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Abstract

Consider a first-price, sealed-bid auction with interdependent valuations and private
budget constraints. Private budget constraints introduce subtle strategic tradeoffs with
first-order consequences for equilibrium bidding. In a pure-strategy, symmetric equi-
librium, agents may adopt discontinuous bidding strategies resulting in a stratification
of competition along the budget dimension. In an asymmetric setting, equilibria in
“nondecreasing” strategies exist, albeit in a qualified sense. Private budgets introduce
significant confounds for the interpretation of bidding data due to their interaction with
risk preferences and their countervailing strategic implications.
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1 Introduction

Private budgets arise in many economic situations, including auctions. Once bidders have

multidimensional private information involving a value-signal, which informs their prefer-

ences, and a budget, which defines their feasible strategy set, even simple bidding games

exhibit nontrivial equilibria. Many familiar intuitions require qualification or reassessment.

For concreteness, consider a first-price, sealed-bid auction for one item. Bidders simulta-

neously place bids, the highest bidder wins, and he pays his own bid. Private budgets affect

equilibrium bidding in two opposing ways in this familiar setting. First, budgets dampen

bids by introducing a spending limit. Che and Gale (1998) characterize this feature in their

seminal analysis of the first-price auction with private budget constraints.1 Assuming private

values, they propose sufficient conditions ensuring equilibrium bidding strategies assume the

following canonical form:

β(si, wi) = min
{

b̄(si), wi

}

. (1)

In (1), si is bidder i’s private value, wi is his private budget, and b̄(·) is an increasing,

continuous function that equals the bid of an “unconstrained” agent who bids less than his

budget.

Second, and less intuitively, budgets can amplify certain agents’ equilibrium bids. A

higher bid may be disproportionally effective at defeating budget-constrained rivals, thus

giving a high-budget bidder a new strategic option. Exercising this option can lead to an

equilibrium where agents adopt discontinuous bidding strategies, even in a symmetric setting.

A stratification of competition between high- and low-budget bidders emerges in equilibrium.

Hitherto under-appreciated in the literature, these strategic implications complicate equilib-

rium bidding and affect the auction’s efficiency and revenue potential.

To illustrate our argument, it is helpful to consider an example conveying its central

intuition. The following is an extension of Vickrey’s (1961) model.2

Example 1. Consider a first-price, sealed-bid auction for one item. There are two ex

ante identical bidders. Each bidder i observes an independent, uniformly-distributed signal

si ∈ [0, 1] regarding his value for the item. Signals are private, but their distribution is

common knowledge. If a bidder with value-signal si wins the auction with the bid bi, his

payoff is si − bi; otherwise, it is zero. A fair coin flip resolves ties. It is well-known that in

this auction’s Bayesian-Nash equilibrium both bidders adopt the strategy si/2.

1Most related to our study is the model found in Section 3 of Che and Gale (1998).
2Milgrom (2004) presents a related example with a common budget constraint.
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Figure 1: The equilibrium strategy in Example 1. Figure not to scale.

Suppose, additionally, that each bidder has a budget wi, which is independent of his value-

signal. Budgets are private, but their distribution is common knowledge. With probability

1/2, a bidder’s budget is 1/4; with probability 1/2, it is 3/4. A budget is a hard constraint

on bids and a type-(si, wi) bidder cannot bid above wi.

A tempting conjecture is that

min {si/2, wi} (2)

is a symmetric equilibrium strategy in this enriched setting. In (2), which has the canonical

form, a bidder follows the usual equilibrium strategy si/2 until he exhausts his funds. Though

intuitive, (2) cannot be a symmetric equilibrium strategy. If bidder j follows (2), then bidder

i has a profitable deviation when si = 1/2 − ϵ and wi = 3/4. According to (2), he should

bid 1/4 − ϵ/2. But, if he bids ϵ more, 1/4 + ϵ/2, his probability of winning jumps from

approximately 1/2 to over 3/4. At infinitesimal added cost, this deviation is worth it.3

Reflecting on the preceding reasoning, we are led to an equilibrium strategy with jump

discontinuities. Figure 1 sketches this auction’s symmetric equilibrium strategy,

β(si, 1/4) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

si/2 if si ∈ [0, s̃]
1+9s2i
6+18si

if si ∈ (s̃, s̃′]

1/4 if si ∈ (s̃′, 1]

β (si, 3/4) =

⎧

⎨

⎩

si/2 if si ∈ [0, s̃]
5+9s2i
18+18si

if si ∈ (s̃, 1]

where s̃ = 1/3 and s̃′ = 11/27.4 Clearly, this strategy departs from the canonical form.

3Similar reasoning applies whenever the bid distribution has a mass point due to a mass point in the
budget distribution in the relevant range of bids. When this is the case, the first-price auction cannot have
an equilibrium in continuous strategies.

4We verify that the defined strategy is a symmetric equilibrium in Online Appendix A. We show that
the equilibrium’s qualitative characteristics are unchanged when the distribution of valuations is H(s) and
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Both dampening and strategic consequences of private budgets are apparent in this exam-

ple’s equilibrium. The former is obvious. A high-valuation (si > s̃′), low-budget (wi = 1/4)

bidder hits his spending limit in equilibrium—his bid is capped.

More interesting and consequential are the strategic implications. First, a high-budget

bidder’s strategy features a prominent jump discontinuity that amplifies his bid at s̃. A

high-budget bidder has the option of bidding above 1/4, thus outbidding with certainty a

low-budget competitor. Exercising this option becomes worthwhile once his value exceeds s̃.

The intuition for the discontinuity at s̃′ is similar. Given that low-budget agents cannot bid

above 1/4, there is a chance of a tie at this bid. A low-budget bidder with valuation si > s̃′

finds this outcome sufficiently attractive to actually bid 1/4. He would like to bid more to

break the (possible) tie in his favor, but lacks the funds to do so.

Second, despite occasional jumps, on the margin bidding is less brazen due to a stratifi-

cation of competition along the budget dimension. When an agent bids above 1/4, he need

only worry about a competing bid from another high-budget bidder, which occurs with prob-

ability less than 1/2. Similarly, in equilibrium, a low-budget bidder of type si > s̃ competes

on the margin only against a low-budget adversary.5 In each case, there is less incentive to

bid aggressively since segregation has reduced competition in the relevant range of bids.

Although the preceding observations appear to be specific to Example 1, or are perhaps

an artifact of the discrete budget distribution, this is not the case. As explained in Section

3, the strategic amplification and the competitive stratification can arise even when budgets

assume a continuum of values. Necessarily the construction is more elaborate, but the

intuition is the same. Focusing on the two-bidder case, we propose new sufficient conditions

for the existence of an equilibrium satisfying the canonical form (1), even when values are

interdependent. Relaxing these assumptions leads to a non-canonical equilibrium echoing

Example 1’s intuition. The resulting empirical confounds can be substantial. For example,

a uniform distribution of value-signals and budgets may result in a bimodal equilibrium bid

distribution (Example 2).

Whereas our baseline two-bidder model isolates the strategic implications of private bud-

gets, it does not span all relevant confounds introduced by this variable. In Section 4 we

consider an N -bidder, non-quasilinear, asymmetric setting. Monotone equilibria in nonde-

budgets assume low (w) and high (w) values with probabilities p and 1− p, respectively.
5Consider the equilibrium bid of agent i with value-signal si ∈ (s̃, s̃′). When he bids β(si, 1/4), bidder i

wins the auction when sj < si and wj = 1/4 or sj < s̃ and wj = 3/4. If bidder i bids slightly more, he now
wins when sj < si + ϵ and wj = 1/4 or sj < s̃ and wj = 3/4. Agent i’s higher bid is effective only against a
low-budget adversary.
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creasing strategies, as traditionally defined, may not exist, due to countervailing incentives

associated with the budget constraint variable. Increasing a bidder’s budget may imply a

higher or a lower equilibrium bid. Applying methods introduced by Reny (2011) for the

analysis of games with multidimensional private information, we show that an equilibrium

exists in “nondecreasing” strategies when these are redefined to account for the interaction

between budgets and preferences. Monotone equilibria are focal in an auction and provide

a minimal benchmark for understanding its economic properties.

Our study has three main contributions. First, our results offer guidance concerning

bidding in first-price auctions by isolating the strategic implications of private budgets. The

importance of the strategic dimension is surprising given the simplicity of the first-price

sealed-bid auction format.

Second, we offer a cautionary message for empirical studies. The conflicting dampening

and amplifying responses to the budget constraint variable imply that bids need not be

skewed in one direction. Local incentive constraints, which underly many empirical methods

for auction analysis, need not fully characterize equilibrium bidding. Even small changes

in a bidder’s type may lead to large changes in his equilibrium bid. Multiple equilibria

are possible too (Example 3). We hope our analysis provides a useful step toward better

integrating budgets in empirical analysis of auctions.

Third, our methods may be useful in further investigations of auctions with budget

constraints or with other forms of multidimensional private information. The phase-plane

analysis employed in Section 3 is both simple and informative of associated economic incen-

tives. Likewise, the type-space ordering used in Section 4 may aid in the analysis of other

auctions or contests with multidimensional private information.

Outline Section 2 surveys the related literature. Section 3 generalizes Example 1 to al-

low for interdependent valuations and continuously distributed budgets. We examine both

canonical equilibria and non-canonical, discontinuous equilibria. Section 4 extends our model

to the asymmetric case. Omitted proofs are collected in Appendices A, B, and C. An Online

Appendix contains examples and technical extensions omitted for brevity.
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2 Related Literature

Che and Gale (1998) were the first to study standard auctions with private values and

private budget constraints.6 They investigate equilibria satisfying the canonical form (1).

In Section 3.1 we study canonical equilibria in a complementary class of cases, including

those with interdependent values. Fang and Parreiras (2002, 2003) study the second-price

auction with private budgets. We discuss their results in detail in Section 3.4. In a similar

setting, Kotowski and Li (2014a,b) analyze all-pay auctions. Ghosh et al. (2018) study wars

of attrition with private budgets.

In developing our model, we suppress several embellishments commonly associated with

budget constraints. Unlike Zheng (2001), Jaramillo (2004), or Rhodes-Kropf and Viswanathan

(2005), we model budgets as hard bounds on bids, rather than as imperfections in bid-

financing ability. We also abstract from the risk of collusion or the formation of bidding

consortia due to liquidity limitations (Cho et al., 2002). Burkett (2016) argues that bud-

get constraints solve a principal-agent problem when bidding is delegated to a third party.

Budgets are exogenous in our model, as they would be in the absence of delegation.

Interest in the role of budgets in auctions has grown due to their appearance in many

Internet-related applications (Ashlagi et al., 2010; Balseiro et al., 2015) and spectrum auc-

tions (Cramton, 1995; Bulow et al., 2017). Noting these applications, several authors build

models investigating budget constraints in sequential or multi-unit auctions (Pitchik and

Schotter, 1988; Benoît and Krishna, 2001; Pitchik, 2009; Brusco and Lopomo, 2008, 2009;

Ghosh, 2015; Kariv et al., 2018). Our model is not a special case of any of them.

The auction design problem following Myerson (1981) incorporating budget constraints is

particularly challenging and has been considered under various guises (Laffont and Robert,

1996; Monteiro and Page, 1998; Che and Gale, 1999, 2000; Maskin, 2000; Malakhov and

Vohra, 2008; Pai and Vohra, 2014; Kojima, 2014; Baisa, 2018; Boulatov and Severinov, 2018;

Carbajal and Mu’alem, 2018; Richter, 2019). Auction design with budgets has also spurred

an interest among computer scientists.7 Our analysis takes the auction format as given and

examines equilibrium bidding. Che and Gale (2006) examine auction revenue when bidders

have multidimensional types, which may include private financial constraints.

6Che and Gale (1996a,b) are precursors that examine a common-value setting where only budgets are
private information. Bobkova (2019) generalizes these models to an asymmetric setting. Kariv et al. (2018)
corroborate the equilibrium predictions of Che and Gale (1996a) with a laboratory experiment.

7Borgs et al. (2005) and Dobzinski et al. (2012) are representative contributions.
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3 Symmetric Auctions with Interdependent Values

Consider the following adaptation of Milgrom and Weber’s (1982) model of a first-price auc-

tion. There are two ex ante symmetric bidders. Let si ∈ [0, 1] be the value-signal of bidder

i. It defines his information about the item for sale. Value-signals are independently and

identically distributed according to the twice continuously-differentiable cumulative distri-

bution function (c.d.f.) H(si). (We relax independence in Remark 3 below.) The associated

probability density function (p.d.f.) h(si) is strictly positive and bounded. Given si and sj ,

v(si, sj) is bidder i’s valuation for the item. The valuation function is continuously differen-

tiable, strictly increasing in the first argument, nondecreasing in the second, v(0, 0) = 0, and

v(1, 1) = v. If bidder i wins the auction with the bid bi, his payoff is v(si, sj)− bi; otherwise,

it is 0. Ties are resolved with a uniform randomization.

When budget constraints are absent, Milgrom and Weber (1982) show that there exists

a Bayesian-Nash equilibrium where all bidders adopt a common strategy, α(si), that solves

α′(si) = (v(si, si)− α(si))
h(si)

H(si)
(3)

subject to α(0) = 0. Henceforth, we reserve the notation “α(·)” for this specific strategy.

Generalizing the model, let wi ∈ [w,w] be the budget of bidder i. Budgets are indepen-

dently and identically distributed according to the twice continuously-differentiable c.d.f.

G(wi). We assume that 0 ≤ w < v < w and that the associated p.d.f. g(wi) is strictly

positive and bounded for all wi ∈ [w,w]. For convenience, we define G(wi) = 0 if wi < w

and G(wi) = 1 if wi > w. A bidder’s type (si, wi) is private information; otherwise, the

environment is common knowledge. In this section we focus on a symmetric Bayesian-Nash

equilibrium and we suppress bidder subscripts.

3.1 A Canonical Equilibrium

Positing private values, Che and Gale (1998) identify a sufficient condition (see Remark 2

below) ensuring that the first-price auction has an equilibrium where bidders adopt a common

canonical strategy, β(s, w) = min{b̄(s), w}. The function b̄(s), which is strictly increasing

and continuous, equals the bid of an “unconstrained” or “high-budget” bidder who bids less

than his budget in equilibrium. Figure 2 illustrates a representative canonical strategy.

We first investigate conditions ensuring a canonical equilibrium exists in our model al-

lowing for interdependent values. As an initial step, we derive some properties of b̄(·). If

7
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Figure 2: Illustration of a canonical strategy, β(s, w) = min{b̄(s), w}, when w = 0.

bidder j follows a canonical strategy, the expected payoff of a type-(s, w) bidder i when he

bids b̄(x) ≤ w is

U(b̄(x)|s, w) =
∫ x

0

∫ w

0

(

v(s, y)− b̄(x)
)

h(y)g(z) dzdy

+

∫ 1

x

∫ b̄(x)

0

(

v(s, y)− b̄(x)
)

h(y)g(z) dzdy. (4)

The first term in (4) is the expected payoff from defeating an opponent with a value-signal

less than x. The second term is the expected payoff from defeating an opponent with a value-

signal greater than x who has a budget less than b̄(x). This term vanishes if b̄(x) < w. By

computing the first-order condition, dU(b̄(x)|s, w)/dx
∣
∣
x=s

= 0, and defining the expressions

λ(s) :=
h(s)

1−H(s)
,

γ(b) :=
g(b)

1−G(b)
,

η(x, s) :=

∫ 1

x

v(s, y)h(y)

1−H(x)
dy, and

δ(b, s) := b+
G(b)

g(b)
+

H(s)

g(b)(1−H(s))
,
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we can characterize b̄(s) at its points of differentiability as follows:

b̄′(s) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(

v(s, s)− b̄(s)
) h(s)

H(s)
if b̄(s) < w

λ(s)

γ(b̄(s))

(
b̄(s)− v(s, s)

η(s, s)− δ(b̄(s), s)

)

if b̄(s) > w
. (5)

When b̄(s) < w, (5) reduces to (3), the differential equation characterizing the equilibrium

strategy in the absence of budget constraints. To interpret (5) when b̄(s) > w, we expand

the equation and rearrange its terms. Omitting the function arguments for readability,

h(1−G)(v − b̄)
︸ ︷︷ ︸

[A]

+ b̄′g(1−H)(η − b̄)
︸ ︷︷ ︸

[B]

= b̄′(G(1−H) +H)
︸ ︷︷ ︸

[C]

. (6a)

Terms [A] and [B] are the expected marginal benefit of an infinitesimally higher bid. When

the higher bid defeats an opponent with a value-signal less than s, the payoff gain is v(s, s)−
b̄(s); otherwise, when it defeats an opponent with a budget less than b̄(s), the payoff gain is

η(s, s)− b̄(s).8 Term [C] is the expected marginal cost of a higher bid.

Further rearrangement of (6a) gives

b̄′ =
h(1−G)(v − b̄)

(G(1−H) +H)− g(1−H)(η − b̄)
. (6b)

For b̄′(s) to be positive, as assumed throughout its derivation, both numerator and denomi-

nator in (6b) must have the same sign. When the budget distribution is relatively dispersed,

and say g(b) ≈ 0, this is not a demanding requirement as the denominator is positive. If

the budget distribution is concentrated near some value, and g(b) is relatively large, the

denominator of (6b) may approach zero, or be negative. Intuitively, when this occurs the

likelihood of defeating a budget-constrained opponent is large and a (high-budget) bidder

wishes to increase his bid aggressively to capitalize on this opportunity. In Example 1, the

return to a slightly-higher bid spiked at the atom in the budget distribution at 1/4 and lead

to a discontinuous jump in a bid. As (6b) reveals, an atom is not necessary to provoke a

similar response.

