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Abstract

This paper investigates the formation of production and trading networks in an econ-

omy with general interdependencies and complex property rights. The right to exclude,

a core tenet of property, grants asset owners a form of monopoly power that influences

granular economic interactions. Equilibrium networks reflect the distribution of these

ownership claims. Inefficient production networks may endure in equilibrium as firms

multisource to mitigate hold-up risk. Short supply chains also reduce this risk, but may

preclude the production of complex goods. A generalized Top Trading Cycles algorithm,

applicable to a production economy, identifies equilibrium outcomes in the model. Such

outcomes can be decentralized via a price system.
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1 Introduction

This paper proposes a property rights theory of production networks. We are motivated by

the extensive interdependencies in the organization of economic activity. A firm’s produc-

tion process is a network threading together many inputs. Building an airplane, for example,

combines engineering knowledge, parts from many suppliers, and plenty of human capital.

Everything must fit for production, and the product, to get off the ground.

How does the distribution of property rights in a market affect the network structure of

economic activity? The link, we argue, operates through a core tenet of property, the right to

exclude. The United States Supreme Court has called the right to exclude “one of the most

essential sticks in the bundle of rights that are commonly characterized as property”1 and

legal scholars have emphasized its significance since at least the eighteenth-century.2 The

right to exclude grants the owner(s) of an asset, including labor and human capital, a form of

monopoly power that influences economic interactions at the granular level. By threatening

to exclude others from desired goods or critical inputs—effectively a threat of hold-up—an

agent can skew outcomes in his favor. Equilibrium production and trading networks balance

the push and pull each agent exerts on others through his ownership claims to goods, ma-

chines, ideas, and human capital.

The push-and-pull we have in mind is subtle and often indirect. It exists because of the

network of economic activity. If Alice can block Bob’s access to apples and Bob can block Carol

buying bananas, then Alice has indirect leverage when dealing with Carol through pressure

she can exert on Bob. Accordingly, agents may structure their interactions to avoid others’

exclusion power. This proclivity is prominent in production. Consider the airplane manufac-

turer from above. Many ideas are in the public domain and no one can be excluded from us-

ing them (e.g., Bernoulli’s principle). But some are patented and wriggling out of the “patent

thicket” is necessary.3 Engines might come from multiple suppliers. This complicates the

supply chain, but insures against being held up by critical source.

Do networks amplify or dampen the right to exclude’s potency? What form do equilibrium

production networks assume? And, what are the welfare implications? We investigate these

questions theoretically in an economy with general interdependencies. A discrete set of goods

lets us precisely map the economy’s connections and transactions; otherwise, our setup is very

1Kaiser Aetna v. United States, 444 U.S. 164 (1979).
2William Blackstone described it in his Commentaries on the Laws of England (1765). Merrill (1998), Merrill

and Smith (2001b), and Klick and Parchomovsky (2017) discuss the principle’s significance in detail.
3Shapiro (2000) used the thicket metaphor to describe complex and overlapping patents.
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general. Goods in our model can be rival or non-rival. They include primary goods, interme-

diate inputs, finished products, human-capital/labor inputs, laws or policies, and even ideas.

Firms transform sets of inputs into sets of outputs. A firm’s output can be an input for another

firm. Agents own the economy’s goods. Unlike traditional models of exchange or production,

we allow for general ownership structures to emphasize the role of varied and complex prop-

erty rights. A good may be owned privately, owned jointly by a coalition, or be part of the social

endowment. An outcome in our model consists of a consumption allocation, which describes

consumers’ choices, and a production network, which defines firms’ production decisions.

To analyze our economy, we examine its exclusion core. The exclusion core is a coop-

erative solution introduced by Balbuzanov and Kotowski (2019) to study discrete exchange

economies with complex property rights, including cases with joint or contested ownership.

Traditional solutions, such as the core, fail to fully capture the implications of agents exer-

cising their exclusion rights.4 Roughly, at an exclusion core allocation no coalition has the

incentive and the ability to veto or block others’ consumption by invoking its right to exclude.

The latter is defined by the ownership of the economy’s goods. We provide a self-contained in-

troduction to the exclusion core solution in Section 3, though we stress here that it is uniquely

suited for our analysis. First, the exclusion core’s motivation emphasizes the exclusion aspect

of property. It rests on a reinterpretation of agents’ endowments in an economy as a distribu-

tion of exclusion rights, rather than as bundles of tradable things. And second, the concept

is sensitive to the endogenous network of economic activity. Recalling the example above, it

accounts for Alice’s indirect leverage (via Bob) on Carol.

Our paper has three contributions. First, we generalize the exclusion core solution to a

production economy.5 Our generalization exploits inter-firm linkages—an output of firm f is

an input for firm f ′—to transmit threats of exclusion and hold-up. Thus, a production net-

work extends a coalition’s power beyond the goods that it owns directly, a fact that constrains

equilibrium production networks. We investigate two versions of the exclusion core that dif-

fer in the ease with which coalitions can rewire production plans. The ex post exclusion core

characterizes short-run outcomes where the underlying production network is rigid. The ex

ante exclusion core characterizes long-run outcomes where production plans are fully flexi-

ble. Together, these benchmarks bound all plausible intermediate cases.

4Many solutions are also technically unappealing. For instance, the strong core is often empty, even in trivial

instances of our model; the weak core fails to rule out implausible inefficiencies (Balbuzanov and Kotowski,

2019).
5In a working paper version of Balbuzanov and Kotowski (2019), we explored a prototype “production econ-

omy.” That model of production differed significantly from the analysis proposed herein.
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Second, we identify sufficient conditions for an economy’s ex ante and ex post exclusion

cores to be nonempty. Roughly, there must be “sufficient integration” in the ownership struc-

ture of each good’s supply chain. This condition is much weaker than complete vertical inte-

gration and suggests how property rights can be arranged to limit hold-up risk. Ex ante exclu-

sion core production networks may involve firms employing seemingly redundant inputs. By

multisourcing, firms hedge against hold-up risk. Our model characterizes the operation of an

economy reliant solely on property relations, as opposed to more elaborate contracts.

Our third contribution connects to a literature distinct from that of property rights or eco-

nomic organization. Our model generalizes Shapley and Scarf’s (1974) “house exchange” econ-

omy, famous for its introduction of the Top Trading Cycles (TTC) algorithm (attributed to

David Gale). Our existence results rely on the first generalization of the TTC algorithm to

a production economy. The novelties necessitated by production have intuitive economic

interpretations in terms of simplifying supply chains and identifying firm boundaries. The

monotonicity of the assignment process induced by the TTC algorithm stands behind our

generalization and links the exclusion core with price equilibria in our model.

Our model emphasizes production in a networked economy. We argue that the resulting

transaction network is closely tied to the distribution property rights, particularly the right to

exclude. Importantly, the same underlying principles operate in many domains. Networks

play a central role in international trade. These often bend to the exclusion power of govern-

ments (e.g., embargoes). In politics, legislators “produce” laws by bundling together policy

proposals. The challenge is to neutralize the veto (i.e., exclusion) power of blocking coalitions.

And, layers of “red tape,” i.e., exclusion rights held by bureaucrats, allow for rent extraction.

Adaptations of our model can tackle these applications, among many others.

Outline Section 2 introduces the model. Section 3 presents the exclusion core solution con-

cept in the special case of an exchange economy. Section 4 generalizes the analysis to a pro-

duction economy. Section 5 outlines the proof of our main theorem and introduces our gen-

eralization of the TTC algorithm. Section 6 discusses multisourcing and section 7 considers

price equilibria. We conclude by relating our study to the literatures on property rights and

production networks. For expositional ease, we simplify several features of our environment.

Appendices A and B explain how our model embeds a larger class of production processes and

preferences than emphasized in our main exposition. Appendix C provides an example of our

algorithm’s operation. Appendix D contains all proofs.
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2 Model

An economy E = 〈I , F, X ,≻,ω〉 consists of agents, firms, goods, a preference profile, and an

endowment system. I := {i1, . . . , in} and F := { f1, . . . , fm} are finite sets of agents and firms, re-

spectively. X is a finite set of goods, which can be very general. It may contain consumption

goods (e.g., an apple) and production inputs, such as raw materials (e.g., a ton of iron ore),

labor inputs (e.g., an hour of welding), and intangibles (e.g., a computer chip design). Each

good x has a capacity qx ∈ {1,∞} defining the number of agents and firms that can simul-

taneously consume it or use it as an input. A rival good, like the apple, has capacity one. A

non-rival good, like the chip design, has infinite capacity.

Goods are partitioned into a set of primary goods and sets of goods produced by each

firm, i.e., X = X0 ∪ (
⋃

f ∈F X f ) where X f ∩X f ′ = ∅ for all f 6= f ′. The set X0 consists of primary

goods that do not require production. The goods in set X f are available if and only if they are

produced by firm f using the eponymous production function f : 2X → {∅, X f }. Thus, a firm

transforms sets of inputs into a set of (net) outputs.6 For example, a computer manufacturer

might transform labor and computer parts into finished computers and new technologies cre-

ated by research and development. The former are consumer products; the latter are inputs

for other firms. Each production function is monotone (Z ⊆ Z ′ =⇒ f (Z )⊆ f (Z ′)) and satisfies

the “no free lunch” property ( f (∅) =∅).

For simplicity, we assume that production has a 0/1 character. Either firm f produces

nothing or all of X f is created. To scale production, posit there are multiple copies of firm f .

Each copy produces a version of X f that differs only in an inconsequential way, such as the

goods’ serial numbers. This framework can embed production processes with decreasing and

increasing returns to scale (see Appendix A).

Each agent i has a strict preference ≻i defined over X and an outside option x0 /∈ X rep-

resenting “no consumption.” For simplicity, we assume each agent has unit demand. If x ∈

X ∪{x0} is preferred to x ′ ∈ X ∪{x0}, then x ≻i x ′. We write x �i x ′ if x ≻i x ′ or x = x ′. In ex-

amples, we state an agent’s preference by listing goods in his preferred order, i.e., ≻i : x , x ′, . . ..

Unlisted items are inferior to the outside option. Appendix B outlines how to incorporate con-

sumption of multiple goods into our model.

Property rights are a focus of our analysis. Accordingly, we posit a general framework sub-

suming private and public ownership as special cases. The economy’s endowment system

ω: 2I → 2X identifies the goods owned by each coalition. It satisfies three basic properties.

