of the equilibrium bids and payoffs to this example in Online Appendix B.
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(b) Ω(nb) = 0.328.
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(c) Ω(nc) = 0.406.
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(d) Ω(nd) = 0.341.

•
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◦ ◦ ◦◦

5

4
3

2

1

(e) Ω(ne) = 0.470.

Figure 3: Equilibrium networks in Example 4. The supplier is located at position 5.

Speculators in row 4 resell the asset to the agents in row 1. Its value is Ω(n̂) = 0.479. The

closest equilibrium to the efficient arrangement, ne, features under-entry of speculators and

a pyramid structure along+2, consistent with our results from Section 4.

Example 4 highlights several policy implications. Textbook interventions to improve the

market’s operation are uncertain to be effective. First, increasing the market’s size by adding

traders does not necessarily lead to greater aggregate welfare in equilibrium. The network

nc welfare-dominates nd, but has fewer agents in certain positions.31 Second, a market with

pure speculators may be welfare-superior to a market where all agents also value the asset for

private consumption. In fact, ne dominates the other free-entry equilibria. Thus, indiscrim-

inate entry subsidies or bans on speculation may be counterproductive. On the other-hand,

profit-seeking speculators cannot be counted upon to disrupt an inefficient market, as the

persistence of na and nb attests.

31Thus, the example shows that Theorem 4 does not necessarily extend beyond a multipartite network.
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6 Concluding Remarks

Intermediaries are active in many markets, including those for financial assets, agricultural

goods, and wherever wholesalers or distributors are found. Such markets depend on networks

to facilitate trade or production. Due to network externalities, efficient market organizations

are unlikely to arise, even when free entry is allowed. The extent of welfare loss depends on

the particular equilibrium that traders coordinate on. Asymmetries between upstream and

downstream risks exacerbate an already inefficient market organization, especially in mul-

tipartite markets (typical of supply chains) where all equilibria exhibit inefficiently low en-

try. More generally, welfare loss can be even more severe if trading networks assume more

complex structures. Efficient paths may lie dormant or superfluous intermediaries may di-

vert trade. In these cases, despite free entry, suboptimal economic networks are created, and

reinforced.

Appendix: Proofs

Proof of Theorem 1. For an active row-1 agent, b ∗
1
= v1 is a weakly dominant bid, a well-known

property of the second-price auction.32 Proceeding by induction, suppose that all active agents

in rows r ′ ∈ {1, . . . , r −1} consider the bid b ∗
r ′

, as defined in (1), to be a weakly dominant action

conditional on the strategies followed by all active traders in rows r ′′ < r ′.

Suppose a row-r trader acquires the asset. Given that all active traders in row r−1 consider

it weakly dominant to bid b ∗
r−1

during the resale auction and b ∗
r−1
≥ vr−1 ≥ vr , with probability

δ(nr−1, pr−1) the row-r trader is able to resell the asset for a price of b ∗r−1. With complementary

probability, he either fails to resell the asset or sells it at a price of vr ; in either case, he earns

a benefit of vr . Thus, the asset’s expected value conditional on the bids of traders in row r −1

is δ(nr−1, pr−1)b
∗
r−1
+ (1 − δ(nr−1, pr−1))vr . Now, when given an opportunity to purchase the

asset, again by the standard argument for a second price auction, it is a (conditionally) weakly-

dominant action for the row-r trader to bid b ∗r = δ(nr−1, pr−1)b
∗
r−1+ (1−δ(nr−1, pr−1))vr .

Proof of Theorem 2. (⇒) If n∗ is a free-entry equilibrium, then πr (n
∗)− κr ≥ 0. (⇐) Consider

a nonempty configuration n0 = (n 0
1

, . . . , n 0
R
) such that n 0

r
≥ 1 =⇒ πr (n

0)− κr ≥ 0. We define

a tâtonnement process that converges to a free-entry equilibrium starting at n0. For each r

32See Krishna (2002, p. 15), among others, for a detailed exposition of the argument.
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define the mapping Ar : "R
+
→"R

+
as follows:

Ar (n) =

⎧

⎨

⎩

(nr +1, n−r ) if πr (nr +1, n−r )−κr ≥ 0

n otherwise
. (9)

The map Ar adds one agent to row r (holding n−r fixed) if and only if doing so ensures a row-r

trader (still) has non-negative profits net of entry costs. Composing these functions together

gives the mapping A : "R
+
→"R

+
defined as A(n) := (A1 ◦ · · ·◦AR )(n).

Consider the sequence of network configurations starting at n0 where nt+1 = A(nt ). Clearly,

nt+1 ≥ nt . Moreover, πr (n
t )− κr ≥ 0 =⇒ πr (n

t+1)−κr ≥ 0. To verify this fact, it is sufficient

to show that πr (n)− κr ≥ 0 =⇒ πr (ñ)− κr ≥ 0 where ñ = Ar ′(n). If n = ñ, the statement is

true. Thus, suppose ñr ′ = nr ′ + 1. If r ′ = r , then by (9), πr (nr + 1, n−r )−κr ≥ 0. If r ′ ̸= r , then

since πr (nr , n−r ) is nonincreasing in nr and nondecreasing in n−r , πr (nr ′ , n−r ′ )− κr ≥ 0 =⇒

πr (nr ′ +1, n−r ′ )−κr ≥ 0.