Motivated by the preceding discussion, we introduce a regularity condition on the de-

nominator of (5) ensuring the marginal returns to a slightly higher bid are moderate and

8The term η(x, s) is the expected value of the item to a bidder with value-signal s conditional on defeating
an opponent with a value-signal greater than x.
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well-behaved. As explained below, it is a sufficient condition for a canonical equilibrium to

exist when w = 0.

Assumption 1. For each s, the function b &→ η(s, s)− δ(b, s) crosses zero at most one time.

Furthermore, if η(s′, s′)− δ(b′, s′) = 0, then ∂δ(b, s′)/∂b|b=b′ > 0.

Remark 1. Assumption 1 holds when the budget c.d.f. G(·) is concave.

Remark 2. Assumption 1 is implied by Assumption 5 of Che and Gale (1998) when the latter

is applied to the case of independent budgets and value-signals, as in our model.9

Assumption 1 has two parts. The first says that the denominator of (5) satisfies a single-

crossing condition. Since η(s, s)− δ(w, s) < 0, any crossing must be from above. Thus, the

second part is a technical restriction ensuring the crossing is strict.

Theorem 1. Suppose Assumption 1 holds and w = 0. There exists an equilibrium where each

bidder adopts a common strategy, β(s, w) = min{b̄(s), w}. The function b̄(·) is increasing,

continuous, and for a.e. s,

b̄′(s) =
λ(s)

γ(b̄(s))

(
b̄(s)− v(s, s)

η(s, s)− δ(b̄(s), s)

)

. (7)

Generically, the equilibrium is unique in the class of symmetric equilibria in canonical strate-

gies.

We provide a numerical example illustrating an equilibrium in Section 3.3. We devote

this subsection’s remainder to the proof of Theorem 1.

Construction of a Canonical Equilibrium To prove Theorem 1, we must confirm the

function b̄(·) exists with the stated properties. A natural approach is to (try to) solve (7)

assuming b̄(0) = 0. This is premature. With interdependent values, zero may not be an

optimal bid for an unconstrained bidder. A small bid may defeat a budget-constrained

opponent with favorable information concerning the item’s value. This attenuation of the

winner’s curse can inflate an agent’s bid, even if he observes a low value-signal. Moreover, (7)

may lack an increasing solution that is defined for all s, as assumed throughout its derivation.

9Che and Gale (1998) invoke their Assumption 5 to prove their Lemma 1. Fang and Parreiras (2002,
footnote 7) point out that Che and Gale’s lemma may not be true without additional assumptions in their
model. When applied to our model, Che and Gale’s assumption is sufficient for the existence of an equilibrium
in canonical strategies when w = 0.

10



Acknowledging the above complications, we identify b̄(·) indirectly by focusing on the

qualitative behavior of solutions to (7). To do so, we use phase-plane analysis to study the

closely-related plane-autonomous system

ṡ(s, b) = γ(b)(η(s, s)− δ(b, s)) ḃ(s, b) = λ(s)(b− v(s, s)) (8)

where (s, b) ∈ [0, 1]× [w,w].10 In analyzing this system, we are interested in the graphs of

its solutions and not in its dynamics. Graphs of its solutions can be identified with integral

curves of (7) since, following Birkhoff and Rota (1978, Chapter 5), we observe that

db

ds
=

db

dt

/ds

dt
=

ḃ(s, b)

ṡ(s, b)
= b̄′(s).

Interpreting the problem as proposed lets us use graphical techniques to discern the behavior

of candidate solutions over a large domain (Strogatz, 1994; Perko, 2000). Additionally, our

reinterpretation placates the singularities encountered in a direct analysis of (7).

Analysis of system (8) focuses on its nullclines and critical (or fixed) points. The nullclines

are

ψ(s) := {b | η(s, s)− δ(b, s) = 0} and ν(s) := {b | b− v(s, s) = 0}.

These graphs characterize points where ṡ = 0 and ḃ = 0, respectively. Their economic

interpretation is the following. At b = ψ(s) the denominator of (7) changes sign. When

η(s, s) − δ(b, s) > 0, marginally higher bids are relatively effective (conditional on s) at

defeating a budget-constrained opponent. Otherwise, this dimension’s marginal contribution

to a bidder’s payoff is more subdued. By definition, ν(s) = v(s, s). Thus, ν(s) is a type-s

bidder’s valuation conditional on his opponent observing the same value-signal. If a type-s

agent bids more than ν(s), then he is overbidding conditional on defeating only an opponent

with a value-signal less than his own. A critical point occurs where nullclines intersect.

Assumption 1 ensures that the analysis of system (8) is routine. Figure 3 illustrates a

representative case. Six facts are noteworthy.

(i) The curve ν(s) runs from the origin to the figure’s top-right corner. In the region below

ν(s), ḃ < 0; otherwise, ḃ > 0.

10The functions ṡ and ḃ are not defined at the boundaries where b = w and s = 1, respectively. This
technical fact is not a concern and we suppress it for expositional clarity. We can perform the analysis on
the domain’s interior. The identified solution can be extended to the boundary using standard results in the
theory of ordinary differential equations.
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Figure 3: A phase-portrait of system (8) with one critical point.

(ii) Assumption 1 implies that ψ(s) is at most single-valued. When not empty, ψ(s) is a

continuous curve.11 In the region below ψ(s), ṡ > 0; otherwise, ṡ < 0.

(iii) There exists at least one critical point when w = 0 (Lemma A.2 in Appendix A). For

simplicity, Figure 3 shows an instance with one critical point at (s0, b0). We address

the case of multiple critical points in Online Appendix B. Multiple critical points do

not affect Theorem 1, though an extended analysis is needed to identify b̄(·).

(iv) The ratio ḃ/ṡ is positive at point (s, b) only when b is “in between” ν(s) and ψ(s).

These are regions R1 and R2 in Figure 3. In these regions the solutions of (8) can be

identified with increasing functions of s. Elsewhere, solutions have negative slope and,

therefore, cannot constitute part of an admissible solution for b̄(s).

(v) Generically, each critical point is either a saddle point or a node (Lemma A.3). When

there is one critical point, it is a saddle point.

(vi) When there is one critical point, of particular interest are the stable manifolds that

approach it from below and above in regions R1 and R2. (The Hartman-Grobman

11Continuity follows from the implicit function theorem. Lemma A.1 in Appendix A records additional
properties of ψ(s), including the fact that ψ(s) < v.
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theorem implies that these manifolds are generically unique.) In Figure 3, these are

the bold curves connecting (s0, b0) with the boundaries. Henceforth, we use b∗(s) to

denote the union of these solution paths’ closures as a function of s. The function b∗(s)

is strictly increasing, continuous, and an integral curve of (7).

We are now ready to identify the function b̄(·). This function must be strictly increasing,

continuous, and an integral curve of (7). When there is one critical point, as in Figure 3,

only the stable solutions of (8) approaching the critical point—the function b∗(s)—satisfy

the stated requirements. And so, in this case, we define b̄(s) ≡ b∗(s) for all s.

The identification of b̄(s) illustrates the competing incentives facing a high-budget bidder.

Consider again Figure 3. When b̄(s) is confined to region R1, a type-s bidder would like to

bid more to capitalize on his opponent’s (possible) budget constraint. His incentive to do so

is moderated by the fact that he is overbidding conditional on defeating an adversary with

a value-signal less than his own, i.e. b̄(s) > v(s, s). In region R2, these incentives flip and

v(s, s) > b̄(s).

A standard argument lets us confirm that Theorem 1 characterizes an equilibrium.12

Proof of Theorem 1. Suppose bidder j adopts the strategy, β(s, w) = min{b̄(s), w} where

b̄(s) satisfies the conditions stated in Theorem 1. (The preceding discussion has established

the existence of this function.) The expected utility of bidder i of type (s, w) who bids b̄(x)

is given by (4). Differentiating (4),

∂U(b̄(x)|s, w)
∂x

= g(b̄(x))(1−H(x))

[
λ(x)

γ(b̄(x))

(

v(s, x)− b̄(x)
)

+ b̄′(x)
(

η(x, s)− δ(b̄(x), x)
)
]

.

Suppose x > s. Clearly, η(x, x) ≥ η(x, s) and v(x, x) ≥ v(s, x). Thus, ∂U(b̄(x)|s, w)/∂x ≤
∂U(b̄(x)|x, w)/∂x = 0. Hence, bidder i can increase his payoff by bidding less than b̄(x). A

parallel argument shows that when x < s, bidder i can increase his payoff by bidding more

than b̄(x). Together, the two cases imply that bidder i has no incentive to deviate from

β(s, w) to another bid in the range of b̄(·).13

Instead, suppose bidder i bids outside the range of b̄(·). Any bid strictly exceeding b̄(1)

12See Fang and Parreiras (2002) and Kotowski and Li (2014a) for similar proofs in the case of the second-
price and all-pay auctions with budget constraints.

13We have shown that a type-s bidder can improve his payoff by increasing his bid whenever it is less than
b̄(s). If β(s, w) = w ≤ b̄(s), then he cannot increase it above his budget constraint.
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is dominated by b̄(1). The bid b ≤ b̄(0) yields an expected payoff of

U(b|s, w) =
∫ 1

0

∫ b

0

(v(s, y)− b) h(y)g(z)dzdy = G(b)(η(0, s)− b). (9)

To complete the proof, it is sufficient to show that ∂U(b|s, w)/∂b ≥ 0 when w ≤ b < b̄(0).

Differentiating (9), ∂U(b|s, w)/∂b = g(b)(η(0, s)− b)−G(b) ≥ g(b)(η(0, 0)− b)−G(b). Given

the definition of b̄(·), if b̄(0) > 0 then ψ(0) > b̄(0). Recalling Assumption 1, b < ψ(0) implies

that η(0, 0) > δ(b, 0) = b+G(b)/g(b). Rearranging terms gives g(b)(η(0, 0)− b)−G(b) ≥ 0,

which implies the desired conclusion.

Remark 3. Theorem 1 generalizes to the case of affiliated value-signals (Milgrom and Weber,

1982). In this case, let h(si, sj) be the strictly positive, bounded, permutation-symmetric,

and log-supermodular joint density of value-signals.14 Define h(x|s) and H(x|s) as the con-

ditional p.d.f. and c.d.f., respectively, and let λ(x|s) := h(x|s)/(1−H(x|s)). The analogue of

Theorem 1 holds if v(·, x)λ(x|·) is nondecreasing, a common assumption (Krishna and Mor-

gan, 1997; Lizzeri and Persico, 2000; Fang and Parreiras, 2002). This condition holds when,

for example, v(si, sj) = (si + sj)/2 and h(si, sj) = 4(1 + sisj)/5. Intuitively, the restriction

limits the informativeness of si concerning sj relative to its impact on bidder i’s own payoff.

The supporting analysis is essentially identical to the preceding case and is omitted.

Remark 4. A closed-form expression for b̄(·) is unavailable, but the preceding analysis sug-

gests how to approximate it numerically. First, identify a critical point in (8) through which

the function must pass. The stable manifolds of system (8) approach this point with a slope

equal to that of the negative eigenvector from the system’s Jacobian matrix. An approximate

linearized solution can be defined locally at the critical point. This solution can be extended

to the domain’s remainder with standard numerical methods.

Remark 5. Allowing for N > 2 bidders requires amending (4), the expression for an agent’s

expected payoff. Defeating an opponent with a low value-signal or a low budget implies

different conclusions concerning the item’s value. Each possibility needs to be accounted for

on an opponent-by-opponent basis. Kotowski and Li (2014a) present this extension for the

all-pay auction with interdependent values. The equilibrium with N bidders in that setting

is qualitatively-similar to the two-bidder case. Che and Gale (1998) allow for N bidders and

study canonical equilibria in the private-values case.
14These assumptions follow Milgrom and Weber (1982) and are standard in the literature.
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Figure 4: Illustration of a non-canonical equilibrium strategy β(s, w) when w > 0.

3.2 Non-Canonical Equilibria

A canonical equilibrium may not exist in the absence of Assumption 1 or if w > 0. To

investigate this possibility, we focus on the case where w > 0 as the logical parallel with

Example 1 is easiest to appreciate. A canonical equilibrium may not exist when w > 0

because the marginal return to a slightly higher bid changes appreciably at w. A bid above

w defeats a budget-constrained opponent while a bid below w does not. This change in a

bid’s marginal return is particularly pronounced in Example 1 due to a mass point in the

budget distribution at 1/4. As shown below, a mass point is not necessary to induce a similar

jump discontinuity in the equilibrium strategy of a high-budget or unconstrained agent.

Consider the non-canonical strategy illustrated in Figure 4, which translates the intuition

from Example 1 to a model with a continuous type-space. It has three parts. First, a bidder

with a low value-signal bids less than w. Second, a high-budget bidder increases his bid

discontinuously when his value-signal is s̃. Third, a low-budget bidder cannot match the

jump in a high-budget bidder’s strategy at s̃. Competition is stratified and low-budget

bidders with value-signals s ∈ (s̃, s̃′) compete only in a low range of bids. A novelty is

that the distinction between high- and low-budget bidders is endogenous and changes with

the agent’s value-signal. In Figure 4(a), this boundary is given by the function φ̃(·). If

w < φ̃(s), the agent’s budget is “low” (conditional on his value-signal) and he bids less than

15



w; otherwise, his budget is “high” and he bids above w.

While an equilibrium with the above characteristics can arise when w > 0, its presence is

not assured. For some parameters, a canonical equilibrium may apply instead. To character-

ize all possibilities, we extend Theorem 1 to allow w ≥ 0. Concurrently, we also strengthen

Assumption 1 (see Remark 1 above) to simplify the resulting technical analysis.

Assumption 1′. The c.d.f. of budget constraints G(·) is concave on [w,w].

Theorem 2. Suppose Assumption 1′ holds and w ≥ 0. There exist constants s̃ and s̃′,

increasing functions b̄ : [0, 1] → [0, w] and b̃ : [s̃, s̃′] → [0, w], and a nonincreasing function

φ̃ : [s̃, s̃′] → [w,w] such that the first-price auction has a symmetric equilibrium β(s, w) with

the following properties:

(a) For all s ∈ [s̃, s̃′) and w < φ̃(s), β(s, w) = b̃(s). The function b̃(·) is the solution of

b̃′(s) =
(

v(s, s)− b̃(s)
) G(φ̃(s))h(s)

H(s̃) +
∫ s
s̃ G(φ̃(y))h(y)dy

(10a)

satisfying the boundary condition b̃(s̃) = lims→s̃− b̄(s).

(b) Otherwise, β(s, w) = min{b̄(s), w}. For all s < s̃, the function b̄(·) is continuous, less

than w, and is the solution of

b̄′(s) =
(

v(s, s)− b̄(s)
) h(s)

H(s)
(10b)

satisfying the boundary condition b̄(0) = 0. For all s > s̃, the function b̄(·) is continuous,

greater than w, and for a.e. s > s̃,

b̄′(s) =
λ(s)

γ(b̄(s))

(
b̄(s)− v(s, s)

η(s, s)− δ(b̄(s), s)

)

. (10c)

Remark 6. Recall that equation (5) characterizes the bid of an unconstrained agent when

he bids below and above w. Acknowledging the similarity between (5), (10b), and (10c), the

bid of an unconstrained agent in Theorem 2 equals b̄(s), i.e. β(s, w) = b̄(s).

Theorem 2 allows for both canonical and non-canonical equilibria. Which case applies

depends on the economy’s parameters. Two qualitatively distinct canonical equilibria are

defined solely by part (b). The function b̄(·) in a Type 1 canonical equilibrium is characterized
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only by (10c).15 This class subsumes the preceding subsection’s analysis. As in the preceding

subsection, the function b̄(·) coincides with the stable solutions of system (8), the function

b∗(·). Given Assumption 1′, a necessary and sufficient condition for a Type 1 canonical

equilibrium to exist is that b∗(·) exists and has domain [0, 1]. Intuitively, such equilibria

tend to arise when w is close to zero.

A Type 2 canonical equilibrium is characterized by (10b) and (10c).16 For low values of

s, b̄(s) = α(s), the equilibrium bid in the absence of budget constraints and the solution to

(10b).17 If there exists a value sα ∈ (0, 1) such that α(sα) = w, then b̄(·) makes a continuous

transition into the range of bids above w at s̃ = sα. For s > s̃, b̄′(s) is given by (10c). Given

Assumption 1′, a necessary and sufficient condition for a Type 2 canonical equilibrium is the

following: if α(sα) = w, then η(sα, sα) − δ(w, sα) ≤ 0. This condition must hold for (10c)

to have an increasing solution at (sα, w). Online Appendix B discusses Type 2 equilibria in

further detail. Intuitively, such equilibria tend to arise when w is relatively large.

The third case corresponds to the non-canonical equilibrium sketched in Figure 4. In this

case both parts (a) and (b) in Theorem 2 contribute to the equilibrium strategy’s definition.

In this subsection’s remainder we outline this equilibrium’s construction. The associated

proofs are relegated to Appendix B. A numerical example is presented in Section 3.3.

Construction of a Non-Canonical Equilibrium Paralleling Section 3.1, the following

discussion presumes the existence of a single critical point. The cases of no or multiple

critical points are presented in Online Appendix B.

We first introduce an assumption (henceforth maintained) precluding Type 1 or Type

2 equilibria. It assures the applicability of the non-canonical case given Assumption 1′.