6That is, firm f supplies X f to the market. These goods are not used by f in production: f (Z ∪X f ) = f (Z ).
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(A1) Agency: ω(∅) =∅.

(A2) Monotonicity: C ′ ⊆ C =⇒ ω(C ′)⊆ω(C ).

(A3) Exhaustivity: ω(I ) = X .

Thus, ownership is restricted to agents or groups (A1), a coalition owns anything belonging

to a sub-coalition (A2), and the grand coalition owns everything (A3). We further assume the

endowment system satisfies

(A4) Weak non-contestability: For each x ∈ X , the set C x :=
⋂

C ∈{C ′|x∈ω(C ′)}C is not empty.

Assumption (A4) says that each good x has an essential set of principal owners C x . Any group

asserting ownership of x must count C x among its members. The assumption relaxes Bal-

buzanov and Kotowski’s (2019, p. 1667) non-contestability condition.

Many situations satisfy (A1)–(A4). If x is privately owned by i , then x ∈ω(i ) and C x = {i }.

If x is collectively owned by everyone, C x is the grand coalition and x ∈ ω(C ) ⇐⇒ C =

I . If x /∈ ω(C x ), then its principals require others’ cooperation to exercise de facto control

over x . Another interesting case arises when goods produced by the same firm have different

principals (i.e., x , y ∈ X f but C x 6=C y ). For example, seats at a concert might be controlled by

the concert promoter but rights to the concert’s recording might belong to a record label.

An outcome (µ,γ) consists of a consumption allocation and a production network. A con-

sumption allocation µ: I → X ∪{x0} identifies the good consumed by each agent. Denote the

goods consumed by coalition C ⊆ I as µ(C ) :=
⋃

i∈C µ(i ).

A production network γ : F → 2X identifies the inputs used (“consumed”) by each firm.

Denote the goods used by firms in set G ⊆ F as γ(G ) :=
⋃

f ∈G γ(f ) and, abusing notation, let

fG (γ) :=
⋃

f ∈G f (γ(f )) be these firms’ aggregate (gross) output at γ.

An outcome (µ,γ) is feasible if (a) µ(I )∪γ(F ) ⊆ X0 ∪ fF (γ)∪{x0}, and (b) |{i ∈ I |x = µ(i )}|+

|{ f ∈ F |x ∈ γ(f )}| ≤ qx for all x ∈ X . Condition (a) says that every good that is consumed or

used in production is a primary good, a good produced at γ, or the outside option. Condition

(b) says that the number of agents and firms assigned an item cannot exceed its capacity.

Analogously, a production network γ is feasible if (a) γ(F ) ⊆ X0 ∪ fF (γ) and (b) |{ f ∈ F |x ∈

γ(f )}| ≤ qx for all x ∈ X . Let Γ be the set of feasible production networks.

To help fix ideas, Figure 1 illustrates two outcomes in an economy. There are two agents

with endowmentsω(i1) = {x1, x3, x4} andω(i2) = {x2, x5}. In the figure, each good is “pointing”

to its principal owner. Each good has unit capacity. Goods x2 and x4 are produced by firms f1
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i1 i2

x1 x2 x3 x4 x5

f1 f1
f2

(a) Outcome (µ,γ). All goods are available.

i1 i2

x1 x2 x3 x4 x5

f2

(b) Outcome (µ′,γ′). Good x2 is not available.

Figure 1: Example outcomes in a private-ownership economy.

and f2, respectively. The other goods are primary goods. The firms’ production functions are

f1(Z ) =







x2 if x1 ∈ Z and x4 ∈ Z

∅ otherwise
and f2(Z ) =







x4 if x3 ∈ Z or x5 ∈ Z

∅ otherwise
.

Goods x1 and x4 are complements in the production of x2. Goods x3 and x5 are substitutes in

the production of x4.

Figure 1(a) represents the outcome

µ(i1) = x2 µ(i2) = x3 γ(f1) = {x1, x4} γ(f2) = x5.

In the figure, each agent is “pointing” to his assigned consumption good. Each produced good

is “pointing” to the input(s) used in its production (dashed lines). In this case, x4 (produced

by f2) is an input for x2 (produced by f1). Figure 1(b) represents the outcome

µ′(i1) = x4 µ′(i2) = x5 γ′(f1) =∅ γ′(f2) = x3.

Now, x4 is consumed by i1 and cannot be used to make x2. Thus, x2 is unavailable.

Remark 1. Each outcome sketch in this paper follows Figure 1’s conventions. A solid arrow

links each agent with his assigned good, or each privately-owned good with its owner. A

dashed arrow connects each produced good to the inputs used in its production.

3 Exchange Economies

We aim to characterize production networks and trading patterns in light of the economy’s

property rights distribution. Balbuzanov and Kotowski (2019) study a related question focus-

ing only on an exchange economy. They argue that classic solution concepts, such as the core,

fail to shed light on this problem in markets with complex property arrangements, as in our

model. Accordingly, Balbuzanov and Kotowski (2019) introduce an alternative solution called
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the exclusion core. The exclusion core’s foundation is a reinterpretation of endowments as a

distribution of exclusion rights over the economy’s goods. This section, based on Balbuzanov

and Kotowski (2019), provides a self-contained exposition of this idea in an exchange econ-

omy. We pursue the production economy generalization in Section 4.

Consider the model introduced in Section 2, but without production. Only primary goods

exist and an outcome reduces to a consumption allocation. A familiar intuition, dating to at

least Edgeworth, is that an allocation that can be improved upon, or “blocked,” by some coali-

tion is unlikely to materialize or endure. Traditionally, a coalition can block an allocation in

an exchange economy if it can reallocate the goods in its endowment in a way that its mem-

bers prefer. However, for a reallocation to be possible, it is necessary to exclude non-coalition

members from those goods, possibly harming them in the process. This more basic principle

is at the heart of exclusion blocking.

Definition 1. Coalition C ⊆ I can directly exclusion block the allocation µ if there exists an

allocation σ such that (a)σ(i )≻i µ(i ) for all i ∈C and (b) µ( j )≻ j σ( j ) =⇒ µ( j ) ∈ω(C ).

Two conditions must hold for a coalition to directly exclusion block an allocation µ. First,

all coalition members must prefer an alternative allocation σ. And second, if an agent is

harmed by the move from µ to σ, he must be excluded by this process from something in

the coalition’s endowment. Thus, a coalition has the interest and the ability, based on its ex-

clusion rights, to veto the allocation µ. The direct exclusion core is the set of allocations that

cannot be directly exclusion blocked by any nonempty coalition.

What indirect implications do exclusion rights entail? The case of Alice, Bob, and Carol

from the introduction suggests that trade-related interdependencies can amplify an agent’s

de facto power. For example, consider a private-ownership economy with three agents and

three goods. Their preferences are

≻i1
: x2, x1 ≻i2

: x1, x3, x2 ≻i3
: x1, x2, x3.

Figure 2(a) illustrates the allocation

µ(i1) = x2 µ(i2) = x3 µ(i3) = x1.

Each agent is “pointing” to his assigned good and each good is “pointing” to its owner (i.e.,

xk ∈ω(ik )). At µ, i1 and i3 receive their favorite items; i2 gets x3, but prefers x1. The allocation

µ cannot be directly exclusion blocked, but can i2 somehow shift the outcome in his favor?
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i1x1

i2 x2

i3

x3

(a) Allocation µ.

i1x1

x2

i3

x3 i2

(b) Agent i2 has indirect exclusion rights to x1

given i1’s dependence on x2 ∈ω(i2) at µ.

Figure 2: An allocation that can be destabilized through indirect exclusion.

Since x1 /∈ ω(i2), i2 lacks the direct exclusion rights to prevent i3 from receiving x1. Those

rights belong to i1. However, i1 is assigned x2, which belongs to i2. Formally, i1 ∈ (µ
−1 ◦ω)(i2).

Given this dependency, agent i2 may press i1 to prevent i3’s consumption of x1 by threatening

to exclude i1 from x2. Agent i1 would reasonably accept this demand as x2 is his favorite item.

As illustrated in Figure 2(b), this fragility destabilizes µ—the matching µ is unlikely to endure.

Though Figure 2 examines a relatively simple case, its underlying logic generalizes. Ev-

erything proceeds by induction. Coalition C has direct exclusion rights to all things in its en-

dowment,ω(C ). At one step of influence, it has direct or indirect exclusion rights to all goods

in ω(C1), where C1 = C ∪ (µ−1 ◦ω)(C ), and at two steps, ω(C2) where C2 = C1 ∪ (µ
−1 ◦ω)(C1).

And so on. The limit defines the coalition’s extended endowment, which describes its de facto

exclusion power accounting for the network of interdependencies induced by exchange.

Definition 2. The extended endowment of coalition C (in an exchange economy) atµ isΩ(C |ω,µ) :=

ω(
⋃∞

k=0
Ck ) where C0 =C and Ck = Ck−1∪ (µ

−1 ◦ω)(Ck−1) for each k ≥ 1.

The next definition repeats Definition 1, except Ω(·|ω,µ) appears in part (b).

Definition 3. Coalition C ⊆ I can indirectly exclusion block the allocation µ if there exists an

allocation σ such that (a)σ(i )≻i µ(i ) for all i ∈C and (b) µ( j )≻ j σ( j ) =⇒ µ( j ) ∈Ω(C |ω,µ).

The exclusion core is the set of allocations that cannot be indirectly exclusion blocked by

any nonempty coalition. No coalition can improve upon an exclusion core allocation by in-

voking its direct or indirect exclusion rights.

Revisiting the example above, the allocation µ is not an exclusion core allocation. It can

be indirectly exclusion blocked by i2. The unique exclusion core allocation is

σ(i1) = x2 σ(i2) = x1 σ(i3) = x3,

which is illustrated in Figure 3(a). Whereas i3 would like to claim x1, the network of trades in-

duced byσ protects i1 and i2 from i3’s (in)direct exclusion power (Figure 3(b)). Neither agent’s

allocation depends on i3’s endowment.
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i1x1

i2 x2

i3

x3

(a) Allocation σ.

i1x1

i2 x2x3

i3

(b) Agent i3 lacks direct or indirect exclusion

rights to x1 atσ.

Figure 3: An allocation that cannot be destabilized through indirect exclusion.

The next theorem generalizes Theorem 1 of Balbuzanov and Kotowski (2019). It is implied

by Theorem 3 (stated below), which concerns a more general model.

Theorem 1. The exclusion core of an exchange economy where the endowment system satisfies

(A1)–(A4) is not empty.