The sequence nt is nondecreasing and each n t
r

is bounded above by

n̄r =

>

1+
log(κr )− log(pr )− log(max{v1, . . . , vR})

log(1−pr )

?

.

To derive this bound, recall that µ(nk , pk ) ≤ 1 and b ∗
r
≤max{v1, . . . , vR }. Thus, 0 ≤ πr (n)−κr ≤

pr (1−pr )
nr−1 max{v1, . . . , vR }−κr . Rearranging terms and taking logarithms gives the desired

conclusion. Thus, nt converges to a limit, say n∗. Necessarily, n∗ = A(n∗). It is simple to verify

that n∗ is a free-entry equilibrium.

The preceding argument identified necessary and sufficient conditions for the existence

of a nonempty equilibrium. An empty equilibrium exists otherwise. Suppose that for every

nonempty configuration n, there exists some index r where nr ≥ 1, but 0 > πr (n)−κr . Thus,

for every configuration nr = (0, . . . , 0, 1, 0, . . ., 0) with only one trader in row r , 0 > πr (n
r )−κr .

But this implies the empty network n∗ = (0, . . . , 0) is an equilibrium configuration since 0 >

πr (n
∗
r
+1, n∗−r

)−κr for each r .

The following lemma is used in the proof of Theorem 3.

Lemma 1. Fix p= (p1, . . . , pR ), v= (v1, . . . , vR ), and κ= (κ1, . . . ,κR ) and suppose n= (n1, . . . , nR ) is

a free-entry equilibrium configuration. The configuration n̂ = (n2, . . . , nR ) is a free-entry equi-

librium configuration in an economy with R̂ = R − 1 rows and parameters p̂ = (p2, . . . , pR ),

v̂= (max{v2+δ(n1, p1)(v1− v2), v2}, v3, . . . , vR ), and κ̂= (κ2, . . . ,κR ).

25



Proof. The new economy is identical to the last R −1 rows of the original economy except the

consumption value of (the new) row 1 traders is replaced by the expected resale/consumption

value of traders from the original row 2. All equilibrium inequalities remain unchanged.

Proof of Theorem 3. The theorem is obviously true for all economies where R = 1. Proceeding

by induction, assume the theorem is true in every economy with R ′ ≤ R −1 rows.

Consider an economy with R rows. Suppose n = (n1, n2, . . . , nR ) and n′ = (n ′
1
, n ′

2
, . . . , n ′

R
)

are equilibrium configurations. Without loss of generality, there are two cases. First, suppose

n1 = n ′
1
. Then, by Lemma 1, n̂= (n2, . . . , nR ) and n̂′ = (n ′

2
, . . . , n ′

R
) are equilibrium configurations

in an economy with R̂ =R −1 rows and parameters p̂= (p2, . . . , pR ), v̂= (max{v2+δ(n1, p1)(v1−

v2), v2}, v3, . . . , vR ), and κ̂= (κ2, . . . ,κR ). By the induction hypothesis, and without loss of gener-

ality, n̂≥ n̂′. And so, n= (n1, n̂)≥ (n ′
1
, n̂′) =n′.

Second, and without loss of generality, suppose n1 > n ′1. Since n is a free-entry equilibrium,

if n1 > 0, then nk ≥ 1 for all k ≥ 1.33 Let k be the smallest index such that nk < n ′
k

. Since nℓ ≥ n ′ℓ
for all ℓ < k , with strict inequality for at least one ℓ, b ∗

k
≥ b ∗′

k
where b ∗

k
(b ∗′

k
) is the equilibrium

bid for a row-k trader given configuration n (n′).

Now consider row k −1. Since nk−1 ≥ n ′
k−1

,

%
R∏

ℓ=k

µ(n ′ℓ, p ′ℓ)

'

(b ∗′
k−1
− vk )≤

%
R∏

ℓ=k

µ(nℓ, pℓ)

'

(b ∗
k−1
− vk )

=⇒

%
R∏

ℓ=k

µ(n ′ℓ, p ′ℓ)

'

(b ∗′
k
− vk+1)≤

%
R∏

ℓ=k

µ(nℓ, pℓ)

'

(b ∗
k
− vk+1)

=⇒

%
R∏

ℓ=k+1

µ(n ′ℓ, p ′ℓ)

'

(b ∗′k − vk+1)≤
µ(nk , pk )

µ(n ′k , pk )
×

%
R∏

ℓ=k+1

µ(nℓ, pℓ)

'

(b ∗k − vk+1)

=⇒

%
R∏

ℓ=k+1

µ(n ′ℓ, p ′ℓ)

'

(b ∗′
k
− vk+1)≤

%
R∏

ℓ=k+1

µ(nℓ, pℓ)

'

(b ∗
k
− vk+1). (10)

The final implication follows from the fact that 0 < µ(nk , pk ) ≤ µ(n
′
k

, pk ) when nk < n ′
k

. How-

ever, (10) implies that entry into row k should be at least as great at n as it is at n′—a contra-

diction. Thus, we conclude that if n1 > n ′
1
, then nk ≥ n ′

k
for all k as well.