Recall that b∗(·) defines the stable solutions to system (8) and α(·) is the first-price auction’s

equilibrium strategy in the absence of budget constraints.

Assumption 2.

(a) The domain of b∗(·) is [s∗, 1] and s∗ > 0.

(b) There exists an sα ∈ (0, 1) such that α(sα) = w and η(sα, sα)− δ(w, sα) > 0.

15In this case, s̃ = 0 and φ̃(s) = w.
16In this case, s̃ ∈ (0, 1] and φ̃(s) = w.
17If α(s) ≤ w for all s, then s̃ = 1 and a Type 2 equilibrium reduces to β(s, w) = α(s). Though nominally

in the model, agents’ budgets are always so large that they never bind in equilibrium.
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Figure 5: A portrait of system (8) when w > 0. Assumptions 1′, 2(a), and 2(b) are satisfied.

Figure 5 illustrates a case satisfying Assumption 2. Assumption 2(a) says that b∗(·)
is not defined for all s.18 Assumption 2(b) implies (10c) does not have an increasing

solution at (sα, w). In the private values case, i.e. v(si, sj) = si, it holds when (1 −
H(sα))

∫ sα
0 H(z)/H(sα)2dz > 1/g(w). Thus, a sufficient condition for Assumption 2(b) to

be satisfied is that the budget distribution is relatively concentrated near w. In this light,

Example 1 can be interpreted as a limiting case where w = 1/4 is a mass point of the budget

distribution.

Next, we explain how to identify s̃, b̄(·), b̃(·), and φ̃(·).19 To identify s̃, we first introduce

18It can be verified that b∗(·) is defined near the right boundary given Assumption 1′. Thus, s∗ > 0 is the
only possible failure of the full domain assumption. In the absence of a critical point, Assumption 2 reduces
to only point (b). See Online Appendix B.

19The value s̃′ is pinned down during the definition of b̃(·) and φ̃(·). It is simply the largest value for which
these functions’ domain can be defined.
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the function µ : [s∗, 1] → [w,w] defined as

µ(s) :=

⎧

⎨

⎩

min{b∗(s),ψ(s)} if ψ(s) ≠ ∅

min{b∗(s), w} if ψ(s) = ∅

.

Recall that ψ(s) is the zero of the function b &→ η(s, s)− δ(b, s). The function µ(·) is labeled

in Figures 6 and 7. Through each point along this curve passes a solution of system (8) that

can be extended as an increasing, continuous function to the boundary.20 The value s̃ is a

solution to

Ū(α(s̃)|s̃, w) = Ū(µ(s̃)|s̃, w), (11)

where

Ū(b|s, w) :=
∫ s

0

(

v(s, y)− b
)

h(y)dy +G(b)

∫ 1

s

(

v(s, y)− b
)

h(y)dy. (12)

In words, a bidder with value-signal s̃ is indifferent between the bids α(s̃) and µ(s̃). Lemma

B.1 in Appendix B shows that (11) has a solution s̃ ∈ [s∗, sα] given the maintained assump-

tions.

Given s̃, b̄(·) is defined as follows. For s < s̃, b̄(s) solves (10b). Of course, this implies

b̄(s) = α(s) for s < s̃. For s ≥ s̃, b̄(s) coincides with the increasing solution to system

(8) passing through point (s̃, µ(s̃)), which assures (10c) is satisfied. Figure 6 illustrates this

definition in two representative cases. In Figure 6(a), µ(s̃) = b∗(s̃) and b̄(s) = b∗(s) for

all s > s̃. In Figure 6(b), µ(s̃) = ψ(s̃) and b̄(s) < b∗(s) for all s > s̃. There is a jump

discontinuity in b̄(·) at s̃.

Given s̃ and b̄(·), we can next pin down b̃(·) and φ̃(·). The former solves (10a) subject

to the boundary condition b̃(s̃) = lims→s̃− b̄(s). Differential equation (10a) resembles (10b),

but accounts for the reduced competition given the jump in a high-budget bidder’s strategy.

This is captured by the “G(φ̃(·))” weightings in the reversed hazard rate term.

The function φ̃(·) defines the boundary between high- and low-budget bidders along

which β(s, w) is discontinuous. Accordingly, it is defined by an indifference condition. A

type-(s, φ̃(s)) bidder is indifferent between the bids b̃(s) and φ̃(s). Thus,

Ũφ̃(b̃(s)|s, w) = Ũφ̃(φ̃(s)|s, w) (13)

20This solution may coincide with b∗(s) and pass through the critical point.
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Figure 6: Identification of b̄(·) when w > 0.

for all s ∈ [s̃, s̃′] where

Ũϕ(b|s, w) :=
∫ s̃

0

(

v(s, y)− b
)

h(y)dy +

∫ s

s̃

(

v(s, y)− b
)

G(ϕ(y))h(y)dy

+G(b)

∫ 1

s

(

v(s, y)− b
)

h(y)dy. (14)

A subtle complication is that the definitions of b̃(·) and φ̃(·) reference one another. Thus, a

fixed point argument is needed to show that these functions exist with the stated properties.

To reinforce intuition for φ̃(·), recall Example 1. In that case, a high-budget bidder’s

strategy is discontinuous in a neighborhood of s̃. A low-budget agent bid less than 1/4

when s ∈ (s̃, s̃′), but his bid increases to 1/4 once s > s̃′. The function φ̃(·) generalizes this

sequence of jump discontinuities to a continuum type space.

Verification that Theorem 2 describes an equilibrium mimics the proof of Theorem 1 and

is relegated to Appendix B.

Remark 7. Absence Assumption 1′, the auction’s equilibrium will depend on the model’s

specifics. When the function b &→ η(s, s)− δ(b, s) crosses zero multiple times, some crossings

occur at values where the budget distribution is (relatively) concentrated. Around these

values, a bidder has an incentive to increase his bid substantially as the marginal returns to

a slightly higher bid rise significantly. Jump discontinuities around such values allow b̄(s),

the bid of an unconstrained bidder, to “skip around” regions where (10c) lacks increasing

solutions. Multiple discontinuities are possible if G(·) is sufficiently irregular. Despite similar
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Figure 7: The functions b̄, φ̃, and b̃. The function b̄ has a jump discontinuity at s̃.

intuition, identifying the analogues of φ̃(·) and b̃(·) becomes challenging. Our proof does not

extend immediately as it relies on the concavity of G(·) for this step.

3.3 An Example

An example can illustrate both canonical and non-canonical equilibria.

Example 2. Suppose v(si, sj) = si + sj and value-signals are uniformly distributed on the

unit interval. In the absence of budget constraints, α(s) = s is the symmetric equilibrium

strategy. Suppose budgets are distributed uniformly on [w, 2] and w = 0. Figure 8(a) shows

b̄(s), ψ(s), and ν(s). There is one critical point at s0 ≈ 0.105. Representative solutions from

the associated plane-autonomous system and α(s) are graphed for context. Since values are

interdependent, even a bidder with value-signal s = 0 bids a positive amount, i.e. b̄(0) > 0.

Assumption 2 holds when 0.15 < w < 0.27; thus, a non-canonical equilibrium exists.

Figure 8(b) illustrates b̄(s), ψ(s), ν(s), φ̃(s), and b̃(s) when w = 0.2. The functions b̄(s) and

α(s) coincide when s is small, but b̄(s) jumps up at s̃ ≈ 0.181. A high-budget bidder with
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that value-signal increases his bid from 0.181 to 0.286—an increase of 58 percent! Thus, an

agent’s strategic response to an opponent’s possible budget constraint can be quantitatively

large. When w > 0.27, the equilibrium is again canonical, but of the Type 2 variety. The

jump discontinuity in b̄(s) disappears.

To highlight the empirical implications, Figures 8(c) and 8(d) present histograms ap-

proximating the equilibrium bid distributions. In the canonical case, the peak occurs around

b̄(0) ≈ 0.12. All bids below this value equal the bidder’s budget. In the non-canonical

case, the equilibrium bid distribution has few bids around w = 0.2. The equilibrium bid

distribution would be uniform in the absence of budget constraints.

3.4 Discussion

The Second-Price Auction It is instructive to compare equilibrium bidding in first- and

second-price auctions. In the case of private values, i.e. v(si, sj) = si, the second-price

auction has an equilibrium where each type-(s, w) agent bids min{s, w} (Che and Gale,

1998). Fang and Parreiras (2002) examine the second-price auction with interdependent

values in a two-bidder setting. They identify an equilibrium where each bidder’s strategy is

βII(s, w) = min{b̄II(s), w} and b̄II(·) is an increasing function. When b̄II(s) < w, b̄II(s) =

v(s, s), which is the equilibrium strategy identified by Milgrom and Weber (1982) in the

absence of budget constraints. When b̄II(s) ≥ w, b̄II(s) solves the differential equation21

b̄′II(s) =
λ(s)

γ(b̄II(s))

(

b̄II(s)− v(s, s)

η(s, s)− b̄II(s)

)

(15)

subject to the boundary condition b̄II(1) = v. Since b̄II(·) is increasing, there exists a value

s̃II such that s < (>)s̃II =⇒ b̄II(s) < (>)w. Generally, b̄II(·) may be discontinuous at s̃II .

While the resemblance of (7) and (15) is striking, three differences between the first-

and second-price auctions are noteworthy. First, the boundary condition for b̄II(s) is pre-

determined. Second, the term “η(s, s) − b” appears in the denominator of (15) instead of

“η(s, s)− δ(b, s).” Third, the discontinuity that can arise in βII(s, w) at s̃II is qualitatively

different from that identified in Section 3.2 above. There is no separation among high- and

low-budget bidders in the second-price auction. A bidder with value-signal s > s̃II bids above

w and a gap in the equilibrium bid distribution may arise. In contrast, the equilibrium bid

21Equation (15) restates equation (11) from Fang and Parreiras (2002). We specialize it to the case of
independent types. Fang and Parreiras (2002) allow for affiliated values.
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Figure 8: Equilibrium bidding in Example 2.
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distribution in the first-price auction has connected support, even in a non-canonical equilib-

rium. This difference is due to the distinct pricing mechanisms. In the second-price auction,

an agent bidding infinitesimally above the gap has no reason to reduce his bid. His probabil-

ity of winning and his expected payment are unchanged if he bids a bit less. In the first-price

auction, an agent bidding infinitesimally above a (hypothetical) gap can significantly reduce

his expected payment without appreciably reducing his probability of winning. As a result,

a gap in the equilibrium bid distribution cannot arise.22

Che and Gale (1998, 2006) show that the first-price auction revenue-dominates the

second-price auction in an independent private values setting with financial constraints.

Milgrom and Weber (1982) show that the first- and second-price auctions are revenue equiv-

alent in the absence of budget constraints when valuations are interdependent but agents’

types are independent.23 They also prove that the second-price auction is revenue-superior

when agents’ types are affiliated. Taken together, these results imply that no revenue rank-

ing exists between first- and second-price auctions allowing for both budget constraints and

affiliated values.

Equilibrium Non-Uniqueness McAdams (2007) shows that the first-price auction has

a unique monotone pure strategy equilibrium when bidders are ex ante symmetric, types are

affiliated, and values are interdependent. This conclusion does not extend to a setting with

budget constraints. Recall that in a non-canonical equilibrium, an agent discontinuously in-

creases his bid at some value-signal s̃. He does so conjecturing the other bidder does likewise.

In equilibrium, of course, this conjecture is correct but the construction introduces an im-

plicit coordination problem. Different values at which the common bidding strategy “jumps

up” may be compatible with different equilibria, as illustrated by the following example.

Example 3. Consider a first-price auction with two bidders.24 Given (si, sj), each bidder’s

valuation is v(si, sj) = si + sj. Each bidder’s value-signal is independently distributed

according to the c.d.f. H(s) =
√
s on [0, 1]. In the absence of budget constraints, α(s) = 2s/3

is the symmetric equilibrium bidding strategy (Milgrom and Weber, 1982).

22This reasoning does not apply when there are atoms in the equilibrium bid distribution, as illustrated
by Example 1. In the example, the bid 1/4 is placed with positive probability in equilibrium. An agent
bidding 1/4 would like to bid more but cannot due to his budget constraint. A bid slightly less than 1/4, in
contrast, leads to a discrete fall in the probability of winning and is therefore not beneficial. A gap in the
equilibrium bid distribution just below 1/4 results.

23See also the discussion in Krishna (2002, Section 7.1).
24Calculations pertaining to this example are presented in Online Appendix A.
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Now suppose bidders face a common budget constraint: wi = wj = 1/3 with probability

1.25 There are now two symmetric equilibria with strategies

βA(s) =

⎧

⎨

⎩

2s/3 if s ≤ 1/9

1/3 if s > 1/9
and βB(s) = 1/3.

In the “βA”-equilibrium, the agents adopt the no-budget-constraints equilibrium strategy

when s is small. At s̃A = 1/9 their bids increase discontinuously from 2/27 to 1/3. In the

“βB”-equilibrium, the threshold value-signal above which agents bid their entire budget is

s̃B = 0. The “βB”-equilibrium is revenue superior.

Comparative Statics The countervailing incentives associated with budget constraints

typically lead to ambiguous comparative statics. For example, consider a “tightening” of

financial constraints where the budget distribution is skewed in the sense of likelihood ratio

dominance toward a distribution favoring lower budgets.26 In the second-price auction, this

change inflates the bid of an “unconstrained” bidder (Fang and Parreiras, 2002). In the

first-price auction, a bidder’s response may go either way. There is now less incentive to bid

aggressively because competition is reduced at higher bid levels. However, if budgets become

more concentrated around particular values it is easier to exploit the budget dimension for

strategic gain. On balance, a bidder may respond with a higher or lower equilibrium bid.

We document these phenomena in an example in Online Appendix C.

Reserve Prices Setting the optimal reserve price with budget-constrained bidders is chal-

lenging. Reserve prices screen bidders on both value and budget dimensions. Expected

revenues may fall if bidders are disproportionately screened along the latter as the probabil-

ity of sale is particularly impacted. If agents are unlikely to be budget constrained, imposing

the no-budget-constraints revenue-maximizing reserve price can be a sensible policy. For

example, if in the model of Example 1 an agent has a low budget (w = 1/4) with probability

p < 0.317, the revenue-maximizing reserve price is 1/2. This is also the revenue-maximizing

reserve price in the absence of budget constraints. Otherwise, the optimal reserve price is

less than 1/4.

25We interpret this example as a limiting case of the more general model developed above. Posit, for
instance, that w = 1/3 is the lower limit of the budget distribution’s support and its density becomes highly
concentrated around this value.

26Likelihood ratio dominance implies hazard-rate dominance and first-order stochastic dominance.
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4 Asymmetric Auctions and “Monotone” Equilibria

All equilibria in Section 3 are in nondecreasing strategies. A bidder with a higher budget or

value-signal bids more. A natural question concerns this relationship’s robustness, especially

if budgets interact with preferences. For instance, consider risk preferences. A plausible claim

is that a high-budget bidder is less risk averse than a low-budget rival, all else equal. A high-

budget bidder may want to leverage his strategic advantage by bidding more. However, his

higher risk tolerance can simultaneously tempt him to bid less.27 Together these conflicting

interests can lead to an equilibrium that fails to be “monotone” in the term’s traditional

sense, as shown by the following example.

Example 4. Recall Example 1, but now suppose that a winning bidder of type (si, wi)

receives a payoff of (si − bi)wi+1/4. Payoffs following a loss are zero.28 Admittedly stylized,

these payoffs capture the idea that a high-budget bidder is less risk-averse. A high budget

(wi = 3/4) implies risk-neutrality. A low budget (wi = 1/4) implies strict risk-aversion.

Figure 9 sketches this auction’s symmetric equilibrium strategy,

β(si, 1/4) =

⎧

⎪
⎪⎪
⎨

⎪
⎪⎪
⎩

2si/3 if si ∈ [0, s̃′′]
16s3i+24(

√
11−3)s2i+33(19

√
11−63)

24(si+
√
11−3)2

if si ∈ (s̃′′, s̃′]

1/4 if si ∈ (s̃′, 1]

β(si, 3/4) =

⎧

⎨

⎩

si/2 if si ∈ [0, s̃]
2s2i+13

√
11−42

4(si+1) if si ∈ (s̃, 1]

where s̃ =
√
11− 3, s̃′′ = 3(

√
11− 3)/4, and s̃′ ≈ 0.298.29 This strategy is neither canonical

nor monotone. A high-budget bidder’s risk tolerance explains his low bid when si is small.

He exercises his strategic advantage to outbid a low-budget rival if si is large.

The absence of a monotone equilibrium clouds our understanding of the first-price auction

with private budgets in general circumstances. Nevertheless, we can obtain some insight by

noting that a systematic relationship still exists between types and bids. In Example 4, if

si and wi rise sufficiently and together, agent i will bid more. Reny (2011) showed that

such regularities can be used to redefine a nondecreasing strategy in games of incomplete

27Intuitively, the insurance provided by a higher bid is less valuable (Krishna, 2002, p. 38).
28Cox et al. (1988) consider a setting with a similar utility function, though without budget constraints.
29We verify that the defined strategy is an equilibrium in Online Appendix A.
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Figure 9: The equilibrium strategy in Example 4. Figure not to scale.

information. The idea is to realign changes in agents’ types with changes in their equilibrium

actions. This argument applies to the first-price auction with private budgets as well.