Our interest in the exclusion core stems from its conceptual origins in property rights (the

right to exclude in particular) and its sensitivity to the network of trades. However, it has many

properties in an exchange economy that further elevate its appeal. For example, all exclusion

core allocations are Pareto efficient.7 In Shapley and Scarf’s (1974) “house exchange” econ-

omy, a seminal special case, the exclusion core equals the strong core, a consensus selection.8

Unlike the strong core, the exclusion core characterizes a generalization of the TTC algorithm

in exchange economies with private and public ownership (Balbuzanov and Kotowski, 2019).

4 Production Economies

To generalize the exclusion core solution to a production economy, we rely on critical inputs

to transmit exclusion and hold-up threats through a production network.

Definition 4. The set Z ⊆ X is critical for the production of x given the production network

γ if x can be produced by firm f with inputs γ(f ) and x cannot be produced by f with inputs

γ(f ) \Z .

Any coalition controlling a critical set of inputs for x can exclude others from x by holding-

up its production. This observation has significant consequences when coupled with the logic

of Section 3. As motivation, consider the outcome illustrated in Figure 4. All goods are pri-

vately owned, except x2, which is owned collectively. Consider i1. He owns x1, which is a crit-

ical input for x2. Even though x2 is collectively owned, i1 can block its production through his

7Condition (b) in Definition 3 holds vacuously if everyone is (weakly) better off. Pareto efficiency follows.
8In Shapley and Scarf’s model, there are n agents and n goods. Each agent ik owns one good, ω(ik ) = {xk },

and x ≻ik
x0 for all x 6= x0 and all ik . See also our discussion in Section 5.1 concerning the TTC algorithm.
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i1

i2

i3

x0 x1 x2 x3 x4

f1 f2

Figure 4: An outcome where i1 has (in)direct exclusion rights to all four goods.

control of x1. Going further, x2 is a critical input for x3. Thus, i1 can block access to x3 through

his indirect control of a critical input. Since i1 can block the production of x3, by virtue of the

reasoning from Section 3 he can press i2 to exclude i3 from x4. In sum, we have argued that i1

has indirect exclusion power over all four goods.

To formalize the preceding reasoning in the general case, we first derive a new charac-

terization of a coalition’s extended endowment in an exchange economy (Definition 2). The

reformulation simplifies accounting as consumption (and, in the sequel, production) depen-

dencies are traced through the economy.

Lemma 1. If Ω(C |ω,µ) is the extended endowment of coalition C in an exchange economy at

allocation µ, then

Ω(C |ω,µ) =
∞
⋃

k=0

Zk (1a)

where Z0 =ω(C ) and

Zk = Zk−1∪ω(C ∪µ
−1(Zk−1)) (1b)

for each k ≥ 1.

Next we generalize (1a) and (1b) accounting for critical production links. Let αγ(Z ) be the

set of goods for which Z is a critical set of inputs at γ. If x ∈αγ(Z ), then x is directly reliant on

Z at γ. We append αγ(·) to each iteration of (1b). Thus, the extended endowment of coalition

C (in a production economy) at (µ,γ) is

Ωγ(C |ω,µ) :=
∞
⋃

k=0

Zk (2a)

where Z0 :=ω(C ) and

Zk := Zk−1∪ω(C ∪µ
−1(Zk−1))∪αγ(Zk−1) (2b)

for each k ≥ 1. In a production economy, a coalition acquires (indirect) exclusion rights to a

good through both consumption and production dependencies.

We can now define exclusion blocking in a production economy by pluggingΩγ(·|ω,µ) into

part (b) of Definition 3. However, one subtlety remains. It is not obvious when or if a block-

ing coalition can change a firm’s operation. For example, suppose firm f produces {x , y }
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and coalition C includes all members of C x but not C y . Can the coalition tell the firm to shut

down? When can a coalition demand that a shuttered firm start production? Similar questions

arise when defining the (regular) core in a production economy and there are no unequivocal

answers.9 Accordingly, we propose two definitions that bracket most, if not all, plausible pro-

posals. The “ex post” exclusion core posits agents take firms’ production plans as given. The

“ex ante” exclusion core allows blocking coalitions to change all production plans freely. We

investigate each variant in turn.

4.1 The Ex Post Exclusion Core

Definition 5. Coalition C ⊆ I can ex post exclusion block the outcome (µ,γ) if there exists a

feasible outcome (σ,γ) such that (a) σ(i ) ≻i µ(i ) for all i ∈ C and (b) µ( j ) ≻ j σ( j ) =⇒ µ( j ) ∈

Ωγ(C |ω,µ).

The ex post exclusion core is the set of feasible outcomes that cannot be ex post exclusion

blocked by any nonempty coalition. In Definition 5, a blocking coalition takes the production

network as given. The notion captures a short-run disruption wherein firms cannot easily re-

tool or establish new production relationships. For intuition, imagine firms initially cement

inter-firm links by committing to a production network. Subsequently, agents coordinate on

a consumption allocation. If all feasible consumption allocations can be ex post exclusion

blocked, the production network is unambiguously incredible. Anticipation of ex post op-

portunism may even curse all parties to settle for a “no production” outcome. In fact, if the

economy’s endowment system satisfies (A1)–(A4), there always exists an ex post exclusion core

outcome with an empty production network, γ(f ) =∅ for all f ∈ F . Without production, only

primary goods exist and Theorem 1 applies.

When does a nontrivial production network γ support an ex post exclusion core outcome?

To answer this question, we first examine the production network’s critical connections. Re-

call that αγ(·) identifies the goods directly reliant on any set of inputs. Iterating this mapping

gives the indirectly reliant goods. For any Z ⊆ X , the set of goods indirectly reliant on Z at γ is

λγ(Z ) :=
∞
⋃

k=0

Ak

9Kreps (2013, pp. 369–370) discusses this problem in the case of the Arrow-Debreu model. He provides five

definitions of the core in a production economy that differ in the degree to which blocking coalitions are able to

draw upon or change firms’ production plans.
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Figure 5: The production network γ. If xk ¹¹Ë xℓ, then xk is produced using xℓ.

where A0 := Z and Ak := Ak−1∪αγ(Ak−1) for each k ≥ 1. Let

Λγ(x ) :=
�

Z ∈ 2X
�

�x ∈ λγ(Z ) & x /∈ λγ(Z
′) ∀Z ′ ( Z

	

.

If Z ∈ Λγ(x ), then x is directly or indirectly reliant on Z and no proper subset of Z has this

property. When Z = {z }, we suppress the braces by writing z ∈Λγ(x ).

To better understand λγ(·) and Λγ(·), first note that (by definition) x ∈ λγ(x ) and x ∈ Λγ(x )

for all x ∈ X , including primary goods and goods that are not produced at γ. Second, λγ(·) and

Λγ(·) have simple graph-theoretic characterizations when γ is efficient. The input plan γ(f ) is

efficient for firm f if there is no Z ( γ(f ) that assures f the same output asγ(f ). The production

network γ is efficient if γ(f ) is efficient for every firm. When γ is efficient, every element of

Λγ(x ) is a singleton (the proof is analogous to that of Lemma 3(a)-(b) in Appendix D). Now

consider the production networkγ illustrated in Figure 5. Each good is “pointing” to the inputs

used in its production, if any. If γ is efficient, then y ∈λγ(x ) if and only if there is a path in the

graph from y to x . For example, λγ(x4) = {x1, x2, x3, x4}.
10 Conversely, y ∈ Λγ(x ) if and only if

there is a path in the graph from x to y . Thus, Λγ(x4) = {x4, x5, x6}.
11

The interaction between critical inputs and the economy’s endowment system is at the

heart of the following theorem. We discuss its interpretation below.

Theorem 2. Let E = 〈I , F, X ,≻,ω〉 be an economy satisfying (A1)–(A4). Let γ ∈ Γ and suppose

C (x |γ) :=
⋂

Z∈Λγ(x )

�

⋃

z∈Z

C z

�

6=∅ (3)

for all x ∈ X . There exists an allocation µ such that (µ,γ) is an ex post exclusion core outcome.

Condition (3) holds for all primary goods and for all goods that are not produced at γ.12

Thus, (3) only has bite if x is produced atγ. Since x ∈Λγ(x ), C (x |γ) =C x∩(
⋂

Z∈Λγ(x )\{x }
(
⋃

z∈Z C z )).

10Per convention, a single vertex is a length zero path that begins and ends at itself. Thus, x4 ∈ λγ(x4).
11To simplify, we omit the braces for singleton elements. A complementary representation of λγ(·) and Λγ(·)

is available in terms of the economy’s “Leontief inverse” matrix, which can be expressed as an infinite sum of

powers of the production network’s adjacency matrix. Details of this interpretation are available from the authors

upon request.
12If x is a primary good or a good that is not produced at γ, then no set of inputs is critical for x . Therefore,

x ∈ λγ(Z ) ⇐⇒ x ∈ Z , which implies Λγ(x ) = {x }. Thus, (3) reduces to C x 6=∅, which holds by (A4).
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The first term, C x , is good x ’s principals. The second term concerns the intermediate goods

in x ’s supply chain. Thus, (3) holds at x when the principals of each critical set of (indirect) in-

puts overlap with the principals of x . Intuitively, there is “sufficient integration” in the supply

chain’s ownership structure to neuter any hold-up risk due to misaligned interests.

Three observations are pertinent. First, condition (3) does not imply full integration of

the supply chain’s ownership. It is a much weaker postulate. If z is the only critical input for

x and C x = {i1, i2} and C z = {i2, i3}, then the supply chain is sufficiently integrated. Even

though i2 does not own x or z outright, he has sufficient power to neutralize hold-up risk.

Second, condition (3) is independent of agents’ preferences. Therefore, it is predicated on a

“worst-case” scenario with misaligned interests. If agents’ preferences do not conflict, an ex

post exclusion core outcome obtains under weaker institutional conditions. Third, the ex post

exclusion core becomes larger as the economy shifts away from private property or toward

a less efficient production network. Proofs of the following propositions are omitted. They

follow from the monotonicity of Ωγ(·|ω,µ) inω and γ.

Proposition 1. Let (µ,γ) be an ex post exclusion core outcome in E = 〈I , F, X ,≻,ω〉. Consider

E ′ = 〈I , F, X ,≻,ω′〉 whereω′(C ) ⊆ω(C ) for all C ⊆ I . The outcome (µ,γ) belongs to the ex post

exclusion core of E ′.