The proof of Theorem 4 requires a preliminary result that we record as Lemma 2. To state

the lemma, we introduce some notation. Given any selection + = {r1, . . . , rT } ⊆ {1, . . . , R } of

33Otherwise, the asset would not reach row 1 with positive probability. Necessarily, this would imply that
π1(n) = 0, which is less than entry costs.
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row indices, we let 1+ be the vector with an entry of 1 in each position r ∈+ and zero other-

wise. We call a selection of rows+ admissible at n if nr ≥ 1 for each r ∈+ . For any admissible

selection + , we define ∆+Π(n) := Π(n)−Π(n− 1+ ) as the change in Π(n) when the network

configuration goes from n−1+ to n.

Lemma 2. Let n∗ be a free-entry equilibrium configuration and let+ be an admissible selection

at n∗. Then,∆+Π(n
∗)>
∑

r∈+ κr .

Proof of Lemma 2. The proof proceeds by induction on the size of the selection+ . First, sup-

pose+ = {r1}. In this case, some algebra shows that

∆r1
Π(n) =

4
R∏

ℓ=r1+1

µ(nℓ, pℓ)

5

pr1
(1−pr1

)nr1
−1

4
r1∑

k=1

%
r1−1∏

ℓ=k

µ(nℓ, pℓ)

'

(vk − vk+1)

5

. (11)

Next, recall that if n∗ is a free-entry equilibrium configuration,

πr (n
∗) =

4
R∏

ℓ=r+1

µ(n ∗ℓ , pℓ)

5

pr (1−pr )
n ∗r−1

4
r∑

k=1

%
r−1∏

ℓ=k

δ(n ∗ℓ , pℓ)

'

(vk − vk+1)

5

≥ κr (12)

for each row r . Noting that µ(n , p )>δ(n , p ) for all n ≥ 1 and p ∈ (0, 1), by comparing (11) with

(12) we see that∆r1
Π(n∗)>πr1

(n∗) and, thus,∆r1
Π(n∗)> κr1

.

Next suppose∆+′Π(n
∗)>
∑

r∈+′ κr for every admissible selection+′ of T ′ < T row indices.

We will show that the claim is true for any admissible selection+ of T row indices.

Let+ = {r1, . . . , rT } and, without loss of generality, suppose r1 < · · ·< rT . By the induction

hypothesis, Π(n∗)−Π(n∗ − 1+\{rT }) >
∑

r∈+\{rT }
κr . Thus, to prove the lemma it is sufficient to

show that

∆rT
Π(n∗ −1+\{rT }) =Π(n

∗ −1+\{rT })−Π(n
∗ −1+ )≥ κrT

.

In this case,

∆rT
Π(n∗ −1+\{rT }) =

4
R∏

ℓ=rT+1

µ(n ∗ℓ , pℓ)

5

prT
(1−prT

)
n ∗rT
−1

×

4
rT∑

k=1

%
rT−1∏

ℓ=k

µ(n ∗ℓ −1(ℓ ∈+), pℓ)

'

(vk − vk+1)

5

. (13)

In the preceding expression, 1(ℓ ∈+) is the indicator function. Noting thatµ(n−1, p )≥δ(n , p )

for all n ≥ 1 and p ∈ (0, 1), by comparing (13) with (12) we see that∆rT
Π(n∗ −1+\{rT })≥ πrT

(n∗)

and, thus,∆rT
Π(n∗ −1+\{rT })≥ κrT

.
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Proof of Theorem 4. Recall that Π(n) is nondecreasing and concave in n. Thus, Ω(n) = Π(n)−

κ ·n is also concave.

Given the maximal equilibrium configuration n∗ and any admissible selection + of row

indices at n∗, Lemma 2 implies that Ω(n∗)−Ω(n∗ −1+ ) =∆+Π(n
∗)−
∑

r∈+ κr > 0. Since Ω(n) is

concave,

n!n∗ =⇒ Ω(n)<Ω(n∗). (14)

Concavity ofΩ(n) implies the preceding inequality extends to all configurations inferior to n∗.

That is, if n′ ! n!n∗, then Ω(n′)<Ω(n)<Ω(n∗), which shows part (a).

To prove part (b), observe that for any k ̸= r , ∆rΠ(n) is nondecreasing in nk . Thus, given

any selection of rows+ ̸∋ r , and α ∈"R
+

,

Ω(n∗+α ·1+ )−Ω(n
∗+α ·1+ −1r ) =∆rΠ(n

∗+α ·1+ )−κr ≥∆rΠ(n
∗)−κr > 0.

Again, by the concavity of Ω(n), for any β ≥ 1,

Ω(n∗+α ·1+ −β1r )<Ω(n
∗+α ·1+ ). (15)

Together, (14) and (15) imply that if n̂ maximizes Ω(n), then n̂≥n∗.