Generalizing our model, suppose there are N bidders, each with a private type (si, wi) ∈
[si, si] × [wi, wi]. Now, let s = (s1, . . . , sN) be the vector of value-signals and s−i be the

vector s with si removed. Define w and w−i analogously. Each bidder i has a set of valid

bids Bi ⊂ R, which subsumes a reserve price ri ≥ 0 and includes a “null bid” ℓi < min{w, ri}
guaranteeing a loss in the auction.30 The function βi : [si, si]× [wi, wi] → Bi is an admissible

(pure) strategy if βi(si, wi) ≤ wi for all (si, wi).

Suppose preferences satisfy the following conditions whenever ri ≤ bi ≤ wi:

(i) If bidder i wins the auction with the bid bi, his payoff is ūi(si, s−i, wi, bi). The function

ūi is bounded, nondecreasing in (si, s−i, wi), strictly decreasing in bi, and differentiable.

Moreover, ∂ūi/∂si ≥ κi > 0.

(ii) If bidder i does not win the auction, his payoff is ui(wi). The function ui is bounded,

nondecreasing, and differentiable.

(iii) If bi ≤ 0, then ūi(si, s−i, wi, bi) ≥ ui(wi). And, there exists B̄ such that ūi(si, s−i, wi, bi) <

ui(wi) for all bi > B̄.

(iv) For all bi ≥ b′i ≥ ri, ūi(si, s−i, wi, bi)− ūi(si, s−i, wi, b′i) is nondecreasing in (si, s−i, wi).

(v) The following holds: inf ∂ūi/∂wi ≤ sup ∂ui/∂wi < ∞.

Remark 8. Section 3’s model satisfies (i)–(v). Let ūi(si, s−i, wi, bi) = v(si, s−i) +wi − bi and

u(wi) = wi.

30We allow for bidder-specific reserve prices (Athey, 2001; Reny and Zamir, 2004; Kotowski, 2018).
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Points (i)–(iv) adapt assumptions from Maskin and Riley (2000), Reny and Zamir (2004),

and McAdams (2007), among others, to our setting. Points (i), (ii), and (iii) are standard.

The lower bound on ∂ūi/∂si in (i) is similar to Athey’s (2001) Assumption A2(v). Point (iv)

is an increasing-differences condition, common to the literature.31

Point (v) is new. It says that a bidder’s money holdings (budget) and the item for

purchase are not excessively strong complements—the minimal marginal utility of an extra

dollar conditional on winning the auction is less than the maximal marginal utility of an

extra dollar conditional on losing the auction.

Point (v) plays a role in the redefinition of a nondecreasing strategy. Reny (2011) pio-

neered this approach and, interestingly, we can draw on his analysis of a multi-unit auction

with risk-averse bidders to study our problem. The key analogy is the following. An auction

with private budgets can be interpreted as an unusual multi-item auction where the highest

bidder wins the item for sale, as usual, and all bidders “win” a cash prize equal to their

private budget. Noting this analogy, we follow Reny (2011) by introducing a new ordering

of each agent’s type-space, which we denote by ≥i. Defining

ξi :=
sup ∂ui

∂wi
− inf ∂ūi

∂wi

inf ∂ūi

∂si

, (16)

we say that (si, wi) ≥i (s′i, w
′
i) ⇐⇒ wi ≥ w′

i and si − s′i ≥ ξi(wi − w′
i). Figure 10 sketches

the greater- and less-than sets for type (si, wi). We call the function βi ≥i-nondecreasing if

(si, wi) ≥i (s′i, w
′
i) =⇒ βi(si, wi) ≥ βi(s′i, w

′
i).

To interpret ξi and the ≥i ordering, it is helpful to temporarily ignore the “sup” and “ inf”

operations. In the quasilinear case, ξi = 0 because ∂ui/∂wi = ∂ūi/∂wi. Hence, ≥i reduces to

the standard coordinate-wise order of R2 and a ≥i-nondecreasing strategy is nondecreasing

in the usual sense. A large value for ξi can arise in two cases. If the numerator of (16)

is large, then the marginal utility of an extra dollar is greater conditional on a loss than a

win. All else equal, a bidder is more willing to bid less as wi increases since the sting of a

loss is less severe. A ≥i-nondecreasing strategy does not mandate a higher bid in this case.

Alternatively, if the denominator of (16) is small, then payoffs are relatively unresponsive

to changes in a bidder’s value-signal. Thus, a (relatively) large increase in si is necessary to

assuredly counteract the (possible) countervailing incentives associated with an increase in

wi. To ensure that ξi is uniformly defined, the “sup” and “ inf” operations pick out extreme

31See, for example, Assumption A.1(iv) and Remark 3 in Reny and Zamir (2004). The condition allows
for risk aversion. For instance, it holds when ūi(si, s−i, wi, bi) = V (si + wi − bi) and V (·) is concave.
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Figure 10: The ≥i ordering.

instances of the preceding cases. These help bound changes in a bidder’s utility and allow us

to confirm that ui(si, s−i, wi, bi) := ūi(si, s−i, wi, bi)− ui(wi) is ≥i-nondecreasing, a key step

(Lemma C.1) in the proof of Theorem 3, which is stated below.

Concerning the information structure, we allow for affiliated value-signals, though quali-

fied in the sense of Remark 3. Defining the terms

H(s−i|si) :=
∫

t−i≤s−i
h(t−i|si)dt−i, H̄(s−i|si) :=

∫

t−i≥s−i
h(t−i|si)dt−i,

σ(s−i|si) := h(s−i|si)/H(s−i|si), λ(s−i|si) := h(s−i|si)/H̄(s−i|si),

we assume that the following conditions hold:

(vi) Value signals are affiliated with a strictly positive and bounded joint density h(s). For

a.e. s−i, (si, wi) ≥i (s′i, w
′
i), and ri ≤ bi ≤ w′

i,

(a) ui(s′i, s−i, w′
i, bi) ≥ 0 =⇒ ui(si, s−i, wi, bi)λ(s−i|si) ≥ ui(s′i, s−i, w′

i, bi)λ(s−i|s′i); and,

(b) ui(si, s−i, wi, bi) < 0 =⇒ ui(si, s−i, wi, bi)σ(s−i|si) ≥ ui(s′i, s−i, w′
i, bi)σ(s−i|s′i).

(vii) Budgets are mutually independent and independent of value-signals with a strictly

positive and bounded joint density. (The budget distribution may vary among bidders.)

The two requirements in point (vi) ensure that the direct influence of si on payoffs dominates

its informational content concerning s−i. The condition is satisfied by the cases cited in

Remark 3 above, which introduced a similar restriction.

Theorem 3. Consider a first-price auction satisfying conditions (i)–(vii) above. There exists

an equilibrium in ≥i-nondecreasing strategies if:

(a) Each bidder’s set of valid bids is finite and mutually disjoint; or,
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(b) Values are private,32 each bidder i’s set of valid bids is Bi = {ℓi} ∪ [ri,∞), and ties

among high bidders are resolved with a uniform randomization.

The proof of Theorem 3 involves verifying that the model satisfies the conditions in Reny

(2011). We already mentioned the analogy between our model and his analysis of a multi-

unit auction with risk-averse bidders. The key lemmas proceed similarly and quickly lead

to part (a), which is the theorem’s economically-salient conclusion. The restriction to finite

and disjoint bid sets is a modeling device common in the auction literature, especially when

types are multidimensional (for example, see McAdams, 2006).

The challenge in extending Theorem 3(b) to the interdependent-values case stems from

economic, and not solely technical, considerations. It is instructive to see where standard

arguments can fail. In a standard model, Athey (2001) and Reny and Zamir (2004) show

that when an opponent adopts a nondecreasing strategy, a bidder benefits from bidding

infinitesimally more to favorably resolve a hypothetical tie. This incentive is not assured

in our setting due to the type-space’s multidimensionality.33 Defeating low-value-signal and

low-budget opponents entails different inferences concerning the item’s value. A bidder may

hesitate to bid more when doing so disproportionately defeats low value-signal opponents.34

The preceding results contrast with those of Gentry et al. (2015), who have adapted

Reny’s (2011) analysis to confirm the existence of a monotone equilibrium in a private-values

first-price auction where agents’ degree of risk aversion and wealth are private information.

Importantly, wealth is not associated with a constraint on bids in their model. Gentry et al.

(2015) show that bids decline in wealth, due to agents’ greater risk tolerance. This decline

can occur in our setup, but the strategic option associated with budget constraints is a

persistent countervailing force. A high-budget agent may wish to bid more to leverage his

strategic advantage.

5 Concluding Remarks

We have examined the first-price auction under the assumption that agents face private

budget constraints. Our analysis confirms that private budgets influence bidding in several

32That is, ui(si, s−i, wi, bi) = ui(si, s′−i, wi, bi) for all s−i and s′−i.
33Reny and Zamir (2004) provide additional examples illustrating the complications introduced by multi-

dimensional types in auctions.
34More generally, uniform tie-breaking is often inadequate to ensure equilibrium existence in bidding games

with multidimensional private information (Araujo et al., 2008). Equilibrium existence can be restored by
introducing endogenous tie-breaking rules (Simon and Zame, 1990; Jackson et al., 2002). In an earlier version
of this study, a tie breaking rule proposed by Araujo and de Castro (2009) proved adequate for our model.
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distinct ways. They cap participants’ bids while simultaneously encouraging more aggressive

bidding in equilibrium by some agents. Together, these responses can lead to nontrivial

equilibrium outcomes. Agents may adopt discontinuous bidding strategies and equilibria

may fail to be monotone in the traditional sense of the term. Two directions for further study

are especially noteworthy. First, we have precluded many natural embellishments from our

model—resale, collusion, credit and financing, among others. As noted in Section 2, several

studies have probed these questions, but much work remains. And second, the empirical

implications of private budgets in auctions remain poorly understood. The development of

new models or identification strategies to tackle this question seems especially promising.
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A Proofs Relating to Section 3.1

Lemma A.1. Suppose Assumption 1 holds.

(a) If ψ(s) ≠ ∅, then ψ(s) < v.

(b) Let ϵ > 0. If ψ(s′) ≠ ∅ and ψ(s) = ∅ for all s ∈ (s′, s′ + ϵ), then ψ(s′) = w.

(c) Let ϵ > 0. If ψ(s′) ≠ ∅ and ψ(s) = ∅ for all s ∈ (s′ − ϵ, s′), then ψ(s′) = w.

(d) If w = 0, then ψ(0) ≠ ∅.

Proof. Part (a) is immediate since δ(w, s) > v ≥ η(s, s). The proofs of (b) and (c) are

similar and we only prove (b). To derive a contradiction, suppose ψ(s′) = b̂ > w. By

Assumption 1, there exists b̂′ ∈ (w, b̂) such that η(s′, s′)− δ(b̂′, s′) > 0. By continuity, there

exists ŝ′ ∈ (s′, s′ + ϵ) such that η(s′, s′)− δ(b̂′, ŝ′) > 0. Since δ(w, ŝ′) > η(ŝ′, ŝ′), we conclude

that ψ(s′) ≠ ∅ by the intermediate value theorem—a contradiction. Part (d) is implied by

Assumption 1 and the fact that η(0, 0)− δ(0, 0) ≥ 0.

Lemma A.2. Suppose Assumption 1 holds. If w = 0, then system (8) has at least one

critical point.

Proof. Recall that ν(0) = 0, ν(1) = v, and ψ(0) ≠ ∅. If ψ(0) = 0, then a critical point

occurs at the origin. Instead, suppose ψ(0) > 0. There are two cases. First, if ψ(s) ≠ ∅

for all s, then by the implicit function theorem ψ(s) is continuous. Since ψ(s) ≤ v, the

intermediate value theorem implies that ψ(s0) = ν(s0) at some s0 ∈ [0, 1]. And second, if

ψ(s′) = ∅ for some s′, then there exists an s′′ < s′ such that ψ(s) is a continuous function

on the interval [0, s′′] and ψ(s′′) = w = 0. By the intermediate value theorem, there exists

some s0 ≤ s′′ such that ψ(s0) = ν(s0).

Lemma A.3. Suppose Assumption 1 holds. If (s0, b0) is a critical point of system (8), then

it is (generically) either a node or a saddle point.

Proof. We first show that the eigenvalues of the Jacobian matrix evaluated at a critical point

(s0, b0),

J =

(
∂ṡ
∂s

∂ṡ
∂b

∂ḃ
∂s

∂ḃ
∂b

)∣
∣
∣
∣
∣
(s0,b0)

,

32



are real-valued. The eigenvalues will be real if

(

∂ṡ

∂s
−
∂ḃ

∂b

)2

+ 4
∂ṡ

∂b

∂ḃ

∂s

when evaluated at (s0, b0) is nonnegative. Thus,

∂ṡ

∂b

∣
∣
∣
∣
(s0,b0)

= γ′(b0) (η(s0, s0)− δ(b0, s0))
︸ ︷︷ ︸

0

+γ(b0)

(

−
∂δ

∂b

∣
∣
∣
∣
(s0,b0)

)

= −γ(b0)
∂δ

∂b

∣
∣
∣
∣
(s0,b0)

.

We know that γ(b0) ≠ 0 and Assumption 1 implies that ∂δ
∂b

∣
∣
(s0,b0)

> 0. Hence, ∂ṡ
∂b

∣
∣
(s0,b0)

< 0.

Also,

∂ḃ

∂s

∣
∣
∣
∣
∣
(s0,b0)

=
∂λ

∂s

∣
∣
∣
∣
(s0,b0)

(b0 − v(s0, s0))
︸ ︷︷ ︸

0

+λ(s0)

(

−
dv(s, s)

ds

∣
∣
∣
∣
s=s0

)

< 0.

Therefore, 4∂ṡ
∂b

∂ḃ
∂s > 0 as needed.

Since the eigenvalues of J are real, by the Hartman-Grobman theorem, the critical

point(s) will be a saddle or a node if the eigenvalues are non-zero. This is equivalent to

J having a non-zero determinant at (s0, b0):

det J |(s0,b0) = γ(b0)λ(s0)

(

dη(s, s)

ds

∣
∣
∣
∣
s=s0

−
∂δ(b0, s)

∂s

∣
∣
∣
∣
s=s0

−
∂δ(b, s0)

∂b

∣
∣
∣
∣
b=b0

dν(s)

ds

∣
∣
∣
∣
s=s0

)

.

A perturbation of any of the distributions or of the valuation function is sufficient to ensure

the preceding expression is non-zero.

B Proof of Theorem 2

The proof of Theorem 2 has two parts. The first part concerns the construction of a non-

canonical strategy and complements Section 3.2. Construction of a Type 1 canonical strategy

proceeds as in Section 3.1. Type 2 canonical strategies are discussed in Online Appendix B.

The second part verifies that the proposed strategy is a symmetric equilibrium.
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B.1 Construction of a Non-Canonical Equilibrium Strategy

Outline The construction of a non-canonical equilibrium strategy with a discontinuity

proceeds in several steps. First, Lemma B.1 confirms the existence of the value s̃. Given

s̃, the definition of b̄(·) is provided in Section 3.2 and Online Appendix B in other cases

of interest. Then, we examine the functions b̃(·) and φ̃(·). These functions are defined

with reference to a fixed point of a particular operator, which is introduced in Remark B.4.

Definitions B.1–B.4 and Lemma B.2 introduce preliminary concepts used in this definition.

Subsequently, Lemmas B.3–B.6 prove some properties of φ̃(·). Throughout we assume that

Assumptions 1′ and 2 hold.

Lemma B.1. Consider Ū(b|s̃, w) defined in (12). There exists s̃ ∈ [s∗, sα] such that Ū(α(s̃)|s̃, w) =
Ū(µ(s̃)|s̃, w). Moreover, µ(s̃) > w.

Proof. We first make two observations. Recall that by convention G(b) = 0 if b < w.

(i) Since G(α(s∗)) = G(µ(s∗)) = 0 and α(s∗) ≤ µ(s∗), the inequality Ū(α(s∗)|s∗, w) ≥
Ū(µ(s∗)|s∗, w) follows immediately.

(ii) Assumptions 1′ and 2 imply that ∂Ū (b|sα, w)/∂b = g(b)(1−H(sα))(η(sα, sα)−δ(b, sα)) ≥
0 for all b ∈ [α(sα), µ(sα)]. Hence, Ū(α(sα)|sα, w) ≤ Ū(µ(sα)|sα, w).

As Ū(α(s)|s, w) and Ū(µ(s)|s, w) are continuous functions of s, there exists s̃ ∈ [s∗, sα] such

that Ū(α(s̃)|s̃, w) = Ū(µ(s̃)|s̃, w). Finally, if µ(s̃) = w, then Ū(α(s̃)|s̃, w) = Ū(µ(s̃)|s̃, w) only

if α(s̃) = w, which implies s̃ = sα. But if w = µ(sα) = α(sα), then Assumption 2(b) implies

that η(s̃, s̃) − δ(w, s̃) > 0 while the definition of µ(·) implies that η(s̃, s̃) − δ(w, s̃) ≤ 0—a

contradiction. Hence, µ(s̃) > w.

Remark B.1. Henceforth, let s̃ ∈ [s∗, sα] be a fixed value such that Ū(α(s̃)|s̃, w) = Ū(µ(s̃)|s̃, w).
To simplify notation, let µ̃ := µ(s̃).

Remark B.2. Definitions B.1 and B.2, which follow below, reference the constants K1 :=

v · [sups≥s̃ h(s)]/H(s̃) and s̃1 := s̃+ (w − α(s̃))/K1.

Definition B.1 (The set B). Let B be the set of all continuous, nondecreasing, functions

with domain [s̃, s̃1] such that b(s̃) = α(s̃) and ∀ s, s′ ∈ [s̃, s̃1] and b(·) ∈ B, |b(s) − b(s′)| ≤
K1|s− s′|.