Proposition 2. Let (µ,γ) be an ex post exclusion core outcome in E = 〈I , F, X ,≻,ω〉. Consider

the feasible outcome (µ,γ′) where fF (γ) = fF (γ
′) and γ(f ) ⊆ γ′(f ) for all f ∈ F . The outcome

(µ,γ′) belongs to the ex post exclusion core of E .

In Proposition 2, the production networkγ is more efficient thanγ′ since it assures the same

output with fewer inputs. Intuitively, each input’s importance at γ is amplified and its owners

have greater (indirect) exclusion power, thus narrowing the ex post exclusion core’s size.

4.2 The Ex Ante Exclusion Core

Definition 6. Coalition C ⊆ I can ex ante (indirectly) exclusion block the outcome (µ,γ) if there

exists a feasible outcome (σ,ψ) such that (a)σ(i )≻i µ(i ) for all i ∈C and (b) µ( j ) ≻ j σ( j ) =⇒

µ( j ) ∈Ωγ(C |ω,µ).

Definition 6 differs from Definition 5 in one way—the production network can change

freely. The ex ante exclusion core is the set of feasible outcomes that cannot be ex ante ex-

clusion blocked by any nonempty coalition. Every outcome in the ex ante exclusion core is

14



Pareto optimal13 and belongs to the ex post exclusion core.

The ex ante exclusion core can be empty without further restrictions on the environment.

We focus on a class of economies where each firm has a unique efficient production plan. In

our model, this is equivalent to the case of input complementarities. Firm f has a Leontief

production function if there exists a set of inputs Wf , Wf ∩X f =∅, such that

f (Z ) =







X f if Z ⊇Wf

∅ otherwise
. (4)

Production processes with complementarities are salient at the granularity and disaggre-

gation implicit in our model. Even minor input substitutions can result in a distinct final prod-

uct if goods are defined sufficiently narrowly. Production complementarities are important for

trade patterns (Grossman et al., 2005) and economic growth (Kremer, 1993; Jones, 2011). Both

topics are natural applications of our theory emphasizing exclusion rights and hold up.

Theorem 3. Let E = 〈I , F, X ,≻,ω〉 be an economy whereω satisfies (A1)–(A4),

(B1) each firm has a Leontief production function,

(B2) there exists a γ ∈ Γ such that X = X0 ∪ fF (γ), and

(B3) C (x |γ) 6=∅ for all x ∈ X .

There exists an ex ante exclusion core outcome in E .

Assumption (B1) was discussed above. Assumption (B2) ensures that it is feasible to pro-

duce all goods. This assumption is analogous to Assumption V in Arrow and Debreu (1954, p.

280) that assures an excess supply of all goods can be achieved by some production plan. It

does not imply that all goods are available for consumption or that γ is the production network

at an exclusion core outcome. Assumption (B3) is the same as (3) in Theorem 2, but evaluated

only at γ. Theorem 1 is a corollary of Theorem 3; (B1)–(B3) are moot or trivially satisfied if all

goods are primary.

13If (µ,σ) is not Pareto optimal, then there exists a feasible outcome (σ,ψ) such that σ(i ) �i µ(i ) for all i ∈ I

and σ(i ′) ≻i ′ µ(i
′) for some i ′ ∈ I . Thus, (µ,γ) can be ex ante exclusion blocked by the coalition C = {i ′} with

(σ,ψ). Condition (b) in Definition 6 holds vacuously—there is no agent j for whom µ( j )≻ j σ( j ).
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5 Proof of Theorem 3

This section explains the key economic insights from the proof of Theorem 3 (see Appendix

D). The proof has two parts. Part I constructs an ex ante exclusion core outcome in an acyclic

economy (defined below). Part II extends this result to any economy satisfying the hypotheses

of Theorem 3 by identifying a mapping between it and a corresponding acyclic economy.

5.1 Part I — Top Trading Cycles and Acyclic Economies

To prove Theorem 3, we first construct an outcome in an economy satisfying the theorem’s

hypotheses using a generalized TTC algorithm. Before tackling the details, we highlight the

guiding principle behind our generalization. In Shapley and Scarf’s (1974) model, the clas-

sic TTC algorithm identifies the unique exclusion core outcome (Balbuzanov and Kotowski,

2019). In this special case, there is no production and each agent owns exactly one item. The

TTC algorithm proceeds as follows. Each good “points” to its owner and each agent “points”

to his favorite item. Necessarily, there is a cycle of alternating goods and agents. Each agent

in the cycle leaves the market with the good to which he is pointing. Then, the process iter-

ates with each remaining agent pointing to his favorite still-available item. Notice that with

each iteration the set of available goods shrinks and goods never return to the market. In step

1, every good is available. At step 2, all goods except those cleared in step 1 are available.

And so on. Theorem 3’s assumptions let us define a similarly-monotone assignment process.

Successive cycles define agents’ consumption allocations and firms’ input use. A novel “cycle

trimming” procedure arbitrates agent-firm conflicts to ensure compatibility of consumption

assignments and the supply chains necessary for production. We explain this feature’s eco-

nomic intuition below.

The algorithm requires two preliminary definitions. The production network γ ∈ Γ ′ ⊆ Γ

is maximal in Γ ′ if there does not exist a γ′ ∈ Γ ′ such that γ′ 6= γ and γ′(f ) ⊇ γ(f ) for every

f . For any X ′ ⊆ X and F ′ ⊆ F , the production network γ : F ′ → 2X is (X ′, F ′)-feasible if (a)

γ(F ′)⊆ X ′ ∪ fF ′(γ) and (b) |{ f ∈ F ′|x ∈ γ(f )}| ≤ qx for all x ∈ X ′ ∪ fF ′(γ).

Algorithm 1. Given E = 〈I , F, X ,≻,ω〉, construct the outcome (µ,γ) in a series of steps. In step

t ≥ 1, the algorithm proceeds as follows with inputs (I t , F t , X t
0
). I t is the set of unassigned

agents, F t is the set of unassigned firms, and X t
0

is the set of primary and previously-produced

goods with remaining capacity. Let I 1 := I , F 1 := F , and X 1
0

:= X0.
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Step t Let X t := X t
0
∪ fF t (γt ) where γt : F t → 2X is the maximal, efficient (X t

0
, F t )-feasible

production network.14 Construct a directed graph as follows. Let I t ∪ X t ∪ {x0} be the set

of nodes. Draw an arc from each i ∈ I t to the ≻i -maximal element in X t ∪ {x0}. If x ∈ X t

and C (x ) := C (x |γt )∩ I t 6= ∅, draw an arc from x to the lowest-index agent in C (x ).15 Else if

C (x ) =∅, draw an arc from x to the lowest-index agent in I t .

If there is a link from i ∈ I t to x0, then define µ(i ) = x0, Ĩ t = {i }, and X̃ t = ∅. Update the

algorithm’s inputs—I t+1 := I t \ Ĩ t , F t+1 := F t , X t+1
0

:= X t
0

—and proceed to step t +1.

Otherwise, from each i ∈ I t there is a link to some x ∈ X t . Since each agent is “pointing” to

a good and each good is “pointing” to an agent, there exists a cycle of alternating agents and

goods. (A cycle may be formed by one agent and one good.) If there are multiple cycles, they

are disjoint and we may focus on any of them. Let K be that cycle.

Given K , pick any two distinct goods x , y ∈ K ∩ X t such that x ∈ Λγt (y ). If there are no

such goods, continue to (⋆) below. Otherwise, iterate the following operation to define a new

cycle until it contains no distinct goods x and y such that x ∈Λγt (y ).

Cycle Trimming. Since x and y belong to the same cycle, these goods are pointing

to different agents. Say, x → i and y → j . Delete the arc from x to i and draw a

new arc from x to j , thus defining the new cycle K ′ ⊆ K . The new cycle K ′ does

not contain good y or agent i .

(⋆) Given the identified cycle K , perform the following assignments.

(a) If i → x in the cycle, set µ(i ) = x . Let Ĩ t be the set of agents whose assignment has just

been defined. Let I t+1 := I t \ Ĩ t be the set of agents for whom µ(·) is yet undefined.

(b) Each x ∈ (
⋃

z∈K ∩X t Λγt (z )) \ X t
0

is either a produced good that is assigned to an agent in

(a) or a produced good that is an (indirect) input for a good that is assigned to an agent

in (a). This good’s producer, say f , belongs to F t . Accordingly, for each such firm define

γ(f ) = γt (f ). Let F̃ t be the set of firms whose input assignment has just been defined.

(c) Let X̃ t ⊆ µ(Ĩ t )∪ γ(F̃ t ) be the set of goods assigned to agents or firms in parts (a) and (b)

whose capacity has been depleted. Let X t+1
0

:= (X t
0
∪ fF̃ t (γt )) \ X̃ t be the set of primary

goods or goods produced up to step t with remaining capacity.

(d) If F t \ F̃ t = ∅, set F t+1 = ∅. Otherwise, define γ̂t as the maximal, efficient (X t+1
0

, F t \ F̃ t )-

feasible production network. Let F̂ t := { f ∈ F t \ F̃ t |γ̂t (f ) = ∅} be the set of remaining

14Lemma 5 in Appendix D shows that γt exists and is uniquely defined.
15Recall that I = {i1, i2, . . . , in}. We select the agent with the lowest index number for simplicity of exposition.
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(a) The cycle before trimming.
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(b) The cycle after trimming.

Figure 6: The cycle trimming procedure.

firms that are assigned no inputs at γ̂t . For each f ∈ F̂ t , assign γ(f ) = ∅ and denote the

set of these firms’ (henceforth, not produced) outputs by X̂ t . Let F t+1 := F t \ (F̃ t ∪ F̂ t ) be

the set of firms for which γ(·) is still undefined.

Given the newly defined parameters, (I t+1, F t+1, X t+1
0
), proceed to step t +1.

The above procedure continues until I t =∅. At this point,µ(·) has been defined for all i ∈ I

and γ(·) has been defined for all f ∈ F \ F t . For any remaining f ∈ F t , set γ(f ) =∅.

Since there is a finite number of agents and at least one agent is assigned in each step,

Algorithm 1 terminates in a finite number of steps. An example in Appendix C illustrates the

algorithm’s operation. Next, we address two topics related to the feasibility of the outcome

constructed by Algorithm 1.