Proof of Theorem 5. To simplify notation, letκ be the common entry costs and p the common

activity probability. Let µ(n ) :=µ(n , p ) and δ(n ) :=δ(n , p ).

To prove part (a), observe that Π(n) =
2∏R

k=1
µ(nk )
3

v1 and suppose n̂ is an efficient config-

uration. If n̂r = 0 for some r , thenΠ(n̂) = 0. So, the efficient configuration must be empty and

n̂r ′ = 0 for all r ′. Instead, suppose n̂r > n̂r ′ ≥ 1 for some r and r ′. Hence,

Ω(n̂) =

%
R∏

k=1

µ(n̂k )

'

v1−κ
R∑

k=1

n̂k ≥

%
∏

k ̸=r

µ(n̂k )

'

µ(n̂r −1)v1−κ
∑

k ̸=r

n̂k −κ(n̂r −1). (16)

Sinceµ(n ) is concave and nondecreasing, µ(n̂r )−µ(n̂r −1)≤µ(n̂r ′+1)−µ(n̂r ′). Thus, rearrang-
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ing terms in (16) and substituting gives

(16) =⇒

%
∏

k ̸=r,r ′

µ(n̂k )

'

µ(n̂r ′ )
@

µ(n̂r )−µ(n̂r −1)
A

v1 ≥ κ

=⇒

%
∏

k ̸=r,r ′

µ(n̂k )

'

µ(n̂r ′ )
@

µ(n̂r ′ +1)−µ(n̂r ′)
A

v1 ≥ κ

=⇒

%
∏

k ̸=r,r ′

µ(n̂k )

'

µ(n̂r )
@

µ(n̂r ′ +1)−µ(n̂r ′)
A

v1 > κ

=⇒

%
∏

k ̸=r ′

µ(n̂k )

'

µ(n̂r ′ +1)v1−κ>

%
R∏

k=1

µ(n̂k )

'

v1

=⇒

%
∏

k ̸=r ′

µ(n̂k )

'

µ(n̂r ′ +1)v1−κ−κ
R∑

k=1

n̂k >

%
R∏

k=1

µ(n̂k )

'

v1−κ
R∑

k=1

n̂k =Ω(n̂).

The final expression contradicts n̂ being an efficient configuration.

To prove part (b), suppose there exists a free-entry equilibrium configuration n where nr <

nr+1. Then,

πr (n+1r ) =

4
R∏

k=r+2

µ(nk )

5

µ(nr+1)p (1−p )nr

4
r−1∏

k=1

δ(nk )

5

v1

≥

4
R∏

k=r+2

µ(nk )

5

µ(nr )p (1−p )nr+1−1

4
r−1∏

k=1

δ(nk )

5

v1

≥

4
R∏

k=r+2

µ(nk )

5

p (1−p )nr+1−1δ(nr )

4
r−1∏

k=1

δ(nk )

5

v1 =πr+1(n)≥ κ.

Thus, there exists a profitable entry opportunity into row r , which contradicts n being an equi-

librium configuration. Thus, nr ≥ nr+1.

Proof of Theorem 6. Noting Theorem 1 it is sufficient to confirm that no row-r agent has a

profitable deviation. Clearly, at any history of the trading game where the asset reaches row

r +1, it is optimal for an active row-r agent to bid b ∗
r
=δ(nr−1, nr−1)b

∗
r−1
+(1−δ(nr−1, nr−1))vr ,

which is the expected value of the asset given his connections to agents in row r −1.

Now consider a history where the asset reaches row r . Fix a particular agent i in row r who

is active. There are two cases.

(i) Suppose there exists at least one other active trader in row r . Given that this trader is

bidding b ∗r , agent i cannot deviate profitably. If he wins, he must pay b ∗r , which equals
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his expected resale value. If he loses, his net payoff is also zero.

(ii) Suppose agent i is the only active agent in row r . If there are no active agents in row

r − 1, every bid above vr yields the same positive payoff and a deviation from b ∗
r

is not

profitable. If there is at least one active agent in row r −1, agent i wins the auction with the

bid b ∗
r

and secures an expected payoff of b ∗
r
−b ∗r−1 ≥ 0. If agent i bids b < b ∗r−1, he will lose

the auction. But, he may be able to acquire the asset from a row-(r +1) trader for a price of

vr+1. The expected payoff from this alternative outcome is
2∏r−2

r=r+1
µ(nr , pr )
3

(b ∗
r
− vr+1).

Since vr+1 ≥ b ∗r−1, (b ∗
r
− b ∗r−1)≥
2∏r−2

r=r+1
µ(nr , pr )
3

(b ∗
r
− vr+1).

In each contingency, an active row-r agent does not have a profitable deviation.

Proof of Theorem 7. From Theorem 6, b ∗
r+1
= 0. Thus, the trading profits of a row r ∈ {r +

1, . . . , r −1} agent are zero. Since entry costs are strictly positive, entry into a row bypassed by

the shortcut is unprofitable.

References

Babus, A. (2016). The formation of financial networks. RAND Journal of Economics, 47(2):239–
272.