Definition B.2 (The set F ). Let F be the set of all continuous, nondecreasing functions

with domain [s̃, s̃1] such that F (s̃) = H(s̃) and ∀ s, s′ ∈ [s̃, s̃1] and F (·) ∈ F , |F (s)−F (s′)| ≤
(sups∈[0,1] h(s))|s− s′|.
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Definition B.3 (The function ∆). For b(·) ∈ B, and F (·) ∈ F let

∆(s, w|b, F ) :=
[

G(w)(1−H(s))(η(s, s)− w)− wF (s)
]

−
[

G(b(s))(1−H(s))(η(s, s)− b(s))− b(s)F (s)
]

.

Lemma B.2. Fix b(·) ∈ B and F (·) ∈ F .

(a) The function w &→ ∆(s, w|b, F ) is strictly concave on [w,w].

(b) If b(s) < w, then ∆(s, w|b, F ) < 0.

(c) ∆(s̃, µ̃|b, F ) = 0 and ∂∆(s̃, w|b, F )/∂w|w=µ̃ ≥ 0.

Proof. Fix b(·) ∈ B and F (·) ∈ F . To simplify notation, let ∆(s, w) := ∆(s, w|b, F ).

(a) Assumption 1′ says that G(w) is concave. Thus, G(w)(1−H(s))(η(s, s)−w) is strictly

concave in w. It follows that G(w)(1 −H(s))(η(s, s)− w)− wF (s) is strictly concave;

hence w &→ ∆(s, w|b, F ) is also strictly concave.

(b) Since b(s) < w for all s ∈ [s̃, s̃1), ∆(s, w) = (b(s)− w)F (s) < 0.

(c) Recall that b(·) ∈ B =⇒ b(s̃) = α(s̃) and F (·) ∈ F =⇒ F (s̃) = H(s̃). Thus, by

Lemma B.1, Ū(α(s̃)|s̃, w) = Ū(µ̃|s̃, w), which implies ∆(s̃, µ̃) = 0. Next, observe that

∂

∂w
∆(s, w) = g(w)(1−H(s))

(

η(s, s)− w −
G(w)

g(w)
−

F (s)

g(w)(1−H(s))

)

︸ ︷︷ ︸

A(s,w)

. (B.1)

Since µ̃ ≤ ψ(s̃), A(s̃, µ̃) ≥ 0, which implies ∂∆(s̃, w)/∂w|w=µ̃ ≥ 0.

Definition B.4. The mapping Φ : [s̃, s̃1]× B × F → [w,w] is defined as

Φ(s|b, F ) := min

{

argmin
w∈[w,w]

∣
∣
∣∆(s, w|b, F )

∣
∣
∣

}

.

Remark B.3. Figure B.1 illustrates the definition of Φ in two common cases. If ∆(s, w|b, F ) =

0 for some w, then Φ picks out the smallest solution (Figure B.1(a)). If ∆(s, w|b, F ) < 0 for

all w, then Φ picks out its maximizer on [w,w] (Figure B.1(b)).
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w

∆(s, w|b, F )

Φw

(a) Case 1: Φ identifies the smallest solution of
∆(s,w|b, F ) = 0.

w

∆(s, w|b, F )

Φw

(b) Case 2: Φ identifies the maximizer of
∆(s,w|b, F ) on the interval [w,w].

Figure B.1: Definition of Φ.

Remark B.4 (Definition of φ̃(·) and b̃(·)). Define Λ : B × F → B × F as follows. If

(b, F ) ∈ B × F , then Λ(b, F ) = (b̌, F̌ ) where

b̌(s) = α(s̃) +

∫ s

s̃

(v(y, y)− b(y))G(Φ(y|b, F ))h(s)

H(s̃) +
∫ s

s̃ G(Φ(z|b, F ))h(z)dz
dy, and

F̌ (s) = H(s̃) +

∫ s

s̃

G(Φ(y|b, F ))h(y)dy.

Λ is a continuous self-map defined on a compact, convex space. By Schauder’s theorem,

there exists a fixed point, (b̃, F̃ ) = Λ(b̃, F̃ ). Given such a fixed point (b̃, F̃ ), we define the

function

φ̃(s) := Φ(s|b̃, F̃ )

and we simplify notation by henceforth writing

∆̃(s, w) := ∆(s, w|b̃, F̃ ).

The preceding definitions, Lemma B.2, and Definition B.4 imply that

b̃′(s) =
(v(s, s)− b̃(s))G(φ̃(s))h(s)

H(s̃) +
∫ s
s̃ G(φ̃(y))h(y)dy

and F̃ (s) = H(s̃) +

∫ s

s̃

G(φ̃(y))h(y)dy.

Furthermore, b̃(s̃) = α(s̃), b̃(s) < w for all s ∈ [s̃, s̃1), and φ̃(s̃) = µ̃ = µ(s̃).

Remark B.5. By substituting b̃ and φ̃ we observe that

∆̃(s, φ̃(s)) = Ũφ̃(φ̃(s)|s, w)− Ũφ̃(b̃(s)|s, w)

where Ũϕ(b|s, w) is defined in (14).

Lemma B.3. For all s ∈ [s̃, s̃1], ∆̃(s, φ̃(s)) = 0.
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Proof. Since φ̃(s̃) = µ̃ and b̃(s̃) = α(s̃), Lemma B.2(c) implies that ∆̃(s̃, φ̃(s̃)) = 0. Suppose

there exists ŝ ∈ [s̃, s̃1) such that ∆̃(ŝ, φ̃(ŝ)) = 0 and for all ϵ > 0 (sufficiently small),

∆̃(ŝ + ϵ, φ̃(ŝ + ϵ)) < 0. (By definition of φ̃(s), ∆̃(s, φ̃(s)) cannot be strictly greater than

zero.) Thus, for s ∈ (ŝ, ŝ + ϵ), φ̃(s) = Φ(s|b̃, F̃ ) is the unique maximizer of ∆̃(s, ·) on the

interval [w,w]. There are two cases.

Case 1. Suppose φ̃(s) > w. Differentiating ∆̃(s, φ̃(s)), substituting for F̃ (s) and b̃′(s), and

applying the envelope theorem yields

d

ds
∆̃(s, φ̃(s)) = G(φ̃(s))

∫ 1

s

∂v(s, y)

∂s
h(y)dy −G(b̃(s))

∫ 1

s

∂v(s, y)

∂s
h(y)dy.

Recall that φ̃(s) > b̃(s). And so d∆̃(s, φ̃(s))/ds > 0 for s ∈ (ŝ, ŝ + ϵ). Since

∆̃(ŝ, φ̃(ŝ)) = 0, this implies ∆̃(s, φ̃(s)) > 0—a contradiction since ∆̃(s, φ̃(s)) is

nonpositive.

Case 2. Suppose φ̃(s) = w. By continuity, φ̃(ŝ) = w, which implies ∆̃(ŝ, w) = (b̃(ŝ) −
w)F̃ (ŝ) < 0 since b̃(ŝ) < w. Thus, we have derived a contradiction.

The above cases exhaust the possibilities; hence, for all s ∈ [s̃, s̃1), ∆̃(s, φ̃(s)) = 0. By

continuity, the preceding conclusion applies to the boundary s = s̃1 as well.

Lemma B.4. The function φ̃(s) is decreasing.

Proof. Let (ŝ, ŝ′) ⊂ [s̃, s̃1]. We know that ∆̃(ŝ, φ̃(ŝ)) = 0. Holding φ̃(ŝ) fixed,

∂

∂s
∆̃(s, φ̃(ŝ)) = G(φ̃(ŝ))

∫ 1

s

∂v(s, y)

∂s
h(y)dy −G(b̃(s))

∫ 1

s

∂v(s, y)

∂s
h(y)dy > 0.

This implies that ∆̃(ŝ′, φ̃(ŝ)) > 0. Thus, φ̃(ŝ′) must be the smallest value that solves

∆̃(ŝ′, φ̃(ŝ′)) = 0. Since ∆̃(s, ·) is strictly concave, φ̃(ŝ′) < φ̃(ŝ).

Lemma B.5. Suppose φ̃(s) > w. Then, ∂∆̃(s, w)/∂w|w=φ̃(s) = ∂Ũφ̃(b|s, w)/∂b|b=φ̃(s) ≥ 0.

Proof. The equality follows immediately from Remark B.5. That the derivative is greater

than zero when evaluated at φ̃(s) follows from the definition of φ̃(s). The value φ̃(s) is either

the smallest solution of φ &→ ∆̃(s,φ) or this function’s maximizer. As the function is concave,

its derivative must be nonnegative at φ̃(s) when φ̃(s) > w.

Remark B.6 (Definition of s̃′). Above we defined b̃, F̃ and φ̃ on the interval [s̃, s̃1]. If b̃(s̃1) < w

then the preceding argument can be repeated inductively with s̃1 replacing s̃, b̃(s̃1) replacing

37



α(s̃), φ̃(s̃1) replacing µ̃ = µ(s̃), and F̃ (s̃1) replacing H(s̃), etc. Let [s̃, s̃′] be the maximal

interval on which the functions b̃, F̃ and φ̃ can be defined inductively in this manner. The

construction stops only in the limit. As the functions b̃, F̃ and φ̃ are monotone, they can be

extended to s̃′ by taking the appropriate limit from the left.

Lemma B.6. Consider b̃ : [s̃, s̃′] → R and φ̃ : [s̃, s̃′] → [w,w] as defined in Remark B.6.

Then, b̃(s̃′) = w = φ̃(s̃′).

Proof. If b̃′(s̃′) = w, then ∆̃(s̃′, φ̃(s̃′)) = G(φ̃(s̃′))(1−H(s̃′))(η(s̃′, s̃′)−φ̃(s̃′))+(w−φ̃(s̃′))F̃ (s̃′).

Recalling the definition of φ̃(·) and that ∆̃(s̃′, φ̃(s̃′)) = 0, we conclude that φ̃(s̃′) = w.

B.2 Verification of Equilibrium

Let β be the strategy described in Theorem 2. We will verify that an agent does not have

an incentive to deviate to an alternative feasible bid in the range of β given that the other

agent bids according to β. In a type 1 canonical equilibrium, the proof of Theorem 1 applies.

In a type 2 canonical equilibrium, the range of β equals the range of b̄(·) and the argument

below applies.35 Finally, in a non-canonical equilibrium, the range of β is characterized by

four segments: (a) the function b̄(s) for s < s̃, (b) the function b̃(s) for s ∈ [s̃, s̃′), (c) the

function φ̃(s) for s ∈ [s̃, s̃′), and (d) the function b̄(s) for s > s̃. We divide our argument

accordingly. Writing s− and s+ for left- and right-hand limits, respectively, we observe that

b̄(s̃−) = b̃(s̃+) ≤ b̃(s̃′−) = w = φ̃(s̃′−) ≤ φ̃(s̃+) = b̄(s̃+).

Case 1. Consider a type-(s, w) bidder where s < s̃. This bidder’s expected payoff when

bidding β(s, w) = b̄(s) is U(b̄(s)|s, w) =
∫ s
0 (v(s, y)− b̄(s))h(y)dy.

(a) For all s < s̃, b̄(s) =α(s), the equilibrium bidding strategy in a first-price auction

without budget constraints. Therefore, this bidder has no profitable deviation to

any alternative bid b̄(x) where x < s̃ (Milgrom and Weber, 1982). By continuity,

the bid b̄(s̃−) is also not a profitable deviation.

(b) If this agent bids b̃(x) where x ∈ [s̃, s̃′), his payoff is

U(b̃(x)|s, w) =
∫ s̃

0

(v(s, y)− b̃(x))h(y)dy +

∫ x

s̃

(v(s, y)− b̃(x))G(φ̃(y))h(y)dy.

(B.2)

35Only the cases involving a deviation to b̄(x) where x ∈ [0, 1] are relevant.
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Differentiating with respect to x and substituting b̃′(x) as defined in (10a)

gives dU(b̃(x)|s, w)/dx = (v(s, x) − v(x, x))G(φ̃(x))h(x). Since s < s̃ ≤ x,

U(b̃(x)|s, w) ≤ U(b̄(s̃−)|s, w) ≤ U(b̄(s)|s, w). Therefore, the bid b̃(x) is not a

profitable deviation.

(c) If this agent bids φ̃(x) for x ∈ [s̃, s̃′), his payoff is

U(φ̃(x)|s, w) =
∫ s̃

0

(v(s, y)− φ̃(x))h(y)dy +

∫ x

s̃

(v(s, y)− φ̃(x))G(φ̃(y))h(y)dy

+G(φ̃(x))

∫ 1

x

(v(s, y)− φ̃(x))h(y)dy. (B.3)

Subtracting (B.2) from (B.3),

U(φ̃(x)|s, w)− U(b̃(x)|s, w)

= (b̃(x)− φ̃(x))

(

H(s̃) +

∫ x

s̃

G(φ̃(y))h(y)dy

)

+G(φ̃(x))

∫ 1

x

(v(s, y)− φ̃(x))h(y)dy

≤ (b̃(x)− φ̃(x))

(

H(s̃) +

∫ x

s̃

G(φ̃(y))h(y)dy

)

+G(φ̃(x))

∫ 1

x

(v(x, y)− φ̃(x))h(y)dy

= U(φ̃(x)|x, w)− U(b̃(x)|x, w) = 0.

The inequality follows from s ≤ x. The final equality follows from the def-

inition of φ̃. See (13), (14), and Remark B.5 above. Thus, U(φ̃(x)|s, w) ≤
U(b̃(x)|s, w) ≤ U(b̄(s)|s, w), where the final inequality is implied by sub-case

(b) above.

(d) If this agent bids b̄(x) where x ∈ (s̃, 1], his payoff is

U(b̄(x)|s, w) =
∫ x

0

(v(s, y)− b̄(x))h(y)dy +G(b̄(x))

∫ 1

x

(v(s, y)− b̄(x))h(y)dy.

(B.4)

Since s < x, by the same argument as in the proof of Theorem 1, we know

that U(b̄(x)|s, w) ≤ U(b̄(s̃+)|s, w). Since b̄(s̃+) = φ̃(s̃), the proof of sub-case (c)

implies that U(b̄(s̃+)|s, w) ≤ U(b̄(s)|s, w). Therefore, the bid b̄(x) where x > s̃

is not a profitable deviation.

Sub-cases (a)–(d) have shown that a bidder with value-signal s < s̃ cannot gain by

deviating to another bid in the range of β.
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Case 2. Consider a type-(s, w) bidder where s ∈ (s̃, s̃′) and w < φ̃(s). This bidder’s expected

payoff when bidding β(s, w) = b̃(s) is

U(b̃(s)|s, w) =
∫ s̃

0

(v(s, y)− b̃(s))h(y)dy +

∫ s

s̃

(v(s, y)− b̃(s))G(φ̃(y))h(y)dy.

Deviations to bids of (a) b̄(x) for x < s̃ or (b) b̃(x) for x ∈ [s̃, s̃′) can be shown not to

be profitable using an argument paralleling those presented in Cases 1(a) and 1(b)

and Theorem 1. Thus, we only consider in the two remaining sub-cases, (c) and (d)

(c) If this agent bids φ̃(x), x ∈ [s̃, s̃′), his payoff is given by (B.3). If x < s,

then φ̃(x) > w. Hence, a deviation into this range of bids is not feasible for

this bidder. Conversely, if x > s, then the argument in Case 1(c) establishes

that U(φ̃(x)|s, w) ≤ U(b̃(x)|s, w). Noting the preceding paragraph, we see that

U(φ̃(x)|s, w) ≤ U(b̃(s)|s, w).

(d) Since w < φ̃(s) ≤ b̄(s̃+), the bid b̄(x) where x > s̃ is not feasible.

Case 3. Consider a type-(s, w) bidder where s ∈ (s̃, 1] and w ∈ [φ̃(s), φ̃(s̃+)]. There exists

sw ∈ [s̃, s] such that β(s, w) = φ̃(sw) = w and this bidder’s expected payoff is

U(φ̃(sw)|s, w) =
∫ s̃

0

(v(s, y)− φ̃(sw))h(y)dy +

∫ sw

s̃

(v(s, y)− φ̃(sw))G(φ̃(y))h(y)dy

+G(φ̃(sw))

∫ 1

sw

(v(s, y)− φ̃(sw))h(y)dy. (B.5)

First, we consider case (c). Suppose this bidder places the bid φ̃(x) where x ∈
[sw, s]. The agent’s expected payoff at this bid is given by (B.5) with x replacing

sw. Consider the derivative,

d

dx
U(φ̃(x)|s, w)

= φ̃′(x)

[

g(φ̃(x))(1−H(x))

(

η(s, x)− φ̃(x)−
G(φ̃(x))

g(φ̃(x))
−

H(s̃) +
∫ x
s̃ G(φ̃(y))h(y)dy

g(φ̃(x))(1−H(x))

)]

≤ φ̃′(x)

[

g(φ̃(x))(1−H(x))

(

η(x, x)− φ̃(x)−
G(φ̃(x))

g(φ̃(x))
−

H(s̃) +
∫ x
s̃ G(φ̃(y))h(y)dy

g(φ̃(x))(1−H(x))

)]

︸ ︷︷ ︸

∂
∂b

Ũφ̃(b|x,w)|
b=φ̃(x)

≤ 0.
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The first inequality follows from φ̃′(x) ≤ 0 and η(s, x) ≥ η(x, x). The second

inequality follows from Lemma B.5, which shows that the term in square brackets

is nonnegative. Thus, each of these bids is dominated by φ̃(sw) = w.