Cycle Trimming A distinctive feature of Algorithm 1 is the cycle trimming procedure. To un-

derstand this step’s importance consider Figure 6(a), which illustrates a cycle arising at some

step t . Each good is pointing to an agent and each agent is pointing to a good. Suppose, as

illustrated by the dashed arrows, there is a supply chain at γt —x4 is reliant on x3, x3 is reliant

on x2, etc. If x2 has capacity one, the cyclic assignment is infeasible. If x3 is produced for i2’s

consumption, it needs x2 as an input. Thus, x2 cannot be consumed by i4, as required by the

cycle. The cycle trimming procedure resolves this conflict. Since x2 ∈ Λγt (x3), the procedure

has x2 point to i3 instead of i1. A new cycle without x3 is formed (Figure 6(b)). The new cycle’s

implied allocation is feasible.

The economics of the cycle trimming procedure are interesting. Intuitively, the operation

cuts out goods with “long” supply chains. A preference for “short” supply chains is warranted

given the underlying premise of exclusion blocking. If good x is a critical (indirect) input for y ,

then the owners of x have leverage over good y ’s assignment. Expansive supply chains intro-

duce many input dependencies, thereby amplifying hold-up risk. Thus, the trading protocol

steers the market toward less-complex and more robust production arrangements.
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Production Cycles Cycle trimming contributes to the feasibility of Algorithm 1’s output. How-

ever, it is not sufficient. Cyclic input-output relationships among firms remain a concern. For

example, a coal mine supplies a power plant and simultaneously uses the generated electric-

ity. Algorithm 1’s output may be infeasible in such cases.

A simple solution to the production-cycles problem is to (temporarily) assume it away.

Consider an economy E where every firm’s production function satisfies (4). The economy’s

input network is a directed graph Φ where the set of nodes is F and there is a directed edge

from f ∈ F to f ′ ∈ F if and only if there exists x ∈Wf ∩ X f ′ . Thus, an output of firm f ′ is an

input for firm f . The input network Φ is acyclic if for all f , f ′ ∈ F such that there is a path in Φ

from f to f ′, there is no path from f ′ back to f . The economy E is acyclic if its input network

is acyclic. Acyclic input networks describe supply chains with well-defined “upstream” and

“downstream” firms. Acyclicity is commonly assumed in studies of production and trading

networks (Ostrovsky, 2008; Manea, 2018; Kotowski and Leister, 2019). If E is acyclic and sat-

isfies the hypotheses of Theorem 3, then Algorithm 1 identifies a feasible, ex ante exclusion

core outcome (Lemmas 9 and 10 in Appendix D).

5.2 Part II — Condensation and Firm Boundaries

To extend our analysis beyond the acyclic case, we rely on the graph-theoretic concept of a

condensation (Bondy and Murty, 2008, pp. 91–92). Consider an input network Φ. The firms

f and f ′ are strongly connected if there is a path in Φ from f to f ′ and from f ′ back to f .

A strongly connected component of Φ is a set of firms Fk such that each pair f , f ′ ∈ Fk are

strongly connected and Fk is not a proper subset of any other set of firms that are strongly

connected.16 Figure 7(a) illustrates an input network with thirteen firms and seven strongly

connected components. Within each component, there is either a single firm or an input-

output cycle among the constituent firms. Figure 7(b) presents the network’s condensation,

which is formed by contracting the nodes in each strongly connected component into a single

node while preserving any external links. A directed graph’s condensation is a directed acyclic

graph. An acyclic graph’s condensation is the graph itself.

We adapt the idea of a condensation of a directed graph to define the condensation of an

economy E , denoted as Ê = 〈Î , F̂ , X̂ , ≻̂,ω̂〉 (Definition 8 in Appendix D). Intuitively, the con-

cept involves “merging” the firms in each strongly connected component of the economy’s

input network.17 For example, in Figure 7 { f3, f4, f5} becomes f̂3. The merged firm’s “internal”

16A firm that is not strongly connected to any other firm forms a strongly connected component by itself.
17There are some additional subtleties. Endowments and primary goods need to be defined in Ê as well.
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(a) An input network with thirteen firms.

f̂1

f̂2

f̂3

f̂4

f̂5 f̂7

f̂6
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Figure 7: The condensation of an input network.

input-output dependencies cancel out leaving only its “external” factor demand/supply rela-

tionships intact. Ê is an acyclic economy that satisfies the hypotheses of Theorem 3. It has an

ex ante exclusion core outcome that implies existence of an ex ante exclusion core outcome

in the original economy E (see the proof of Theorem 3 in Appendix D).

The economic interpretation of a condensation depends on the granularity captured by

the original economy E . At the (extreme) micro-level, strongly connected components de-

fine firm boundaries. Posit that each “firm” in E is a discrete production task. Closely-related

tasks tend to be integrated within a single organization, if only to save on coordination and

transaction costs (Coase, 1937). A strongly connected component of E identifies a set of tech-

nologically co-dependent tasks, say Fk = { f , f ′, . . .}, and the condensed firm f̂k coordinates

the tasks’ execution. The interactions within firm f̂k are a black box. Similar logic applies at

a higher level of aggregation with each f ∈ Fk representing a production plant of some larger

entity f̂k . Functional entities among co-reliant organizations may also be interpreted as “con-

densed firms” in our model. Examples include patent pools and joint ventures.

6 Multisourcing

What kinds of production networks are consistent with ex ante exclusion core outcomes?

Under the hypotheses of Theorem 3, each ex ante exclusion core outcome is consumption-

equivalent to one with an efficient production network.

Proposition 3. Let E be an economy satisfying (A1)–(A4) and (B1) with ex ante exclusion core

outcome (µ,γ). There exists an efficient production network γ̂ such that (µ, γ̂) is an ex ante ex-

clusion core outcome in E .

In general, however, an inefficient production network may be necessary to support a par-

ticular consumption allocation as an ex ante exclusion core outcome. Engaging redundant
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inputs can insulate a firm from hold-up threats. The supply-chain practice of multisourcing

demonstrates this idea in practice.

Example 1. Let I = {i1, i2, i3} and X = {x1, . . . , x5}. Good x1 is produced according to the pro-

duction function

f (Z ) =







x1 if x2 ∈ Z or x3 ∈ Z

∅ otherwise
.

The remaining goods are primary goods. The agents’ preferences are

≻i1
: x1, x4 ≻i2

: x1, x4 ≻i3
: x1, x5.

The endowment system is ω(i1) = {x4, x5}, ω(i2) = {x2}, and ω(i3) = {x3}. Good x1 is owned

collectively: x1 ∈ω(C ) ⇐⇒ C = I .

This economy has several ex ante exclusion core outcomes. Of particular interest is

µ(i1) = x1 µ(i2) = x4 µ(i3) = x5 γ(f ) = {x2, x3}.

where x1 is produced using both inputs. Such multisourcing insulates i1 from challenges by i2

and i3. Both want to claim x1, but neither has the ability to do so.

7 Price Equilibrium

A connection exists between trading cycle algorithms and price equilibria (Shapley and Scarf,

1974; Richter and Rubinstein, 2015). In our model, feasible outcomes identified by Algorithm

1 can be decentralized via the price system. We let p ∈R
|X ∪{x0}|
+ denote a price vector; px is the

price of good x . The next definition adapts a definition of Debreu (1959, p. 93).

Definition 7. The outcome (µ∗,γ∗) is an equilibrium relative to the price system p ∗ if

(a) for all i ∈ I , x ≻i µ
∗(i ) =⇒ p ∗

x
> p ∗

µ∗(i )
;

(b) for all f ∈ F , γ∗(f ) ∈ arg maxY ⊆X

∑

x∈f (Y )p
∗
x
−
∑

z∈Y p ∗
z

; and,

(c) the outcome (µ∗,γ∗) is feasible.

Conditions (b) and (c) are standard requirements concerning profit-maximization by firms

and feasibility, respectively. Condition (a) describes consumer behavior and requires elabo-

ration. Recall that an endowment systemω(·) defines a distribution of exclusion rights, which
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can be very general. When agents lack a private endowment or goods are controlled collec-

tively, it is unclear how to define personal budget sets without further ad hoc assumptions.18

Definition 7(a) sidesteps this difficulty. If agent i prefers x to his consumption choice µ∗(i ),

then x must be more expensive than µ∗(i ). This is an immediate implication of utility maxi-

mization subject to a budget constraint.19

Proposition 4. Let E be an economy satisfying (A1)–(A4) and (B1)–(B3) where each good has

capacity one. There exists an ex ante exclusion core outcome (µ∗,γ∗) and a price vector p ∗ such

that (µ∗,γ∗) is an equilibrium relative to p ∗.

Corollary 1. Let E be an acyclic economy satisfying (A1)–(A4) and (B1)–(B3) where each good

has capacity one. If (µ∗,γ∗) is an outcome identified by Algorithm 1, then there exists a price

vector p ∗ such that (µ∗,γ∗) is an equilibrium relative to p ∗.

If there are goods with infinite capacity (i.e., public goods), then it is straightforward to

adapt the proof of Proposition 4 to construct an equilibrium with personalized prices (i.e., the

Lindahl equilibrium analogue of Definition 7).

8 Related Literature and Concluding Remarks

Our study contributes to the literatures on property rights and economic organization, and

trading and production networks. We conclude by discussing each contribution.

Property Rights and Economic Organization The interplay between property rights and

economic organization has received considerable attention (Coase, 1960; Demsetz, 1967). Most

recent treatments of this question build upon the incomplete contracts framework of Gross-

man and Hart (1986) and Hart and Moore (1990). Our model’s technical scaffold differs sub-

stantially from this literature. We start with one defining principle of property, the right to

exclude, and we trace out its implications in an economy with general interdependencies.

Exclusion rights allow an agent to withhold the supply of goods, thus tilting outcomes in his

favor. This monopoly dimension of property is well known; Posner and Weyl (2018) discuss its

implications at length. In a production context, it often implies hold-up and inefficiency. Our

analysis shows that this effect has consequences beyond a specific buyer-seller relationship,

18Simply introducing ownership shares is unsatisfactory since it is not obvious how share endowments

(should) interact withω(·).
19For Definition 7(a) we could instead write that for all i ∈ I , µ∗(i ) is ¥i -maximal in {x ∈ X ∪{x0}|px ≤ pµ∗ (i )}.
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the focus of standard contract-theoretic studies, due to the network structure of economic ac-

tivity. Changes to the ownership structure (e.g., vertical integration) can allay these concerns

(Williamson, 1971; Klein et al., 1978; Kranton and Minehart, 2000).