Babus, A. and Hu, T.-W. (2017). Endogenous intermediation in over-the-counter markets.
Journal of Financial Economics, 125(1):200–215.

Bala, V. and Goyal, S. (2000). A noncooperative model of network formation. Econometrica,
68(5):1181–1229.

Bernard, A. B. and Moxnes, A. (2018). Networks and trade. Annual Review of Economics, 10:65–
85.

Bikhchandani, S. and Huang, C. (1989). Auctions with resale markets: An exploratory model
of treasury bill markets. Review of Financial Studies, 2(3):311–339.

Bikhchandani, S. and Huang, C. (1993). The economics of treasury securities markets. Journal
of Economic Perspectives, 7(3):117–134.

Bimpikis, K., Candogan, O., and Ehsani, S. (forthcoming). Supply disruptions and optimal
network structures. Management Science.

Blume, L. E., Easley, D. A., Kleinberg, J., and Tardos, E. (2009). Trading networks with price-
setting agents. Games and Economic Behavior, 67(1):36–50.

30



Bose, S. and Deltas, G. (2007). Exclusive versus non-exclusive dealing in auctions with resale.
Economic Theory, 31(a):1–17.

Choi, S., Galeotti, A., and Goyal, S. (2017). Trading in networks: Theory and experiments.
Journal of the European Economic Association, 15(4):784–817.

Condorelli, D., Galeotti, A., and Renou, L. (2017). Bilateral trading in networks. Review of
Economic Studies, 84(1):82–105.

Condorelli, D., Galeotti, A., and Renou, L. (2019). Stationary resale networks. Presentation at
the Econometric Society Latin American Workshop in Economic Theory, Universidad del
Rosario (Bogotá, Colombia), May 24, 2019.

Corbett, C. J. and Karmarkar, U. S. (2001). Competition and structure in serial supply chains
with deterministic demand. Management Science, 47(7):966–978.

Di Maggio, M. and Tahbaz-Salehi, A. (2015). Collateral shortages and intermediation net-
works. Mimeo.

Dutta, B., Ghosal, S., and Ray, D. (2005). Farsighted network formation. Journal of Economic
Theory, 122:143–164.

Economides, N. (1996). The economics of networks. International Journal of Industrial Orga-
nization, 14(6):673–699.

Gale, D. M. and Kariv, S. (2007). Financial networks. American Economic Review: Papers and
Proceedings, 97(2):99–103.

Gale, D. M. and Kariv, S. (2009). Trading in networks: A normal form game experiment. Amer-
ican Economic Journal: Microeconomics, 1(2):114–132.

Galeotti, A. and Condorelli, D. (2016). Strategic models of intermediation networks. In
Bramoullé, Y., Galeotti, A., and Rogers, B., editors, The Oxford Handbook of the Economics
of Networks. Oxford University Press.

Gary-Bobo, R. J. (1990). On the existence of equilibrium points in a class of asymmetric market
entry games. Games and Economic Behavior, 2(3):239–246.

Ghosh, A. and Morita, H. (2007). Free entry and social efficiency under vertical oligopoly.
RAND Journal of Economics, 38(2):541–554.

Glode, V. and Opp, C. (2016). Asymmetric information and intermediation chains. American
Economic Review, 106(9):2699–2721.

Gofman, M. (2014). A network-based analysis of over-the-counter markets. Mimeo.

Gofman, M., Segal, G., and Wu, Y. (2018). Production networks and stock returns: The role of
vertical creative destruction. Mimeo.

31



Jackson, M. O. and Wolinsky, A. (1996). A strategic model of social and economic networks.
Journal of Economic Theory, 71(1):44–74.

Kariv, S., Kotowski, M. H., and Leister, C. M. (2018). Liquidity risk in sequential trading net-
works. Games and Economic Behavior, 109:565–581.

König, M. D., Tessone, C. J., and Zenou, Y. (2014). Nestedness in networks: A theoretical model
and some applications. Theoretical Economics, 9:695–752.

Kranton, R. E. and Minehart, D. F. (2001). A theory of buyer-seller networks. American Eco-
nomic Review, 91(3):485–508.

Krishna, V. (2002). Auction Theory. Academic Press, San Diego, CA.

Levin, D. and Smith, J. L. (1994). Equilibrium in auctions with entry. American Economic
Review, 84(3):585–599.

Li, D. and Schürhoff, N. (2019). Dealer networks. Journal of Finance, 74(1):91–144.

Lyons, R. K. (1997). A simultaneous trade model of the foreign exchange hot potato. Journal
of International Economics, 42(3–4):275–298.

Manea, M. (2018). Intermediation and resale in networks. Journal of Political Economy,
126(3):1250–1301.

Mankiw, N. G. and Whinston, M. D. (1986). Free entry and social inefficiency. RAND Journal
of Economics, 17(1):48–58.

McAfee, R. P. and McMillan, J. (1987). Auctions with entry. Economics Letters, 23(4):343–347.