If s ≤ s̃′, then U(φ̃(sw)|s, w) ≥ U(φ̃(s)|s, w) = U(b̃(s)|s, w) and the same argument

as in Case 2 shows that this bidder has no profitable deviation to any bid below

φ̃(s) as well.

Similarly, if s ≥ s̃′, then U(φ̃(sw)|s, w) ≥ U(w|s, w). Verifying that bids below

b̃(s̃′) = w are not profitable deviations proceeds similarly to the argument in Case

1, sub-cases (a) and (b). A deviation to the bid b̄(x) where x > s̃ is not feasible.

Case 4. Consider a type-(s, w) bidder where s ≥ s̃ and w ≥ φ̃(s̃′−).

The same argument as in the proof of Theorem 1 shows that this agent has no

profitable deviation to any bid in the range of b̄(x) for x ≥ s̃. In particular, this

implies that he prefers β(s, w) to the bid b̄(s̃−) = φ̃(s̃). And so, the same argument

as in Case 3 above shows that he cannot gain by deviating to a bid less than φ̃(s̃).

The preceding cases have shown that a type (s, w) bidder does not have a feasible, profitable

deviation from β(s, w) given that the other bidder also adopts this strategy.

C Proof of Theorem 3

The proof of Theorem 3 follows a standard argument, building on Athey (2001) and Reny

and Zamir (2004). We rely on Reny (2011) to confirm the existence of an equilibrium in

≥i-nondecreasing strategies in a finite-action setting. This argument is similar to his study

of a multi-unit auction. To simplify notation, in this appendix we let g(w) :=
∏

i gi(wi) be

the joint p.f.d. of agents’ budgets. Abusing notation, let g(w−i) :=
∏

j≠i gj(wj). We write

θi = (si, wi) for agent i’s type and the joint p.d.f. of agents’ types is f(θ) := h(s)g(w).

Define ϕi(bi, b−i) as the probability that bidder i wins the auction with bid bi given that

the profile of others’ bids is b−i. If bi is the unique high bid, ϕi(bi, b−i) = 1. If bi is strictly

less than the highest bid or bi = ℓi, ϕi(bi, b−i) = 0. In the absence of ties, when others’

strategies are β−i, bidder i’s expected payoff at bid bi given θi = (si, wi) is

Ui(bi, β−i|θi) = ui(wi) +

∫

Θ−i

ϕi(bi, β−i(θ−i))ui(s, wi, bi)f(θ−i|θi)dθ−i.
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Bidder i’s ex ante payoff is Ui(βi, β−i) = E[Ui(βi(θi), β−i|θi)]. The profile β∗ = (β∗
i , β

∗
−i) is

a Nash equilibrium if for every i, Ui(β∗
i , β

∗
−i) ≥ Ui(βi, β∗

−i) for all admissible strategies βi.

When convenient, we use capital letters to refer to signals/types as random variables.

The following are preliminary lemmas. Lemma C.1 shows that ui(si, s−i, wi, bi) := ūi(si, s−i, wi, bi)−
ui(wi) is ≥i-nondecreasing. Lemma C.2 verifies a single crossing condition.

Lemma C.1. Let ri ≤ bi ≤ w′
i. If (si, wi) ≥i (s′i, w

′
i), then ui(si, s−i, wi, bi) ≥ ui(s′i, s−i, w′

i, bi).

Proof. Reny (2011) provides a similar argument in the context of a multi-unit auction with

risk averse bidders. Since si − s′i ≥ ξi(wi − w′
i) where ξi =

(

sup ∂ui

∂wi
− inf ∂ūi

∂wi

)

/ inf ∂ūi

∂si
, we

can establish the following inequalities:

ūi(si, s−i, wi, bi)− ūi(s
′
i, s−i, w

′
i, bi) ≥

[

inf
∂ūi

∂si

]

(si − s′i) +

[

inf
∂ūi

∂wi

]

(wi − w′
i)

≥
[

inf
∂ūi

∂si

]

ξi(wi − w′
i) +

[

inf
∂ūi

∂wi

]

(wi − w′
i)

≥
[

sup
∂ui

∂wi

]

(wi − w′
i)

≥ ui(wi)− ui(w
′
i).

Rearranging the final inequality gives the desired result.

Lemma C.2. Let β−i be a profile of ≥i-nondecreasing strategies for bidders j ≠ i. Let

θi ≥i θ′i and suppose the bids bi > b′i tie with probability zero with the bids of the other

agents.

(a) Ui(bi, β−i|θ′i)− Ui(b′i, β−i|θ′i) ≥ 0 =⇒ Ui(bi, β−i|θi)− Ui(b′i, β−i|θi) ≥ 0.

(b) Ui(bi, β−i|θi)− Ui(b′i, β−i|θi) ≤ 0 =⇒ Ui(bi, β−i|θ′i)− Ui(b′i, β−i|θ′i) ≤ 0.

Proof. We prove part (a). Part (b) follows similarly. It is sufficient to show that Ui(bi, β−i|θ′i)−
Ui(b′i, β−i|θ′i) ≤ Ui(bi, β−i|θi)− Ui(b′i, β−i|θi). First, define the following subsets of Θ−i:

A′ = {(s−i, w−i) | max
j≠i

βj(sj , wj) ≤ b′i},

A = {(s−i, w−i) | max
j≠i

βj(sj , wj) ≤ bi},

Ã = A \ A′,

Ã+ = {(s−i, w−i) ∈ Ã | ui(si, s−i, wi, bi) ≥ 0},

Ã− = {(s−i, w−i) ∈ Ã | ui(si, s−i, wi, bi) < 0}.
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Then,

0 ≤ Ui(bi, β−i|θ′i)− Ui(b
′
i, β−i|θ′i)

=

∫

A′

(

ui(s
′
i, s−i, w

′
i, bi)− ui(s

′
i, s−i, w

′
i, b

′
i)
)

h(s−i|s′i)g(w−i)dw−ids−i

︸ ︷︷ ︸

[1]

+

∫

Ã−

ui(s
′
i, s−i, w

′
i, bi)h(s−i|s′i)g(w−i)dw−ids−i

︸ ︷︷ ︸

[2]

+

∫

Ã+

ui(s
′
i, s−i, w

′
i, bi)h(s−i|s′i)g(w−i)dw−ids−i

︸ ︷︷ ︸

[3]

.

Consider term [1]. By assumption ui(si, s−i, wi, bi)− ui(si, s−i, wi, b′i) is nondecreasing in s−i

and negative for all (s−i, w−i) ∈ A′. Since βj is nondecreasing in sj, (s−i, w−i) ∈ A′ =⇒
(s′−i, w−i) ∈ A′ ∀ s′−i ≤ s−i. Thus, if 1A′(s−i, w−i) is the indicator function for the set A′,

the function

χ(s−i, w−i|θi) :=
(

ui(si, s−i, wi, bi)− ui(si, s−i, wi, b
′
i)
)

1A′(s−i, w−i)

is nondecreasing in s−i when w−i is fixed. Hence,

∫

A′

(

ui(s
′
i, s−i, w

′
i, bi)− ui(s

′
i, s−i, w

′
i, b

′
i)
)

h(s−i|s′i)g(w−i)dw−ids−i

= E

[

χ(S−i,W−i|θ′i) | θ′i
]

= E

[

E [χ(S−i,W−i|θ′i)|W−i = w−i] | θ′i
]

≤ E

[

E [χ(S−i,W−i|θ′i)|W−i = w−i] | θi
]

≤ E

[

E [χ(S−i,W−i|θi)|W−i = w−i] | θi
]

=

∫

A′

(

ui(si, s−i, wi, bi)− ui(si, s−i, wi, b
′
i)
)

h(s−i|si)g(w−i)dw−ids−i.
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Next, consider term [2]. First,

∫

Ã−

ui(s
′
i, s−i, w

′
i, bi)h(s−i|s′i)g(w−i)dw−ids−i

=

∫

Ã−

ui(s
′
i, s−i, w

′
i, bi)

h(s−i|s′i)
H(s−i|s′i)

H(s−i|s′i)g(w−i)dw−ids−i

≤
∫

Ã−

ui(si, s−i, wi, bi)
h(s−i|si)
H(s−i|si)

H(s−i|s′i)g(w−i)dw−ids−i

≤
∫

Ã−

ui(si, s−i, wi, bi)h(s−i|si)g(w−i)dw−ids−i.

The second inequality follows from u(si, s−i, wi, bi) ≤ 0 and H(s−i|s′i)/H(s−i|si) ≥ 1.

Similar reasoning applies to term [3]:

∫

Ã+

ui(s
′
i, s−i, w

′
i, bi)h(s−i|s′i)g(w−i)dw−ids−i

=

∫

Ã+

max{ui(s
′
i, s−i, w

′
i, bi), 0}h(s−i|s′i)g(w−i)dw−ids−i

=

∫

Ã+

max{ui(s
′
i, s−i, w

′
i, bi), 0}

h(s−i|s′i)
H̄(s−i|s′i)

H̄(s−i|s′i)g(w−i)dw−ids−i

≤
∫

Ã+

max{ui(si, s−i, wi, bi), 0}
h(s−i|si)
H̄(s−i|si)

H̄(s−i|s′i)g(w−i)dw−ids−i

≤
∫

Ã+

max{ui(si, s−i, wi, bi), 0}h(s−i|si)g(w−i)dw−ids−i

≤
∫

Ã+

ui(si, s−i, wi, bi)h(s−i|si)g(w−i)dw−ids−i.

The second inequality follows since H̄(s−i|s′i)/H̄(s−i|si) ≤ 1. And, the third is true be-

cause ui(si, s−i, wi, bi) ≥ 0. Together, the preceding cases imply that 0 ≤ Ui(bi, β−i|θ′i) −
Ui(b′i, β−i|θ′i) ≤ Ui(bi, β−i|θi)− Ui(b′i, β−i|θi).

Next, consider a finite-action variant of the model incorporating three modifications.

First, restrict each agent’s set of admissible bids to a finite set Bi ⊂ {ℓi} ∪ [ri,∞) where

ri ≥ 0 and ℓi < ri. Assume that ℓi ∈ Bi and ∀i ≠ j, Bi ∩ Bj = ∅. Therefore, relevant

ties among bidders are not possible. Second, modify each bidder’s utility function so that

he incurs a penalty if he bids more than this private budget irrespective of the auction’s

outcome.36 Suppose that this penalty is sufficiently large to ensure that all bids exceeding

36Che and Gale (1998) suggest using a penalty to ensure adherence to the budget constraint. As a modeling
device it ensures that each agent’s strategy set is independent of his type.

44



wi are strictly dominated by the bid ℓi for a type-(si, wi) bidder. Third, let ϵ̃ > 0 be small

and restrict each agent with a value-signal of si ≤ si + ϵ̃ to bid ℓi. This technical restriction

is used by Athey (2001) and Reny and Zamir (2004) and its role here is the same. (Similarly,

below we let ϵ̃ → 0.) Among other considerations, it ensures that all bids bi > ℓi can win

the auction with positive probability. All bids above B̄ are now strictly dominated by the

bid ℓi.

In this modified game, let ρi(θi|β−i) be the set of bidder i’s best-response bids when his

type is θi and others follow the strategy profile β−i. Since Bi is finite, ρi(θi|β−i) is not empty.

It is also bounded, max ρi(θi|β−i) ≤ max{B̄, wi}.

Lemma C.3. Consider the modified auction game described above. Fix a ≥i-nondecreasing

strategy profile β−i. The set ρi(θi|β−i) is nondecreasing in the strong set order.

Proof. Let θi ≥i θ′i and let bi ∈ ρi(θi|β−i) and b′i ∈ ρi(θ′i|β−i). If bi ≥ b′i for all such bids, we

are done. Otherwise, suppose b′i > bi. Since wi ≥ w′
i ≥ b′i > bi, both bids are feasible when

a bidder has type θi or θ′i. By Lemma C.2,

0 ≤ Ui(b
′
i, β−i|θ′i)− Ui(bi, β−i|θ′i) ≤ Ui(b

′
i, β−i|θi)− Ui(bi, β−i|θi) =⇒ b′i ∈ ρi(θi|β−i),

and

0 ≤ Ui(bi, β−i|θi)− Ui(b
′
i, β−i|θi) ≤ Ui(bi, β−i|θ′i)− Ui(b

′
i, β−i|θ′i) =⇒ bi ∈ ρi(θ

′
i|β−i).

Hence, ρi(θi|β−i) is nondecreasing.

Remark C.1. As the interim best reply correspondence is nondecreasing, player i has at least

one nondecreasing best reply when others are following nondecreasing strategies (Topkis,

1998, Theorem 2.8.3).

Lemma C.4. There exists an equilibrium in ≥i-nondecreasing strategies in the modified

auction game described above.

Proof. The conclusion follows from Reny (2011) and specifically his Proposition 4.4, Theo-

rems 4.1 and 4.3, and Remark 1. His conditions G.1–G.6 are satisfied by our game and are

easy to verify.

Lemma C.5 (Theorem 3(a)). Consider the modified auction, where ϵ̃ = 0. There exists an

equilibrium in ≥i-nondecreasing strategies.
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Proof. Our proof builds on similar arguments provided by Athey (2001) and Reny and Zamir

(2004), among others. The argument is simpler as ties are explicitly precluded.

Consider a sequence of auctions indexed by k where the measure of agents constrained

to bid ℓi becomes arbitrarily small, i.e. ϵ̃k → 0. Let βk be the corresponding profile of

equilibrium strategies. As each βk
i is ≥i-monotone there exists a strategy βi such that

βk
i (θi) → βi(θi) for all i and almost every θi. For each i, βi is ≥i-monotone. We will verify

that β is an equilibrium when ϵ̃ = 0.

Suppose the contrary and that bidder i has a profitable deviation from βi to β̂i when

β−i is the strategy profile of the other bidders. Thus, Ui(β̂i, β−i) − Ui(βi, β−i) = ∆ > 0.

Since βk
i (θi) → βi(θi) point-wise, this convergence is uniform except possibly on a set of

arbitrarily small measure (Egorov’s Theorem). Choose ε > 0 sufficiently small such that

2ε sup ui(s, wi, b) < ∆/3. Let Θε be the set of measure (at most) ε where convergence need

not be uniform. Next, consider

Ui(β
k
i (θi), β

k
−i|θi)− Ui(βi(θi), β−i|θi)

=

∫

Θ−i\Θε
−i

ϕi(β
k
i (θi), β

k
−i(θ−i))ui(s, wi, β

k
i (θi))f(θ−i|θi)dθ−i

−
∫

Θ−i\Θε
−i

ϕi(βi(θi), β−i(θ−i))ui(s, wi, βi(θi))f(θ−i|θi)dθ−i

+

∫

Θε
−i

ϕi(β
k
i (θi), β

k
−i(θ−i))ui(s, wi, β

k
i (θi))f(θ−i|θi)dθ−i

−
∫

Θε
−i

ϕi(βi(θi), β−i(θ−i))ui(s, wi, βi(θi))f(θ−i|θi)dθ−i

<

∫

Θ−i\Θε
−i

[

ϕi(βk
i (θi), β

k
−i(θ−i))ui(s, wi, βk

i (θi))

−ϕi(βi(θi), β−i(θ−i))ui(s, wi, βi(θi))

]

f(θ−i|θi)dθ−i +∆/3.

On the set where convergence is uniform, Θ−i \Θε
−i, for k sufficiently large βk = β since the

range of βk is a finite set. Thus, for k sufficiently large, Ui(βk
i (θi), β

k
−i|θi)−Ui(βi(θi), β−i|θi) <

0+∆/3. By a similar argument, Ui(β̂i(θi), β−i|θi)−Ui(β̂i(θi), βk
−i|θi) < ∆/3 for k sufficiently

large. But, this implies that for k sufficiently large,

∆ =
[

Ui(β̂i, β−i)− Ui(β̂i, β
k
−i)
]

+
[

Ui(β̂i, β
k
−i)− Ui(β

k
i , β

k
−i)
]

+
[

Ui(β
k
i , β

k
−i)− Ui(βi, β−i)

]

< ∆/3 + Ui(β̂i, β
k
−i)− Ui(β

k
i , β

k
−i)

︸ ︷︷ ︸

≤0

+∆/3 ≤ 2∆/3,
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which is a contradiction. (The middle term is nonpositive since βk
i is a best response bid.)

To prove Theorem 3(b) we consider a sequence of discretized auctions with increasingly

finer sets of admissible bids. Athey (2001) and Reny and Zamir (2004), among others, also

consider such sequences. Specifically suppose that in auction k, bidder i’s set of feasible bids

is Bk
i = {ℓi} ∪

(

[ri, B̄] ∩ Pk
i

)

where Pk
i = {−εi +m/2k | m = 1, 2, . . .}. {εi} are small fixed

constants ensuring that Pk
i ∩Pk

j = ∅ for all i, j, k. Contemporaneously, take ϵ̃k → 0 as well.

Let βk be a corresponding sequence of equilibria.

Lemma C.6 (Theorem 3(b)). Suppose bidders have private values, Bi = {ℓi} ∪ [ri,∞),

and ties among high bidders are resolved with a uniform randomization. There exists an

equilibrium in ≥i-nondecreasing strategies.