Despite differences with the incomplete contracts literature, our analysis is thematically

related to that of Hart and Moore (1990) who develop a theory of the firm emphasizing asset

control. In Hart and Moore (1990), agents make ex ante (human capital) investments and di-

vide the surplus from production. Surplus division depends on the “control structure,” which

defines asset ownership and determines ex post bargaining power. Though contractable ex

ante, Hart and Moore’s control structure is fixed when final outcomes are determined. The en-

dowment systemω(·) in our model is similarly fixed. However, final allocations in our setting

are governed by the extended endowment, Ωγ(·|ω,µ), which is endogenous to the outcome

(µ,γ). The extended endowment defines each coalition’s de facto power accounting for the

micro-level connections in consumption and production. These details are absent from Hart

and Moore’s model and, we argue, are critical whenever exclusion rights govern interaction.

Production and Trading Networks Analysis of the economy’s network structure dates to

at least the input-output models of Leontief (1941). Carvalho and Tahbaz-Salehi (2019) sur-

vey this literature, with focus on how production networks propagate economic shocks. Our

model’s specifics distinguish it from this macro- and trade-oriented literature, but we share

the premise that direct and indirect trading and input-output relationships transmit shocks

between firms. Our solution relies on agents being able to threaten harm to (indirectly) con-

nected parties by withholding supply (a negative shock).

The relationship between network structures and economic outcomes has been examined

in the literature on trading networks and intermediation (Kranton and Minehart, 2001; Gale

and Kariv, 2007; Elliott, 2015; Condorelli et al., 2017; Manea, 2018). Galeotti and Condorelli

(2016) provide a survey. A consistent finding in this literature is that an agent’s market power

is tied to his position in the trading network. Our model echoes this intuition. If a good is a

critical input for many firms, either directly or indirectly via a supply chain, its owners can

block many unfavorable outcomes.

Finally, our analysis complements research by Ostrovsky (2008), Hatfield et al. (2013), and

Fleiner et al. (2019). These authors extend the “matching with contracts” framework of Hat-

field and Milgrom (2005) to the case of supply chains and trading networks. In such models,

bilateral contracts determine the goods exchanged and the terms of trade. Our study shares

this literature’s motivation, but differs on both technical and conceptual grounds. The tech-
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nical distinction concerns the solution concept. Stability and its generalizations are the pre-

ferred solutions in contract-based matching models. Roughly, a set of contracts is stable if

there does not exist a coalition that can profitably recontract. The exclusion core, in contrast,

posits that agents can veto others’ assignments by invoking their direct and indirect exclusion

rights. At an exclusion core outcome, no agent can profitably exercise such claims.

A conceptual contrast is also noteworthy. At a high level, the matching with contracts

framework builds upon Gale and Shapley’s (1962) “marriage market” model. Our model’s

technical roots are in Shapley and Scarf’s (1974) “house exchange” economy. This difference is

intriguing given the former’s emphasis on contracts and the latter’s connection to property (as

argued above). The contracts-property dichotomy is a recognized, though fluid, distinction

in legal analysis.20 It is interesting, therefore, that two seminal models of markets have two

different legal institutions in their foundations. We leave it to future research to characterize

this distinction’s implications for both the design and operation of markets.

A Appendix: Scalable Production

Our model assumes that a firm f produces ∅ or X f . This framework embeds scalable produc-

tion. To illustrate, suppose a firm produces two units of output, x1 and x2. Production of the

first unit requires one input, y1, while production of the second unit requires the additional

inputs y2 and y3. Intuitively, this firm has decreasing returns to scale. To embed this situation

in our model, posit there are two firms, f1 and f2, with production functions

f1(Z ) =







{x1, x ∗} if y1 ∈ Z

∅ otherwise
and f2(Z ) =







x2 if Z ⊇ {y2, y3, x ∗}

∅ otherwise
.

The first unit x1 is produced using y1 as an input. Production of x1 also creates a token x ∗.

Production of the second unit x2 requires inputs y2 and y3 and the token x ∗. The latter ensures

that good x2 is produced only if good x1 is also produced. (Else, x ∗ would not be available.)

The token chains together the operation of f1 and f2 as if they form one entity that can scale

output. The preceding construction can be repeated as required. Increasing and decreasing

returns to scale production can be accommodated.

20Merrill and Smith (2001a, p. 774) write that “[p]roperty and contracts are bedrock institutions of the legal

system, but it is often difficult to say where the one starts and the other leaves off.”
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B Appendix: Consumption of Multiple Goods

Our model assumes that agents have unit demand. Discrete exchange economies where an

agent can consume multiple goods are ill behaved, with few positive results (Konishi et al.,

2001). We can incorporate this case via a reinterpretation of “goods” and production by “firms.”

To sketch the argument, assume agent i prefers an apple (xa ) to a banana (xb ), but his most-

preferred consumption choice is to have both an apple and a banana, {xa , xb } ≻i xa ≻i xb .

This preference lies outside our model. Let f be an agent-specific firm that transforms an ap-

ple and a banana into an agent-specific, apple-banana composite good (x i
a b

) according to the

production function

f (Z ) =







x i
a b

if Z ⊇ {xa , xb }

∅ otherwise
.

The good x i
a b

is essentially a relabeling of {xa , xb } and, therefore, it is natural to conclude

that agent i ’s preference would be x i
a b
≻i xa ≻i xb . The preceding preference is within our

framework. We can replicate the preceding construction for all agents as required.

C Appendix: Operation of Algorithm 1

To illustrate Algorithm 1’s operation, consider the following economy E = 〈I , F, X ,≻,ω〉. The

set of goods is X = {x1, . . . , x6}. All goods have unit capacity. Goods {x1, . . . , x4} are produced

by the firms. Goods {x5, x6} are primary goods. There are three firms, F = { f1, f2, f3}, with

production functions

f1(Z ) =







x1 x3 ∈ Z

∅ otherwise
, f2(Z ) =







x2 x5 ∈ Z

∅ otherwise
, and f3(Z ) =







{x3, x4} x6 ∈ Z

∅ otherwise
.

An output of f3 is an input for f1. There are three agents, I = {i1, i2, i3}, with preferences

≻i1
: x1, x4 ≻i2

: x3, x2 ≻i3
: x1, x3, x2.

Each good’s principals are: C x1 = {i2}, C x2 = {i1}, C x3 = {i1, i2}, C x4 = {i3}, and C x5 = C x6 =

{i1, i2, i3}. The endowment system ω(·) is given by x ∈ ω(C ) ⇐⇒ C x ⊆ C . Thus, goods x5

and x6 are collectively owned. Goods x3 and x4 have disjoint sets of principals despite being

produced by the same firm.
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Figure 8: Step-by-step operation of Algorithm 1.

Figure 8 illustrates the algorithm’s step-by-step operation.

Step 1. The algorithm initializes with I 1 = {i1, i2, i3}, F 1 = { f1, f2, f3}, and X 1
0
= {x5, x6}. The

maximal, efficient (X 1
0

, F 1)-feasible production network is γ1(f1) = x3, γ1(f2) = x5, and γ1(f3) =

x6. Thus, X 1 = {x1, . . . , x6}. The initial directed graph constructed in step 1 is illustrated in

Figure 8(a). There is one cycle, but its implied allocation is infeasible. (Good x3 is assigned to

i2 as a consumption good; it is also an input for x1.) The cycle trimming procedure reassigns x3

to point to i2. This is because x3 ∈ Λγ1 (x1) and x1→ i2. Figure 8(b) illustrates this adjustment.

The resulting cycle (i2⇄ x3) determines this step’s assignments as follows:

(a) Agent i2 is assigned x3: µ(i2) = x3. Thus, Ĩ 1 = {i2} and I 2 = {i1, i3}.

(b) Good x3 must be produced by f3. Thus, the firm is assigned its requisite input: γ(f3) =

γ1(f3) = x6. F̃ 1 = { f3}. Coincidentally, f3 also produces x4, which is henceforth available.

(c) The set of assigned goods with depleted capacity is X̃ 1 = {x3, x6}. The set of primary or

produced goods with remaining capacity is X 2
0
= {x4, x5}.

(d) The maximal, efficient (X 2
0

,{ f1, f2})-feasible production network is γ̂1(f1) = ∅ and γ̂1(f2) =

x5. Thus, firm f1 cannot produce given the defined allocation. Hence, F̂ 1 = { f1} and X̂ 1 =

{x1}. Therefore, γ(f1) =∅ and F 2 = { f2}.

Step 2. At the start of step 2, I 2 = {i1, i3}, F 2 = { f2}, and X 2
0
= {x4, x5}. The maximal, efficient

(X 2
0

, F 2)-feasible production network is γ2(f2) = x5 and X 2 = {x2, x4, x5}. Figure 8(c) presents

the directed graph constructed at the beginning of step 2. There is one cycle and its implied

allocation is feasible. The step’s assignments are defined as follows:

(a) Agent i1 receives x4 (µ(i1) = x4) and i3 receives x2 (µ(i3) = x2). Thus, Ĩ 2 = {i1, i3} and I 3 =∅.

(b) Firm f2 produces x2 and receives its requisite input: γ(f2) = γ
2(f2) = x5. F̃ 2 = { f2}.
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(c) The set of assigned goods with depleted capacity is X̃ 2 = {x2, x4, x5}. The set of primary or

produced goods with remaining capacity is X 3
0
=∅.

(d) As F 2 \ F̃ 2 =∅, assignment phase (d) is unnecessary.

Since I 3 =∅, the algorithm terminates after step 2. The final outcome is (µ,γ)whereµ(i1) = x4,

µ(i2) = x3, µ(i3) = x2, γ(f1) =∅, γ(f2) = x5, and γ(f3) = x6.

D Appendix: Proofs

Proof of Lemma 1. Recall that Ω(C |ω,µ) := ω(
⋃∞

k=0
Ck ) where C0 = C and Ck = Ck−1 ∪ (µ

−1 ◦

ω)(Ck−1) for each k ≥ 1. We make two preliminary observations. First, since Ck ⊆ Ck+1 and

ω(·) is monotone, it follows that Ω(C |ω,µ) =
⋃∞

k=0
ω(Ck ). And second, Ck =C ∪ (µ−1 ◦ω)(Ck−1)

for each k ≥ 1. We can prove this fact by induction. The base case is true since C1 = C0 ∪

(µ−1 ◦ω)(C0) and C0 = C . Let k ≥ 2 and suppose Ck−1 = C ∪ (µ−1 ◦ω)(Ck−2). By definition,

Ck =Ck−1∪(µ
−1◦ω)(Ck−1) =C ∪(µ−1◦ω)(Ck−2)∪(µ

−1◦ω)(Ck−1). Since Ck−2 ⊆Ck−1,µ−1(ω(Ck−2))⊆

µ−1(ω(Ck−1)). Hence, Ck = C ∪ (µ−1 ◦ω)(Ck−1).