Mitra, S., Mookherjee, D., Torero, M., and Visaria, S. (2018). Asymmetric information and
middleman margins: An experiment with Indian potato farmers. Review of Economics and
Statistics, 50(1):1–13.

Nava, F. (2015). Efficiency in decentralized oligopolistic markets. Journal of Economic Theory,
157:315–348.

Polanski, A. and Cardona, D. (2012). Multilevel mediation in symmetric trees. Review of Net-
work Economics, 11(3):Article 8.

Rubinstein, A. and Wolinsky, A. (1987). Middlemen. Quarterly Journal of Economics,
102(3):581–594.

32



Trading Networks

and Equilibrium Intermediation

Online Appendix

Maciej H. Kotowski∗ C. Matthew Leister†

June 5, 2019

A Stochastic Free Entry

This appendix presents analogues of Theorems 2–5 for the case of a stochastic free-entry (SFE)

equilibrium. For reference, we record some terms and definitions introduced in the main text:

µ̂(mr , pr ) := 1− e −pr mr ,

δ̂(mr , pr ) := 1− e −pr mr −pr mr e −pr mr ,

b̂ ∗
r

:= vr +

r−1∑

k=1

"
r−1∏

ℓ=k

δ̂(mℓ, pℓ)

$

(vk − vk+1).

The expected profit of a trader in row r is

π̂r (m) =

"
R∏

k=r+1

µ̂(mk , pk )

$

×pr × e −pr mr ×
%

b̂ ∗
r
− vr+1

&

The profile m = (m1, . . . , mR ) is a stochastic free-entry (SFE) equilibrium if π̂r (m) = κr for each

r such that mr > 0 and κr ≥ π̂r (m) for each r such that mr = 0. An SFE equilibrium m is empty

if mr = 0 for all r and non-empty otherwise.
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†Faculty of Business and Economics, Monash University, 900 Dandenong Road, Caulfield East VIC 3145, Aus-
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Theorem A.1 (Analogue of Theorem 2). There exists an SFE equilibrium. Moreover, there exists

a non-empty SFE equilibrium if and only if there exists a profile m = (m1, . . . , mR ) such that if

mr > 0, then π̂r (m)−κr ≥ 0.

Proof. We first prove the theorem’s second part. (⇒) If m∗ is an SFE equilibrium, then π̂r (m
∗)−

κr = 0. (⇐) Consider a profile m0 = (m0
1

, . . . , m0
R
) such that m0

r
> 0 =⇒ π̂r (m

0)− κr ≥ 0. We

define a tâtonnement process that converges to an SFE equilibrium starting at m0. For each r

and m such that π̂r (mr , m−r )−κr ≥ 0, define m+
r

to satisfy π̂r (m
+
r

, m−r ) = κr . Then define the

mapping Âr : !R
+
→!R

+
as follows:

Âr (m) =

⎧

⎨

⎩

(m+
r , m−r ) if π̂r (mr , m−r )−κr ≥ 0

m otherwise
. (A.1)

The map Âr expands row r (holding m−r fixed) whenever profits exceed entry costs until the

two are balanced. Composing these functions together gives the mapping Â : !R
+
→!R

+
defined

as Â(m) := (Â1 ◦ · · ·◦ ÂR )(m).

Consider the sequence of profiles starting at m0 where mt+1 = Â(mt ). Clearly, mt+1 ≥mt .

Moreover, π̂r (m
t )− κr ≥ 0 =⇒ π̂r (m

t+1)− κr ≥ 0. To verify this fact, it is sufficient to show

that π̂r (m)− κr ≥ 0 =⇒ π̂r (m̃)− κr ≥ 0 where m̃ = Âr ′(m). If m = m̃, the statement is true.

Thus, suppose m̃r ′ >mr ′ . If r ′ = r , then by definition of m+
r , π̂r (m

+
r , m−r )−κr = 0. If r ′ ≠ r ,

then since π̂r (mr , m−r ) is nonincreasing in mr and nondecreasing in m−r , π̂r (mr ′ , m−r ′)−κr ≥

0 =⇒ π̂r (m
+
r ′ , m−r ′)−κr ≥ 0.

The sequence mt is nondecreasing and each m t
r

and is bounded above by some m̄r . This

is because π̂r (m) is bounded above by max{v1, . . . , vR}. Thus, by the monotone convergence

theorem mt converges to a limit as t →∞, say m∗. It is simple to verify that m∗ is an SFE

equilibrium.

To confirm that there always exists an SFE equilibrium we examine two cases. First, sup-

pose vR > 0 and consider the configuration m = (0, . . . , 0, mR ) where mR > 0. If π̂R (m) ≥ κR ,

then the preceding argument implies there exists a non-empty SFE equilibrium. Conversely,

if π̂R (m)< κR for all mR > 0, thenκr ≥ π̂r (0, . . . , 0) for all r . Thus, there exists an empty SFE equi-

librium. Second, suppose vR = 0. In this case π̂r (0, . . . , 0) = 0 for all r . Thus, κr ≥ π̂r (0, . . . , 0) for

all r and there exists an empty SFE equilibrium.