Proof. This is a consequence of better-reply security (Reny, 1999); see especially Reny (2011,

Corollary 5.2), whom we follow, and also Jackson and Swinkels (2005). Briefly, for k very

large βk is an ϵ-equilibrium of the first-price auction where all bidders can place bids from

Bi. Given any ≥i-nondecreasing strategy profile β−i, bidder i can approximate the payoff he

would receive from the (feasible) strategy βi : Θ → Bi. Specifically, suppose bidder i bids

β̃k
i (θi) =

⎧

⎨

⎩

ℓi wi < ri +
1
k

max
{

b ∈ Bk
i | b < min{βi(θi) + 1

2k , wi}
}

wi ≥ ri +
1
k

.

As k → ∞, the ex ante loss to bidder i from using β̃k
i versus βi becomes arbitrarily small

and this conclusion holds versus all strategies that the other bidders may follow.
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A Examples

This section presents calculations pertaining to Examples 1, 3, and 4 from the main text.

A.1 Example 1

Noting symmetry, we henceforth suppress bidder subscripts. Let H : [0, s] → [0, 1] be the

cumulative distribution function (c.d.f.) of value signals and h(s) its density. With proba-

bility p ∈ (0, 1), a bidder’s budget is w and 0 < w < s−
∫ s
0 H(z)dz. With probability 1− p,

it is w > s−
∫ s

0 H(z)dz.

Remark A.1. Example 1 corresponds to the following parameters: s = 1, H(s) = s, w = 1/4,

w = 3/4, and p = 1/2.

Remark A.2. Define s′ ∈ (w, s) as the unique value such that w = s′ −
∫ s′

0 (H(z)/H(s′))dz.

Lemmas A.1 and A.2 define the values s̃ and s̃′. These are the points of discontinuity in

the bidding strategy introduced in (A.1) below.

Lemma A.1. There exists a unique s̃ ∈ (w, s′) such that
∫ s̃
0 H(z)dz = [p+(1−p)H(s̃)](s̃−w).

Proof. Let τ(s) := [p+(1−p)H(s)](s−w)−
∫ s
0 H(z)dz. It suffices to show that τ(s) crosses

zero exactly once. When s = w, τ(w) < 0. If instead s = s′, τ(s′) = [p + (1− p)H(s′)](s′ −
∗John F. Kennedy School of Government, Harvard University, 79 JFK Street, Cambridge MA 02138,

USA. E-mail: maciej_kotowski@hks.harvard.edu
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w) − H(s′)(s′ − w) > 0. Thus, there exists s̃ ∈ (w, s′) such that τ(s̃) = 0. Moreover,

τ ′(s) = p(1 − H(s)) + (1 − p)(s − w)h(s) > 0 for all w < s < s. Thus, τ(s) is strictly

increasing and s̃ is unique.

Lemma A.2. Define s̃ as in Lemma A.1. There exists a unique s̃′ ∈ (s̃, s) such that

∫ s̃

0

H(z)dz +

∫ s̃′

s̃

[pH(z) + (1− p)H(s̃)]dz =

[

(1− p)H(s̃) + p
1 +H(s̃′)

2

]

(s̃′ − w).

Proof. Let

τ(s) :=

∫ s̃

0

H(z)dz +

∫ s

s̃

[(1− p)H(s̃) + pH(z)]dz, and

χ(s) :=

[

(1− p)H(s̃) + p
1 +H(s)

2

]

(s− w).

At s = s̃,

τ(s̃) =

∫ s̃

0

H(z)dz

= [p+ (1− p)H(s̃)](s̃− w)

>

[

(1− p)H(s̃) + p
1 +H(s̃)

2

]

(s̃− w) = χ(s̃).

Instead, if s = s,

τ(s) = [p+ (1− p)H(s̃)](s̃− w) +

∫ s

s̃

[(1− p)H(s̃) + pH(z)]dz

< [p+ (1− p)H(s̃)](s̃− w) + [p+ (1− p)H(s̃)](s− s̃)

= [p+ (1− p)H(s̃)](s− w) = χ(s).

Thus, there exists s̃′ ∈ (s̃, s) such that τ(s̃′) = χ(s̃′). To verify uniqueness, note that

τ ′(s) = (1− p)H(s̃) + pH(s) and χ′(s) = (1 − p)H(s̃) + p(1 +H(s))/2 + psh(s)/2. Hence,

τ ′(s) < χ′(s) and s %→ τ(s)− χ(s) is strictly decreasing. Thus, s̃′ is unique.

Proposition A.1. Define s̃ and s̃′ as in Lemmas A.1 and A.2. The strategy profile where
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all bidders follow the strategy

β(s,w) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

s−
1

H(s)

∫ s

0
H(z)dz if s ∈ [0, s̃] & w ∈ {w,w}

s−
∫ s̃
0 H(z)dz +

∫ s
s̃ [p+ (1− p)H(z)]dz

p+ (1− p)H(s)
if s ∈ (s̃, s] & w = w

s−
∫ s̃
0 H(z)dz +

∫ s
s̃ [pH(z) + (1− p)H(s̃)]dz

pH(s) + (1− p)H(s̃)
if s ∈ (s̃, s̃′] & w = w

w if s ∈ (s̃′, s] & w = w

(A.1)

is a symmetric Bayesian-Nash equilibrium.

Proof. The proof mirrors analogous arguments in the absence of budget constraints (for

example, see Krishna, 2002, pp. 17–18). To simplify notation, let β̄(s) := β(s, w) and

β(s) := β(s, w). Let U(b|s, w) be the expected utility of bidder i of type (s, w) when he bids

b and the other bidder follows β(s, w). We proceed to rule out deviations by each type of

bidder. It is sufficient to rule out deviations to other bids in the range of β(s, w).

Case 1. Consider bidder i of type s ∈ [0, s̃] with budget w. Given (A.1), U(β̄(s)|s, w) =
∫ s

0 H(z)dz. There are four kinds of alternative bids to consider.

(a) A deviation to β̄(x), x ∈ [0, s̃], is unprofitable. The standard argument con-

firming the equilibrium in a symmetric, first-price, sealed-bid auction applies.

(b) A deviation to β(x), x ∈ (s̃, s̃′], yields a payoff of U(β(x)|s, w) = [(1−p)H(s̃)+

pH(x)](s− x) +
∫ s̃

0 H(z)dz +
∫ x

s̃ [(1− p)H(s̃) + pH(z)]dz. The net gain is

U(β(x)|s, w)− U(β̄(s)|s, w)

= [(1− p)H(s̃) + pH(x)](s− x) +

∫ s̃

s

H(z)dz +

∫ x

s̃

[(1− p)H(s̃) + pH(z)]dz

=

∫ s̃

s

H(z)dz + [(1− p)H(s̃) + pH(x)](s− s̃) + pH(x)(s̃− x) +

∫ x

s̃

pH(z)dz

≤ H(s̃)(s̃− s) + [(1− p)H(s̃) + pH(s̃)](s− s̃) + pH(x)(s̃− x) + pH(x)(x− s̃) = 0.

Thus, U(β(x)|s, w) ≤ U(β̄(s)|s, w).

(c) Given β, the bid w is placed with positive probability by bidder j. If s ≤ w,

bidding w cannot benefit bidder i. Else, if s > w, the bid w + ϵ gives bidder i

a strictly higher payoff than w. Thus, sub-case (d) immediately below applies.
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(d) Consider a deviation to a bid β̄(x), x ∈ (s̃, s]. Bidder i’s expected payoff is

U(β̄(x)|s, w) = [p+ (1− p)H(x)](s− x) +
∫ s̃

0 H(z)dz +
∫ x

s̃ [p+ (1− p)H(z)]dz.

The net gain is

U(β̄(x)|s, w)− U(β̄(s)|s, w)

=

∫ s̃

s

H(z)dz + [p+ (1− p)H(x)](s− s̃)

+ [p+ (1− p)H(x)](s̃− x) +

∫ x

s̃

[p+ (1− p)H(z)]dz

≤ H(s̃)(s̃− s) + [p+ (1− p)H(x)](s− s̃) +

∫ x

s̃

(1− p)[H(z)−H(x)]dz ≤ 0.

The final inequality follows from x ≥ s̃ ≥ s. Thus, U(β̄(x)|s, w) ≤ U(β̄(s)|s, w).

Case 2. Consider bidder i of type s ∈ (s̃, s] with budget w = w. If this bidder follows the

prescribed strategy, U(β̄(s)|s, w) =
∫ s̃
0 H(z)dz +

∫ s
s̃ [p + (1 − p)H(z)]dz. There are

four kinds of alternative bids to consider.

(a) A deviation to β̄(x), x ∈ [0, s̃], yields a payoff of U(β̄(x)|s, w) = H(x)(s−x) +
∫ x
0 H(z)dz. The net gain is

U(β̄(x)|s, w)− U(β̄(s)|s, w)

= H(x)(s− x) +

∫ x

0

H(z)dz −
∫ s̃

0

H(z)dz −
∫ s

s̃

[p+ (1− p)H(z)]dz

= H(x)(s̃− x) +

∫ x

s̃

H(z)dz +H(x)(s− s̃)−
∫ s

s̃

[p+ (1− p)H(z)]dz

≤
∫ s̃

x

[H(x)−H(z)]dz +H(x)(s− s̃)− [p + (1− p)H(s̃)](s− s̃) ≤ 0.

Therefore, this deviation is not profitable.

(b) A deviation to β(x), x ∈ [s̃, s̃′], yields a payoff of U(β(x)|s, w) = [(1−p)H(s̃)+
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pH(x)](s− x) +
∫ s̃
0 H(z)dz +

∫ x
s̃ [(1− p)H(s̃) + pH(z)]dz. The net gain is

U(β(x)|s, w)− U(β̄(s)|s, w)

= [(1− p)H(s̃) + pH(x)](s− x) +

∫ x

s̃

[(1− p)H(s̃) + pH(z)]dz

−
∫ s

s̃

[p+ (1− p)H(z)]dz

= [(1− p)H(s̃) + pH(x)](s̃− x) +

∫ x

s̃

[(1− p)H(s̃) + pH(z)]dz

+ [(1− p)H(s̃) + pH(x)](s− s̃)−
∫ s

s̃

[p+ (1− p)H(z)]dz

≤
∫ x

s̃

p[H(z)−H(x)]dz

+ [(1− p)H(s̃) + pH(x)](s− s̃)− [p+ (1− p)H(s̃)](s− s̃)

=

∫ x

s̃

p[H(z)−H(x)]dz + p(s− s̃)(H(x)− 1) ≤ 0.

Therefore, this deviation is not profitable.

(c) Since w < s̃ < s, the bidder can strictly improve upon the bid w by bidding ϵ

more. Thus, the conclusion from sub-case (d) immediately below applies.

(d) A deviation to β̄(x), x ∈ (s̃, s], yields a payoff of U(β̄(x)|s, w) = [p + (1 −
p)H(x)](s− x) +

∫ s̃
0 H(z)dz +

∫ x
s̃ [p+ (1− p)H(z)]dz. The net gain is

U(β̄(x)|s, w)− U(β̄(s)|s, w) = [p+ (1− p)H(x)](s− x) +

∫ x

s

[p+ (1− p)H(z)]dz

=

∫ x

s

(1− p)[H(z)−H(x)]dz ≤ 0.

Therefore, this deviation is not profitable.

Case 3. Consider bidder i of type s ∈ [0, s̃] with budget w = w. By identical argu-

ments to those presented above, this bidder will not have a profitable deviation

to any bid, except possibly w. This deviation yields a payoff of U(w|s, w) =
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[(1− p)H(s̃) + p(1 +H(s̃′))/2] (s− w). The net gain is

U(w|s, w)− U(β(s)|s, w)

=

[

(1− p)H(s̃) + p
1 +H(s̃′)

2

]

(s− s̃′)

+

[

(1− p)H(s̃) + p
1 +H(s̃′)

2

]

(s̃′ − w)−
∫ s

0

H(z)dz

=

[

(1− p)H(s̃) + p
1 +H(s̃′)

2

]

(s− s̃′) +

∫ s̃

s

H(z)dz +

∫ s̃′

s̃

[(1− p)H(s̃) + pH(z)]dz

=

[

(1− p)H(s̃) + p
1 +H(s̃′)

2

]

(s− s̃) +

∫ s̃

s

H(z)dz

+

[

(1− p)H(s̃) + p
1 +H(s̃′)

2

]

(s̃− s̃′) +

∫ s̃′

s̃

[(1− p)H(s̃) + pH(z)]dz ≤ 0.

Therefore, this deviation is not profitable.

Case 4. Consider bidder i of type s ∈ (s̃, s̃′] with budget w = w. If this bidder follows the

prescribed strategy, U(β(s)|s, w) =
∫ s̃
0 H(z)dz +

∫ s
s̃ [pH(z) + (1− p)H(s̃)]dz.

(a) A deviation to β(x), x ∈ [0, s̃], yields a payoff of U(β(x)|s, w) = H(x)(s−x) +
∫ x

0 H(z)dz. The net gain is

U(β(x)|s, w)− U(β(s)|s, w)

= H(x)(s− x) +

∫ x

0

H(z)dz −
∫ s̃

0

H(z)dz −
∫ s

s̃

[(1− p)H(s̃) + pH(z)]dz

= H(x)(s̃− x) +

∫ x

s̃

H(z)dz +H(x)(s− s̃)−
∫ s

s̃

[(1− p)H(s̃) + pH(z)]dz

≤ 0 +H(x)(s− s̃)− [(1− p)H(s̃) + pH(s̃)](s− s̃)

= [H(x)−H(s̃)](s− s̃) ≤ 0.

Therefore, this deviation is not profitable.

(b) A deviation to β(x), x ∈ [s̃, s̃′], yields a payoff of U(β(x)|s, w) = [(1−p)H(s̃)+
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pH(x)](s− x) +
∫ s̃
0 H(z)dz +

∫ x
s̃ [(1− p)H(s̃) + pH(z)]dz. The net gain is

U(β(x)|s, w)− U(β(s)|s, w)

= [(1− p)H(s̃) + pH(x)](s− x) +

∫ x

s

[(1− p)H(s̃) + pH(z)]dz

=

∫ x

s

p[H(z)−H(x)]dz ≤ 0.

Therefore, this deviation is not profitable.

(c) A deviation to w can be ruled out by an argument similar to that from case 3.

Case 5. Consider bidder i of type s ∈ (s̃′, s] with budget w = w. If this bidder follows the

prescribed strategy, U(β(s)|s, w) = [(1− p)H(s̃) + p(1 +H(s̃′))/2] (s− w).

(a) A deviation to β(x), x ∈ [0, s̃], yields a payoff of U(β(x)|s, w) = H(x)(s−x) +
∫ x
0 H(z)dz. The net gain is

U(β(x)|s, w)− U(β(s)|s, w)

= H(x)(s− x) +

∫ x

0

H(z)dz −
[

(1− p)H(s̃) + p
1 +H(s̃′)

2

]

(s− w)

= H(x)(s− x) +

∫ x

0

H(z)dz −
∫ s̃

0

H(z)dz −
∫ s̃′

s̃

[(1− p)H(s̃) + pH(z)]dz

−
[

(1− p)H(s̃) + p
1 +H(s̃′)

2

]

(s− s̃′)

= H(x)(s̃− x) +

∫ x

s̃

H(z)dz +H(x)(s̃′ − s̃)−
∫ s̃′

s̃

[(1− p)H(s̃) + pH(z)]dz

+H(x)(s− s̃′)−
[

(1− p)H(s̃) + p
1 +H(s̃′)

2

]

(s− s̃′) ≤ 0.

Therefore, this deviation is not profitable.

(b) A deviation to β(x), x ∈ [s̃, s̃′], can be ruled out with reasoning similar to the

preceding case.

The preceding cases have ruled out all possible deviations, thus completing the proof.
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A.2 Example 3

There are two ex ante symmetric bidders. Each bidder’s valuation is v(si, sj) = si + sj .

Each bidder’s value-signal is independently distributed according to the c.d.f. H(s) =
√
s on

[0, 1]. Ties are resolved with a uniform randomization. In the absence of budget constraints,

α(s) = 2s/3 is the equilibrium bidding strategy (Milgrom and Weber, 1982).

Proposition A.2. Consider the auction described above. Additionally, suppose both bidders

face a common budget constraint of 1/3.

(a) There exists an equilibrium where each bidder adopts the bidding strategy

βA(s) =

⎧

⎨

⎩

2s/3 if s ≤ 1/9

1/3 if s > 1/9
.

(b) There exists an equilibrium where each bidder adopts the bidding strategy βB(s) = 1/3.

Proof. (a) Suppose bidder j adopts the strategy βA(s). Clearly, all bids in the range

(2/27, 1/3) are dominated by the bid βA(1/9) = 2/27. Thus, to confirm that βA is an

equilibrium it is sufficient to rule out potential deviations to other bids in the range of βA.

Consider bidder i with value-signal s ≤ 1/9. If he bids βA(s) = 2s/3, his expected payoff

is (2/3)s3/2. Since 2s/3 is the symmetric equilibrium strategy in the absence of budget

constraints, bidder i has no profitable deviation to any bid in the range [0, 2/27]. If he bids

1/3, his expected payoff is

√

1

9

(

s+ E

[

Sj |Sj ≤
1

9

]

−
1

3

)

+
1−

√

1/9

2

(

s+ E

[

Sj|Sj >
1

9

]

−
1

3

)

=
2

9

(

3s−
2

9

)

.

For all s ≤ 1/9, (2/9)(3s−2/9) ≤ (2/3)s3/2. Thus, βA(s) is an optimal bid for bidder i when

s ≤ 1/9.

Now consider bidder i with value signal s > 1/9. If he bids βA(x) = 2x/3, for some x ≤
1/9, his expected payoff is

√
x (s+ E[Sj |Sj ≤ x]− 2x/3) =

√
x(s− x/3) ≤ (1/3)(s− 1/27).