To prove the lemma it suffices to show that Zk =ω(Ck ) for all k . If k = 0, then Z0 =ω(C ) =

ω(C0). Proceeding by induction, let k ≥ 1. If Zk−1 =ω(Ck−1), then Zk = Zk−1∪ω(C ∪µ
−1(Zk−1)) =

ω(Ck−1)∪ω(C ∪µ
−1(ω(Ck−1))) =ω(Ck−1)∪ω(Ck ) =ω(Ck ).

The proof of Theorem 2 invokes the following lemma.

Lemma 2. Let E = 〈I , F, X ,≻,ω〉 be an economy satisfying (A1)–(A4). Let (µ,γ) be a feasible

outcome and C ⊆ I . Let Ż−1 = ∅ and for each k ≥ 0, recursively define Żk := Żk−1 ∪ω(C ∪

µ−1(Żk−1))∪λγ(ω(C ∪µ
−1(Żk−1))). For each k ≥ 0,

λγ
�

ω(C ∪µ−1(Żk−1))
�

⊇αγ
�

Żk−1∪ω(C ∪µ
−1(Żk−1))

�

. (5)

Proof of Lemma 2. If k = 0, (5) becomes λγ (ω(C )) ⊇ αγ (ω(C )). This statement is true because

λγ (Z )⊇αγ (Z ) for all Z ⊆ X . Let k ≥ 1 and working toward a contradiction assume that

x ∈αγ
�

Żk−1∪ω(C ∪µ
−1(Żk−1))

�

, (6)

but

x /∈ λγ
�

ω(C ∪µ−1(Żk−1))
�

. (7)
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Since λγ (Z )⊇αγ (Z ), (7) implies

x /∈αγ
�

ω(C ∪µ−1(Żk−1))
�

. (8)

Together, (6) and (8) imply that there exists a nonempty Y x ⊆ Żk−1 such that (a) Y x ∩ω(C ∪

µ−1(Żk−1)) =∅ and (b) x ∈ αγ(Y
x ∪ω(C ∪µ−1(Żk−1))).

If y ∈ Y x ⊆ Żk−1, then (i) y ∈ ω(C ∪µ−1(Żk ′−1)) for some k ′ < k and/or (ii) y ∈ λγ(ω(C ∪

µ−1(Żk ′−1))) for some k ′ < k . Condition (i) cannot be true. By monotonicity of ω(·), ω(C ∪

µ−1(Żk ′−1)) ⊆ω(C ∪µ
−1(Żk−1)). Thus, if y ∈ω(C ∪µ−1(Żk ′−1)), then y ∈ Y x ∩ω(C ∪µ−1(Żk−1)),

contradicting property (a) above. Thus, (ii) holds for all y ∈ Y x . Therefore, Y x ⊆ λγ(ω(C ∪

µ−1(Żk−1))). This implies,21 αγ(Y
x ∪ω(C ∪µ−1(Żk−1))) ⊆ λγ(ω(C ∪µ

−1(Żk−1))). By property (b),

x ∈αγ(Y
x ∪ω(C ∪µ−1(Żk−1))). Hence, x ∈λγ(ω(C ∪µ

−1(Żk−1))) contradicting (7).

Proof of Theorem 2. Fix E = 〈I , F, X ,≻,ω〉. Suppose γ ∈ Γ satisfies (3). Consider the exchange

economy Ė = 〈İ , Ẋ , ≻̇,ω̇〉 derived from E as follows: İ = I ; Ẋ = (X0∪ fF (γ))∩{x ∈ X | |{ f ∈ F |x ∈

γ(f )}|< qx }; for each i , ≻̇i equals ≻i restricted to Ẋ ∪{x0}; and, ω̇(C ) := (ω(C )∪λγ(ω(C )))∩ Ẋ

for each C ⊆ İ .

It is clear that ω̇ satisfies assumptions (A1)–(A3). To verify (A4), observe that

⋂

C ∈{C ′ |x∈ω̇(C ′)}

C =

 

⋂

C ∈{C ′ |x∈λγ(ω(C ′))}

C

!

∩

�

⋂

C ∈{C ′ |x∈ω(C ′)}

C

�

=

 

⋂

C ∈{C ′ |ω(C ′)∈Λγ(x )}

C

!

∩C x

⊇

 

⋂

C ∈{C ′ |ω(C ′)∈Λγ(x )}

�

⋃

z∈ω(C )

C z

�!

∩C x (9)

⊇

 

⋂

Z∈Λγ(x )

�

⋃

z∈Z

C z

�
!

∩C x (10)

=
⋂

Z∈Λγ(x )

�

⋃

z∈Z

C z

�

(∵ x ∈Λγ(x ))

6=∅.

Line (9) is because C z ⊆ C for all z ∈ω(C ) (by (A4)). And so,
⋃

z∈ω(C )C
z ⊆C . Line (10) follows

21Recall that λγ(Z ) =
⋃∞

k=0
Ak where A0 = Z and Ak = Ak−1 ∪αγ(Ak−1). If Y ⊆ λγ(Z ), then there exists K such

that Y ⊆
⋃K

k=0
Ak = AK . Thus, αγ(Y ∪Z )⊆ αγ(AK )⊆ AK +1 ⊆ λγ(Z ).

28



from the fact that {Z ∈Λγ(x )|∃C
′ ⊆ I such thatω(C ′) = Z } ⊆Λγ(x ). Since ω̇ satisfies (A1)–(A4),

Theorem 1 implies that Ė has an exclusion core allocation, µ.

Next, observe that (µ,γ) is feasible in E . This is because µ: I → Ẋ ∪{x0} only assigns goods

that are available given the firms’ input assignments and output. To verify that (µ,γ) is in the

ex post exclusion core of E , it suffices to show thatΩγ(C |ω,µ)∩ Ẋ ⊆Ω(C |ω̇,µ)whereΩ(C |ω̇,µ)

is defined in (1a,b) and Ωγ(C |ω,µ) is defined in (2a,b).

First, note that Z0 ∩ Ẋ = ω(C ) ∩ Ẋ ⊆ (ω(C ) ∪ λγ(ω(C ))) ∩ Ẋ = ω̇(C ) = Ż0. Proceeding by

induction, let k ≥ 1 and suppose that Zk−1∩ Ẋ ⊆ Żk−1. Since, Żk = Żk−1∪ ω̇(C ∪µ
−1(Żk−1)),

Żk = Żk−1∪
�

ω(C ∪µ−1(Żk−1))∪λγ
�

ω(C ∪µ−1(Żk−1))
��

∩ Ẋ

⊇ Żk−1∪
�

ω(C ∪µ−1(Żk−1))∪αγ
�

Żk−1∪ω(C ∪µ
−1(Żk−1))

��

∩ Ẋ (11)

⊇
�

(Zk−1∩ Ẋ )∪ω(C ∪µ−1(Zk−1∩ Ẋ ))∪αγ(Zk−1∩ Ẋ )
�

∩ Ẋ (12)

=
�

Zk−1∪ω(C ∪µ
−1(Zk−1))∪αγ(Zk−1)

�

∩ Ẋ (13)

= Zk ∩ Ẋ .

Line (11) follows from Lemma 2. Line (12) follows from the induction hypothesis and the

monotonicity of ω, µ−1, and αγ. Line (13) is because µ−1(Zk−1 ∩ Ẋ ) = µ−1(Zk−1) and αγ(Zk−1 ∩

Ẋ ) = αγ(Zk−1). (Only available goods may be assigned or be part of a critical set of inputs.)

Since Zk ∩ Ẋ ⊆ Żk for each k , Ωγ(C |ω,µ)∩ Ẋ =
⋃∞

k=0
(Zk ∩ Ẋ )⊆

⋃∞

k=0
Żk =Ω(C |ω̇,µ).

The proof of Theorem 3 relies on several lemmas. Lemmas 3–8 are preliminaries invoked

in subsequent arguments. Lemma 9 shows that Algorithm 1’s output is feasible and Lemma

10 demonstrates that it is in the ex ante exclusion core of an acyclic economy. Definition 8

introduces the condensation of an economy. Each condensed economy has an ex ante exclu-

sion core outcome (Lemma 11). Theorem 3’s proof concludes by using Lemma 11 to show that

every economy satisfying the theorem’s hypotheses has an ex ante exclusion core outcome.

Lemma 3. Let E = 〈I , X , F,≻,ω〉 be an economy satisfying (A1)–(A4) and (B1). Let Z ⊆ X , γ ∈ Γ ,

and consider λγ(Z ) =
⋃∞

k=0
Ak where A0 = Z and Ak = Ak−1 ∪αγ(Ak−1) for each k ≥ 1.

(a) If aK ∈ AK and aK /∈ AK −1, then there exists a sequence (aK , aK −1, . . . , a0) such that ak ∈ Ak

for each k ≥ 0 and ak ∈ αγ(ak−1) for each k ≥ 1.

(b) For all x ∈ X , every Z ∈Λγ(x ) consists of a single element.

(c) If z ∈Λγ(y ) and y ∈Λγ(x ), then z ∈Λγ(x ).
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(d) If y ∈Λγ(x ), then
⋂

z∈Λγ(x )
C z ⊆

⋂

z∈Λγ(y )
C z .

(e) If the economy’s input network Φ is acyclic, [x 6= y & y ∈Λγ(x )] =⇒ x /∈Λγ(y ).

(f) Suppose Fk is a strongly connected component of the economy’s input networkΦ and f , f ′ ∈

Fk are distinct firms. If x ∈ X f is produced at γ and y ∈Wf ′ , then y ∈Λγ(x ).

Proof of Lemma 3. (a) Suppose aK ∈ AK and aK /∈ AK −1. Thus, aK ∈ αγ(AK −1) and AK −1 is

critical for x at γ. Since each firm’s production function in Leontief, aK ∈ αγ(aK −1) for some

aK −1 ∈ AK −1. Moreover, aK −1 /∈ AK −2 (else, aK ∈ AK −1, which is assumed not true). Repeating

this same construction, we can define a sequence (aK , aK −1, . . . , a1, a0) such that ak ∈ Ak for

each k and ak ∈αγ(ak−1).