Theorem A.2 (Analogue of Theorem 3). If m and m′ are SFE equilibrium profiles, then m≥m′

or m′ ≥m.
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Proof. The proof is analogous to that of Theorem 3, where m substitutes n, µ̂ substitutes µ,

and δ̂ substitutes δ.

Remark A.1 (The Maximal SFE Equilibrium). An SFE equilibrium profile m∗ is maximal if it

has at least as many traders in each row in expectation as every other SFE equilibrium pro-

file. Since limmr→∞ π̂r (m) = 0, Theorem A.2 implies that there exists a unique maximal SFE

equilibrium profile.

Remark A.2 (Aggregate Welfare). By taking expectations over realized trading networks, we

obtain an expression for aggregate welfare:

Π̂(m) =
R∑

r=1

"
R∏

ℓ=r

µ̂(mℓ, pℓ)

$

(vr − vr+1). (A.2)

Expression (A.2) is nondecreasing and concave in m.1 The aggregate welfare equals the aggre-

gate expected payoffs net of expected entry costs, Ω̂(m) := Π̂(m)−κ ·"[N] = Π̂(m)−κ ·m. An

efficient network solves maxm Π̂(m)−κ ·m.

Theorem A.3 (Analogue of Theorem 4). Let m∗ be the maximal SFE equilibrium profile.

(a) If m′ !m are SFE equilibrium profiles, then Ω̂(m′)< Ω̂(m). Thus, the maximal SFE equilib-

rium profile maximizes aggregate welfare among all SFE equilibria.

(b) If m̂ is an efficient network profile, then m̂≥m∗.

Proof. (a) In any SFE equilibrium m, π̂r (m) = κr for each r where mr > 0. Therefore, aggregate

welfare reduces to the expected payoff earned by the producer:

Ω̂(m) =
R∑

k=1

"
R∏

ℓ=k

δ̂(mℓ, pℓ)

$

(vk − vk+1).

Since δ̂(mℓ, pℓ) is strictly increasing in mℓ the maximal SFE equilibrium maximizes Ω̂(m)among

all SFE equilibria.

(b) Recall that Ω̂(m) is a (strictly) concave function; thus, it has a unique maximizer, say m̂,

at which the first-order condition

∂

∂mr

Π̂(m)

*
*
*
*

m=m̂

−κr = 0 (A.3)

1The function Π̂(m) is concave because each µ̂(mℓ, pℓ) is a concave function of mℓ and the sum and product
of concave functions is also concave.
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is satisfied. Differentiating Π̂(m) with respect to mr and collecting terms gives

∂

∂mr

Π̂(m) = π̂(m)+
r ′−1∑

r ′=1

"
R∏

ℓ=r ′,ℓ≠r

µ̂(mℓ, pℓ)

$

pr e −pr mr (vr ′ − vr ′+1).

If m is an SFE equilibrium π̂(m) = κr and the second term in the expression above is non-

negative, we conclude that in every SFE equilibrium

∂

∂mr

Π̂(m)−κr ≥ 0.

As the above holds for each r and Ω̂(m) is concave, we readily conclude that m̂r ≥m∗
r

where

m∗ is the maximal SFE equilibrium.

Remark A.3 (Speculators). In an economy with speculators, a trader’s expected profits reduce

to

π̂r (n) =

"
R∏

k=r+1

µ̂(mk , pk )

$

pr e −pr mr

"
r−1∏

k=1

δ̂(mk , pk )

$

v1. (A.4)

Theorem A.4 (Analogue of Theorem 5). Consider an economy where v1 > 0 = v2 = · · · = vR =

vR+1. Suppose pr = pr ′ and κr = κr ′ for all r and r ′.

(a) If m̂ is an efficient configuration, then m̂1 = · · ·= m̂R .

(b) If m is an SFE equilibrium profile, m1 > . . .>mR .

Proof. For ease of notation, in this proof let κ be the common per-row entry costs and p the

common activity probability. As shorthand, let µ̂(m ) := µ̂(m , p ) and δ̂(m ) := δ̂(m , p ).

To prove part (a), observe that Π̂(m) =
+∏R

ℓ=1
µ̂(mℓ)
-

v1, giving

∂

∂mr

Π̂(m) = p e −p mr

"
R∏

ℓ=1,ℓ≠r

µ̂(mℓ)

$

v1 = p e −p mr µ̂(mr ′)

"
R∏

ℓ=1,ℓ≠r,r ′

µ̂(mℓ)

$

v1.

Now assume that for the efficient profile m̂, m̂r > m̂r ′ for some r and r ′. However,

e −p m̂r µ̂(m̂r ′) = e −p m̂r − e −p (m̂r+m̂r ′ ) < e −p m̂r ′ − e −p (m̂r +m̂r ′ ),

which implies
∂

∂mr

Π̂(m̂)<
∂

∂mr ′
Π̂(m̂).
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But this contradicts the first-order condition (A.3) which must hold at the efficient profile.