Clearly, (1/3)(s − 1/27) ≤ (2/9)(3s − 2/9) for all s ≥ 1/9. Thus, he has no profitable

deviation from 1/3 to any bid b ∈ [0, 2/27].

As the setting is symmetric, we conclude that βA is a symmetric equilibrium strategy.

(b) Suppose that bidder j adopts the strategy βB(s) = 1/3. The expected payoff of
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bidder i with value-signal s when he bids 1/3 is

1

2

(

s+ E[Sj ]−
1

3

)

=
1

2

(

s+
1

3
−

1

3

)

=
s

2
.

If bidder i bids less than 1/3, his expected payoff is zero as he loses the auction with certainty.

Furthermore, bids above 1/3 are not feasible. Thus, 1/3 is a best response for bidder i given

bidder j’s strategy. And so, βB is a symmetric equilibrium strategy.

A.3 Example 4

There are two bidders. Value-signals are distributed uniformly on the unit interval. A

bidder’s budget is w = 1/4 with probability 1/2; it is w = 3/4 with probability 1/2. If a

bidder of type (s, w) wins the auction with the bid b, his payoff is (s− b)w+1/4; else it is zero.

Proposition A.3. The following is a symmetric equilibrium strategy in Example 4.

β(s, 3/4) =

⎧

⎪
⎨

⎪
⎩

s

2
if s ∈ [0, s̃]

2s2 + 13
√
11− 42

4(s+ 1)
if s ∈ (s̃, 1]

β(s, 1/4) =

⎧

⎪
⎪
⎪
⎪⎪
⎨

⎪
⎪⎪
⎪
⎪
⎩

2s

3
if s ∈ [0, s̃′′]

16s3 + 24(
√
11− 3)s2 + 33(19

√
11− 63)

24(s+
√
11− 3)2

if s ∈ (s̃′′, s̃′]

1

4
if s ∈ (s̃′, 1]

where s̃ =
√
11− 3 ≈ 0.317, s̃′′ = 3(

√
11− 3)/4 ≈ 0.237, and s̃′ ≈ 0.298 solves the equation

(
s̃′ + s̃

2

)

(s̃− q(s̃))
1
2 =

(
1

2
·
s̃′ + 1

2
+

1

2
s̃

)

(s̃− 1/4)
1
2

where

q(s) =
16s3 + 24(

√
11− 3)s2 + 33(19

√
11− 63)

24(s+
√
11− 3)2

.

Proof. We mimic the proof of Proposition A.1. Let β̄(s) := β(s, 3/4) and β(s) := β(s, 1/4).

Case 1. Consider bidder i with budget w = 3/4 and value-signal s ∈ [0, s̃]. The bid β̄(x),

x ∈ [0, s̃], defeats a high-budget opponent with a value-signal less than x and a

low-budget opponent with a value-signal less than 3x/4. The expected payoff is
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U(β̄(x)|s, w) = (7x/8)(s − x/2). Maximizing this expression with respect to x,

subject to the constraint x ≤ s̃, gives a solution of x = s. Thus, β̄(s) is the optimal

bid when constrained to a bid in the range [0, s̃/2].

Instead, suppose i bids β̄(x), x ∈ (s̃, 1]. This bid defeats a low-budget opponent

and a high-budget opponent with a value-signal less than x. The expected payoff is

U(β̄(x)|s, w) = ((1+x)/2)(s− β̄(x)). Noting that dU(β̄(x)|s, w)/dx = (s−x)/2 ≤ 0

and given the definition of s̃, we see that U(β̄(x)|s, w) ≤ limx→s̃+ U(β̄(x)|s, w) =

((1 + s̃)/2) (s− 1/4) = (
√
11 − 2)(4s − 1)/8 ≤ 7s2/16 = U(β̄(s)|s, w). Hence, this

proposed deviation is not profitable.

The remaining candidate deviation is to the bid β(x), x ∈ [s̃′′, s̃′). For x ∈ [s̃′′, s̃′),

let

∆(x, s) := U(β̄(s)|s, w)− U(β(x)|s, w) =
7s2

16
−
(
x+ s̃

2

)

(s− β(x)).

It is sufficient to establish that ∆(x, s) ≥ 0 for all x ∈ [s̃′′, s̃′) and s ≤ s̃. From the

definition of s̃ and s̃′′ (noting that β(s) is continuous at s̃′′), ∆(s̃′′, s̃) = 0. Next,

note that ∂∆(s̃′′, s)/∂s = 7(s− s̃)/8 ≤ 0. Hence, for all s ≤ s̃, ∆(s̃′′, s) ≥ 0. Thus, it

is sufficient to confirm that ∂∆(x, s)/∂x ≥ 0 for all s ∈ [0, s̃]. A direct computation

gives

∂∆(x, s)

∂x
=

1

48

(

8(
√
11− 3− 3s) + 32x−

49(19
√
11− 63)

(x+
√
11− 3)2

)

≥
1

48

(

8(
√
11− 3− 3s̃) + 32s̃′′ −

49(19
√
11− 63)

(s̃′′ +
√
11− 3)2

)

= 0.

Therefore, a high-budget bidder of type s ≤ s̃ has no incentive to deviate from β̄(s).

Case 2. Consider bidder i with budget w = 3/4 and value-signal s ∈ (s̃, 1]. By an argument

analogous to the preceding case, all deviations to bids β̄(x), x ∈ [0, 1], can be ruled

out. We therefore consider a possible deviation to the bid β(x), x ∈ [s̃′′, s̃′). Let

∆(x, s) := U(β̄(s)|s, w)− U(β(x)|s, w) =
(
1 + s

2

)

(s− β̄(s))−
(
x+ s̃

2

)

(s− β(x)).

It is sufficient to verify that ∆(x, s) ≥ 0 for s ∈ (s̃, 1] and x ∈ [s̃′′, s̃′]. As before,
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∆(s̃′′, s̃) = 0. And for any x ∈ [s̃′′, s̃′],

∂∆(x, s)

∂s
=

4−
√
11 + s− x

2
≥

4−
√
11 + s̃− x

2
≥ 0.

Thus, it is sufficient to confirm that ∂∆(x, s̃)/∂x ≥ 0. A direct calculation gives

∂∆(x, s̃)

∂x
=

2x

3
−

49(19
√
11− 63)

48(x+
√
11− 3)2

−
√
11

3
+ 1

≥
2s̃′′

3
−

49(19
√
11− 63)

48(s̃′′ +
√
11− 3)2

−
√
11

3
+ 1 = 0.

Thus, a high-budget bidder with a value-signal of s > s̃ has no profitable deviation

from β̄(s).

Case 3. Consider bidder i with budget w = 1/4 and value-signal s ∈ [0, s̃′′]. The bid β(x),

x ∈ [0, s̃′′], defeats a low-budget opponent with a value-signal less than x and a

high-budget opponent with a value-signal less than 4x/3. The expected payoff is

U(β(x)|s, w) =
7x

6

(

s−
2x

3

)1/2

.

Maximizing the above expression with respect to x (subject to x ≤ s̃′′) gives a

solution of x = s. Thus, β(s) is the best bid among bids in the range [0, 2s̃′′/3].

If instead bidder i bids β(x), x ∈ [s̃′′, s̃′], his expected payoff is

U(β(x)|s, w) =
(
x+ s̃

2

)

(s− β(x))
1
2 .

Substituting and differentiating with respect to x gives

d

dx
U(β(x)|s, w) =

√
6(s− x)

√

8(3s+
√
11− 3)− 16x− 49(19

√
11−63)

(x+
√
11−3)2

≤ 0.

This implies U(β(x)|s, w) ≤ U(β(s̃′′)|s, w) ≤ U(β(s)|s, w).

Finally, since s̃′′ = 3(
√
11 − 3)/4 ≈ 0.23, the bid w = 1/4 would yield a negative

payoff. Therefore, this bidder does not have a profitable deviation.

Case 4. Consider bidder i with budget w = 1/4 and value-signal s ∈ (s̃′′, s̃′]. By an argument
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analogous to the preceding case, a profitable deviation to the bid β(x), x ∈ [0, s̃′],

can be ruled out. We therefore consider only the bid of w = 1/4. Let ∆(s) :=

U(β(s)|s, w) − U(w|s, w). From the definition of s̃′, ∆(s̃′) = 0. Therefore, it is

sufficient to verify that ∆′(s) ≤ 0; equivalently, dU(β(s)|s, w)/ds ≤ dU(w|s, w)/ds.
This latter fact is true since

d

ds
U(w|s, w) =

s̃′ + 2
√
11− 5

4
√
4s− 1

≥
s̃′′ + 2

√
11− 5

4
√
4s̃− 1

≈ 0.901

and

d

ds
U(β(s)|s, w) =

√

3
2

(

s+
√
11− 3

)

√

8s− 49(19
√
11−63)

(s+
√
11−3)

2 + 8(
√
11− 3)

≤

√

3
2(s̃+

√
11− 3)

√

8s̃′′ − 49(19
√
11−63)

(s̃′′+
√
11−3)2

+ 8(
√
11− 3)

≈ 0.563.

Case 5. Consider bidder i with budget w = 1/4 and value-signal s ∈ (s̃′, 1]. By arguments

analogous to those in the previous cases, we can verify that β(s̃′) is the utility-

maximizing, feasible bid other than w.

To verify that U(w|s, w) ≥ U(β(s̃′)|s, w), recall that at s̃′, U(w|s̃′, w) ≥ U(β(s̃′)|s̃′, w).
Thus, it is sufficient to verify that for all s > s̃′, dU(β(s̃′)|s, w)/ds ≤ dU(w|s, w)/ds.
Observe that

d
dsU(w|s, w)

d
dsU(β(s̃′)|s, w)

=
(s̃′ + 2

√
11− 5)

√

8(3s+
√
11− 3)− 16s̃′ − 49(19

√
11−63)

(s̃′+
√
11−3)2

2
√
24s− 6(s̃′ +

√
11− 3)

≥
(s̃′′ + 2

√
11− 5)

√

8(3s+
√
11− 3)− 16s̃− 49(19

√
11−63)

(s̃′′+
√
11−3)2

2
√
24s− 6(s̃+

√
11− 3)

=

√

(333 + 68
√
11)s− 86

√
11 + 502

3

8
√
4s− 1

.

The final expression is decreasing in s. Evaluating it at s = 1 gives

d
dsU(w|s, w)

d
dsU(β(s̃′)|s, w)

≥
1

24

√

1501− 54
√
11 ≈ 1.51 ≥ 1.

12



Rearranging terms gives the desired conclusion.

As we have exhausted all possibilities, the proposed strategy is a symmetric equilibrium.

B Identification of b̄(s)

A key step in the construction of an equilibrium strategy is the identification of b̄(s), the bid

of an high-budget or unconstrained agent. The main text outlines its identification when the

system

ṡ(s, b) = γ(b)(η(s, s)− δ(b, s)) ḃ(s, b) = λ(s)(b− v(s, s)) (B.1)

has one critical point.1 Critical points occur where the nullclines, ψ(s) := {b | η(s, s) =

δ(b, s)} and ν(s) := {b | b = v(s, s)}, intersect. If there is one critical point, w = 0, and

Assumption 1 holds, then b̄(s) ≡ b∗(s). Recall that b∗(·) is a function coincident with the

stable manifolds of (B.1). Below we present the identification of b̄(·) in other cases of interest.

B.1 Multiple Critical Points and Canonical Equilibria

Consider the case in Figure B.1, which features three critical points and w = 0. When there

are three critical points, they alternate between saddle points and nodes. Define b∗(s) as a

function coincident with the stable manifolds approaching the two saddle points from below

and above. In Figure B.1, this is the bold curve. This function begins in region R1 passes

through (s0, b0) and continues on to (s1, b1). On the other side of (s1, b1), b∗(s) continues in

region R3 through (s2, b2) and onto region R4. Note that b∗(s) is defined for all s. As in the

baseline case, we again identify b̄(s) with b∗(s). Further analysis of the canonical equilibrium

is unaffected. The construction generalizes via induction to more critical points.

B.2 Multiple Critical Points and Non-Canonical Equilibria

A similar argument to the preceding case applies to non-canonical equilibria. A particular

case with three critical points is illustrated in Figure B.2. We use the function

µ(s) :=

⎧

⎨

⎩

min{b∗(s),ψ(s)} if ψ(s) ≠ ∅

min{b∗(s), w} if ψ(s) = ∅

1Recall that λ(s) := h(s)
1−H(s) , γ(b) :=

g(b)
1−G(b) , η(x, s) :=

∫ 1
x

v(s,y)h(y)
1−H(x) dy, and δ(b, s) := b+G(b)

g(b) +
H(s)

g(b)(1−H(s)) .

13
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s
1

b

0 s0 s1 s2

b0

b1

b2

b∗ (= b̄)

Figure B.1: Identification of b̄(s) when w = 0. There are three critical points.

to identify the value s̃ at which b̄(s) exhibits a jump discontinuity. In Figure B.2, the function

µ(·) is the dashed curve defined on [s∗, 1]. Recall that [s∗, 1] is the domain of b∗(·). For

s ∈ [s∗, s0], µ(s) = b∗(s). For s ∈ (s0, s1], µ(s) = ψ(s). And so on. At each point along this

curve, there is an increasing solution of system (B.1) that can be extended to the boundary

as an increasing function. Given µ(·), the value s̃ solves the same indifference condition as

in the baseline analysis. Given s̃, b̄(s) is defined as follows. For s < s̃, b̄(s) = α(s), which is

the equilibrium bidding strategy in a first-price auction in the absence of budget constraints.

For s > s̃, b̄(s) follows the increasing solutions of system (B.1) starting at (s̃, µ(s̃)). In the

specific case of Figure B.2, b̄(s) follows a solution approaching the critical point (s1, b1) from

below when s ∈ (s̃, s1). For s > s1, b̄(s) continues to the boundary along b∗(s) passing

through (s2, b2) en route.
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w
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Figure B.2: Identification of b̄(s) when w > 0. There are three critical points.

B.3 No Critical Points and Non-Canonical Equilibria

When w > 0, system (B.1) may lack a critical point. In the absence of a critical point there

is no “b∗(·) function” and Assumption 2 reduces to only its second part: If α(sα) = w for

some sα ∈ (0, 1), then η(sα, sα) − δ(w, sα) > 0. An amendment of the preceding analysis

allows us to identify b̄(·). First, let

µ(s) :=

⎧

⎨

⎩

ψ(s) if ψ(s) ≠ ∅

w if ψ(s) = ∅

on the domain [sν , 1] where sν := ν−1(w). This is the dashed curve in Figure B.3 running

along the lower boundary of region R1. At each point along this curve, there is an increasing

solution of system (B.1) that can be extended to the boundary as an increasing function. The

value s̃ solves the same indifference condition as in the baseline analysis given the redefined

function µ(·). As illustrated in Figure B.3, for s < s̃, b̄(s) = α(s). For s > s̃, b̄(s) follows

15
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Figure B.3: Identification of b̄(s) when w > 0. There are no critical points. Assumption
2(b) is satisfied.

the increasing solutions of system (B.1) passing through point (s̃, µ(s̃)).

B.4 Type 2 Canonical Equilibria

When w > 0, there may exist a canonical equilibrium β(s, w) = min{b̄(s), w} where b̄(s) is

a continuous function. Analysis of this case is presented in Figure B.4, which assumes the

existence of one critical point. The same analysis applies if there are no critical points or

multiple critical points. When b̄(s) is less than w, b̄(s) = α(s), the equilibrium strategy in

the first-price auction in the absence of budget constraints. If there exists sα ∈ (0, 1) such

that α(sα) = w, then b̄(s) makes a continuous transition into the range of bids above w in

a type 2 canonical equilibrium. The function b̄(s) follows the increasing solution of system

(B.1) starting at point (sα, w). For an increasing solution to exist at (sα, w), a necessary

condition is that η(sα, sα) − δ(w, sα) ≤ 0. Note that s̃ = sα and b̄(s̃) = w = α(sα). Figure

B.5 illustrates a type 2 canonical equilibrium.
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Figure B.4: Construction of a type 2 canonical equilibrium.

C Comparative Statics

The following example shows that skewing the budget distribution may induce higher or

lower equilibrium bids by some unconstrained bidders.

Example C.1. Suppose there are two bidders with uniformly distributed value-signals on

the unit interval. Suppose v(si, sj) = si+sj. Consider three different budget distributions on

[0, 2]: G0(w) = w/2, G1(w) =
√

w/2, and G2(w) = w(4−w)/4. Each satisfies Assumption 1′.

The distribution G0 likelihood ratio dominates G1 and G2. Given each budget distribution

there is one critical point. Given the budget distribution G0, the critical point occurs at

(s0, b0) = (0.1056, 0.2111). Given the budget distribution G1, the critical point occurs at

(s1, b1) = (0.0864, 0.1728). Finally, given the budget distribution G2, the critical point

occurs at (s2, b2) = (0.1264, 0.2528). By Theorem 1, the function defining the bid of an

unconstrained bidder, b̄(s), passes through the critical point in each case. This implies that

tightening the budget distribution from G0 to G1 induces a lower bid by an unconstrained

bidder with a value-signal s ≈ 0.1. Conversely, tightening the budget distribution from G0
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(b) Three dimensional sketch of β(s,w).

Figure B.5: Illustration of a type 2 canonical equilibrium strategy β(s, w) = min{b̄(s), w}.

to G2 induces a higher bid by an unconstrained bidder with a value-signal s ≈ 0.1.
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