To prove part (b), suppose there exists an SFE equilibrium m where mr ≤mr+1. Then,

κ= π̂r (m) =

"
R∏

k=r+2

µ̂(mk )

$

µ̂(mr+1)p e −p mr

"
r−1∏

k=1

δ̂(mk )

$

v1

≥

"
R∏

k=r+2

µ̂(mk )

$

µ̂(mr )p e −p mr+1

"
r−1∏

k=1

δ̂(mk )

$

v1

>

"
R∏

k=r+2

µ(mk )

$

p e −p mr+1δ̂(mr )

"
r−1∏

k=1

δ̂(mk )

$

v1 = π̂r+1(m) = κ.

giving a contradiction. Thus, mr >mr+1.

Example A.1 (SFE Equilibrium in Example 1). Recall that R = 5, v= (1, 2/3, 1/3, 0, 0),κr = 0.02

and pr = 0.5 for all r . This economy has three SFE equilibrium profiles:2

m1 = (0, 0, 0, 0, 0), m2 ≈ (1.76, 2.75, 3.52, 2.80,1.95), m3 ≈ (3.39, 4.44, 5.14, 4.71,4.20).

The associated expected aggregate welfare is Ω̂(m1) = 0, Ω̂(m2)≈ 0.027, and Ω̂(m3)≈ 0.203. The

expected welfare maximizing profile is m̂ ≈ (3.78, 5.17, 6.03, 6.03, 6.03) and Ω̂(m̂) ≈ 0.236. The

equilibria are ordered m0 ≤m1 ≤m2 and bounded above by m̂.

B Calculations Relating to Example 4

This appendix derives traders’ ex ante expected payoffs in Example 4. The economy has two

competing paths, .1 = {1, 2, 3, 5} and .2 = {1, 4, 5}. Figure B.1 presents an instance of this

economy. Recall that the equilibrium bid of an active trader in row r ∈.k is

b ∗
r
= vr +
∑

r ′∈.k
r ′<r

⎛

⎜
⎝

∏

ℓ∈.k
r ′≤ℓ<r

δ(nℓ, pℓ)

⎞

⎟
⎠ (vr ′ − vr ′+1).

2We computed the equilibria in this example by numerically solving the SFE equilibrium conditions. We
report all solutions found with the Newton-Raphson method using 10,000 different initial conditions chosen at
random from the set [0, 7]5.
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◦ ◦ ◦
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Figure B.1: The trading possibility graph in Example 4. The supplier is located at position 5.
As an illustration, there are three traders in each of the remaining positions.

Applying this formula to the network under consideration gives

b ∗
4
= v4+δ(n1, p1)(v1 − v4),

b ∗3 = v3+δ(n1, p1)δ(n2, p2)(v1 − v2)+δ(n2, p2)(v2− v3),

b ∗
2
= v2+δ(n1, p1)(v1 − v2),

b ∗
1
= v1.

For simplicity, we henceforth focus on the generic case where b ∗
3
≠ b ∗

4
.

Next, we compute the probability that the asset reaches row r given configuration n. We

introduce the notation αr (n) to denote this value. Given the bids b ∗
r

defined above, we can

compute αr (n) for each row r :

α4(n) =

⎧

⎨

⎩

(1−µ(n3, p3))µ(n4, p4) if b ∗
3
> b ∗

4

µ(n4, p4) if b ∗3 < b ∗4

,

α3(n) =

⎧

⎨

⎩

µ(n3, p3) if b ∗
3
> b ∗

4

(1−µ(n4, p4))µ(n3, p3) if b ∗
3
< b ∗

4

,

α2(n) =

⎧

⎨

⎩

µ(n3, p3)µ(n2, p2) if b ∗3 > b ∗4

(1−µ(n4, p4))µ(n3, p3)µ(n2, p2) if b ∗
3
< b ∗

4

,

α1(n) =

⎧

⎨

⎩

µ(n3, p3)µ(n2, p2)µ(n1, p1) if b ∗
3
> b ∗

4

(1−µ(n4, p4))µ(n3, p3)µ(n2, p2)µ(n1, p1) if b ∗3 < b ∗4

.
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Finally, ex ante expected profits are

π4(n) =

⎧

⎨

⎩

p4(1−p4)
n4−1
+

(1−µ(n3, p3))(b
∗
4 − v5)
-

if b ∗3 > b ∗4

p4(1−p4)
n4−1
+

(1−µ(n3, p3))(b
∗
4 − v5)+µ(n3, p3)(b

∗
4 − b ∗3 )
-

if b ∗3 < b ∗4

,

π3(n) =

⎧

⎨

⎩

p3(1−p3)
n3−1
+

(1−µ(n4, p4))(b
∗
3
− v5)+µ(n4, p4)(b

∗
3
− b ∗

4
)
-

if b ∗
3
> b ∗

4

p3(1−p3)
n3−1
+

(1−µ(n4, p4))(b
∗
3
− v5)
-

if b ∗
3
< b ∗

4

,

π2(n) = p2(1−p2)
n2−1α3(n)(b

∗
2
− v3),

π1(n) = p1(1−p1)
n1−1
+

α2(n)(v1− v2)+α4(n)(v1 − v4)
-

.
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