(b) Suppose Z ∈ Λγ(x ). Thus, x ∈ λγ(Z ). It suffices to show that there exists z ∈ Z such

that x ∈ λγ(z ). The result is immediate if x ∈ Z . Thus, suppose x /∈ Z . Since x ∈ λγ(Z ) =
⋃∞

k=0
Ak , x ∈ AK and x /∈ AK −1 for some some K ≥ 1. By part (a), there is a sequence x =

aK , aK −1, . . . , a1, a0 = z such that ak ∈ αγ(ak−1) for each k ≥ 1 and z ∈ Z . Given z , consider the

sequence Az
0
= {z } and Az

k
= Az

k−1
∪αγ(A

z
k−1
) for each k ≥ 1. Clearly, ak ∈ Az

k
for each k = 0, . . . , K .

And so, x ∈
⋃∞

k=0
Az

k
=λγ(z ).

(c) If z ∈Λγ(y ), then y ∈ λγ(z ) =
⋃∞

k=0
Az

k
where Az

0
= {z } and Az

k
= Az

k−1
∪αγ(A

z
k−1
). Likewise,

if y ∈ Λγ(x ), then x ∈ λγ(y ) =
⋃∞

k=0
A

y

k where A
y

0 = {y } and A
y

k = A
y

k−1 ∪αγ(A
y

k−1). Let K be the

smallest value for which y ∈
⋃K

k=0
Az

k
. Thus, for all k ≥ K , A

y

k−K ⊆ Az
k

. Hence,
⋃∞

k=0
A

y

k ⊆
⋃∞

k=0
Az

k
. Therefore, x ∈ λγ(z ) and z ∈Λγ(x ).

(d) By part (c), [z ∈ Λγ(y ) & y ∈ Λγ(x )] =⇒ z ∈ Λγ(x ). Thus, Λγ(y ) ⊆ Λγ(x ). Hence,
⋂

z∈Λγ(x )
C z ⊆

⋂

z∈Λγ(y )
C z .

(e) Suppose x 6= y and y ∈Λγ(x ). Thus, x ∈λγ(y ). Given part (a), there exists a sequence of

goods (aK , . . . , a0) such that x = aK , y = a0 and ak ∈ αγ(ak−1) for all k ≥ 1. Because production

functions are Leontief, there is a link from the firm producing ak to the firm producing ak−1

in Φ. Hence, there is a path in Φ from the producer of x to the producer of y . If x ∈ Λγ(y ),

then the same reasoning implies that there exists a path in Φ from the producer of y to the

producer of x . As Φ is acyclic, this is impossible. Thus, x /∈Λγ(y ).

(f) Because f , f ′ ∈ Fk , there is a path inΦ such that f = f 1→ ·· ·→ f L = f ′. If y ∈Wf ′ , then it

is critical for the production of all x ′ ∈ X f L . Since f L−1→ f L , there exist y L ∈ X f L ∩Wf L−1 . This

good is critical for the production of all x ′ ∈ X f L−1 . Continuing in this way, we can construct

a sequence y ℓ ∈ X f ℓ ∩Wf ℓ−1 for all ℓ ≥ 2 where y ℓ is a critical input for firm f ℓ−1’s production.

Thus, x = y 1 ∈αγ(y
2), y 2 ∈αγ(y

3), . . . , y L ∈ αγ(y ). Thus, x ∈λγ(y ) and, therefore, y ∈Λγ(x ).
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Lemma 4. Let E = 〈I , X , F,≻,ω〉 be an economy satisfying (A1)–(A4) and (B1). Let (µ,γ) be a

feasible outcome and C ⊆ I . Let Z−1 = ∅ and Zk = Zk−1 ∪ω(C ∪µ
−1(Zk−1))∪αγ(Zk−1) for each

k ≥ 0. If x ∈ Zk , then there exists y ∈ω(C ∪µ−1(Zk−1)) such that y ∈Λγ(x ).

Proof of Lemma 4. If x ∈ Z0, then x ∈ω(C ) and x ∈ Λγ(x ). Proceeding by induction, let k ≥ 1

and suppose x ∈ Zk ′ =⇒ [∃y ∈ ω(C ∪µ−1(Zk ′−1)) s.t. y ∈ Λγ(x )] is true for all k ′ ≤ k − 1. Let

x ∈ Zk . There are three cases.

Case 1. If x ∈ Zk−1, then by the induction hypothesis there exists y ∈ω(C ∪µ−1(Zk−2))⊆ω(C ∪

µ−1(Zk−1)) such that y ∈Λγ(x ).

Case 2. If x ∈ω(C ∪µ−1(Zk−1)), then the conclusion follows trivially (x = y ).

Case 3. If x ∈ αγ(Zk−1), then Zk−1 is a critical set of inputs for x . By (B1), there exists some

x ′ ∈ Zk−1 that is a critical input for x , i.e., x ′ ∈Λγ(x ). By the induction hypothesis, there

exists y ∈ω(C ∪µ−1(Zk−2)) ⊆ω(C ∪µ
−1(Zk−1)) such that y ∈ Λγ(x

′). Since, x ′ ∈ Λγ(x ),

Lemma 3(c) implies that y ∈Λγ(x ).

Lemma 5. Consider an economy E = 〈I , X , F,≻,ω〉 satisfying (B1) and (B2). Let X ′ ⊆ X and

F ′ ⊆ F . A maximal, efficient (X ′, F ′)-feasible production network exists and is unique.

Proof of Lemma 5. The empty production network (i.e., γ(f ) =∅ for all f ∈ F ′) is efficient and

(X ′, F ′)-feasible. Thus, a maximal, efficient (X ′, F ′)-feasible production network exists. To

show uniqueness, let γ 6= γ′ be maximal, efficient (X ′, F ′)-feasible production networks. Let

γ̂(f ) = γ(f )∪ γ′(f ) for all f ∈ F ′. The network γ̂ is efficient because γ and γ′ are efficient and

each firm has a Leontief production function. (A producing firm must be assigned a unique

set of inputs; a non-producing firm must be assigned no inputs.) Since γ̂⊇ γ and γ̂ 6= γ, γ̂must

not be (X ′, F ′)-feasible. Since γ and γ′ are (X ′, F ′)-feasible, γ̂(F ′)⊆ X ′∪ fF ′(γ̂). Therefore, there

exists a good x such that |{ f ∈ F ′|x ∈ γ̂(f )}| > qx . Since each production function is Leontief,

there are strictly more than qx firms in F ′ that require x as an input. At least one of these firms

cannot produce at γ, contradicting (B2).

Lemma 6. Let E = 〈I , X , F,≻,ω〉 be an economy satisfying (A1)–(A4) and (B1)–(B3). Let X ′ ⊆ X

and F ′ ⊆ F . If γ is an (X ′, F ′)-feasible production network, then C (x |γ) =
⋂

z∈Λγ(x )
C z 6=∅ for all

x ∈ X ′ ∪ fF ′(γ).

Proof of Lemma 6. By Lemma 3(b), C (x |γ) =
⋂

z∈Λγ(x )
C z for allγ. By (B3), C (x |γ) =

⋂

z∈Λγ(x )
C z 6=

∅. Therefore, to prove the lemma it suffices to show that Λγ(x ) ⊆ Λγ(x ) for all x ∈ X ′ ∪ fF ′(γ).
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Consider the (X ′, F ′)-feasible production network γ. Let x ∈ X ′∪ fF ′(γ). By Lemma 3(b), Λγ(x )

contains only singletons. Let z ∈ Λγ(x ). Therefore, x ∈ λγ(z ) =
⋃∞

k=0
A
γ

k where A
γ
0 = {z } and

A
γ

k = A
γ

k−1 ∪αγ(A
γ

k−1). (We include the γ superscript on A
γ

k for clarity.) By Lemma 3(a), there

exists a sequence (aK , aK−1, . . . , a0) such that x = aK , a0 = z , and ak = αγ(ak−1) for each k ≥ 1.

Since production functions are Leontief, if ak−1 is critical for ak at γ, it must be critical for ak

at γ. Thus, ak = αγ(ak−1) for each k ≥ 1. Hence, a0 ∈ A
γ
0 and ak ∈ A

γ

k = A
γ

k−1 ∪αγ(A
γ

k−1) for each

k ≥ 1. And so, x ∈
⋃∞

k=0
A
γ

k =λγ(z ), which implies z ∈Λγ(x ). Thus, Λγ(x )⊆Λγ(x ).

Lemma 7. Let E = 〈I , X , F,≻,ω〉 be an economy satisfying (A1)–(A4) and (B1)–(B3). Consider

step t of Algorithm 1 where γt is the maximal, efficient (X t
0

, F t )-feasible production network

and C (x ) = C (x |γt )∩ I t . Let K1 ⊇ · · · ⊇ KL be the sequence of cycles identified by iterating the

“cycle trimming” procedure within this step of the algorithm. Let x , y ∈ Kℓ ∩X , x ∈Λγt (y ), and

suppose x → i and y → j within cycle Kℓ. Suppose the procedure reassigns x to point to j at

iteration ℓ.

(a) If j ∈C (y ), then j ∈C (x ).

(b) If j /∈C (y ), then some i ′ ∈
⋂

z∈Λγt (y )
C z was assigned by the algorithm in some step t ′ < t .

Proof of Lemma 7. Recall that C (x ) =C (x |γt )∩I t = (
⋂

z∈Λγt (x )
C z )∩I t . The term in parenthesis

is not empty by Lemma 6. The proof is by induction. Consider cycle K1. Let x , y ∈ K1 ∩ X ,

x ∈ Λγt (y ), and suppose x → i and y → j within cycle K1. Suppose the procedure reassigns

x to point to j . Since x ∈ Λγt (y ),
⋂

z∈Λγt (y )
C z ⊆

⋂

z∈Λγt (x )
C z by Lemma 3(d). Thus, if j ∈ C (y ),

then j ∈C (x ). Otherwise, if j /∈C (y ), then C (y ) =∅. Thus, all i ′ ∈
⋂

z∈Λγt (y )
C z must have been

assigned prior to step t .

Proceeding by induction, suppose statements (a) and (b) of the lemma are true for all cy-

cles K1, . . . , Kℓ−1. Let x , y ∈ Kℓ ∩ X , x ∈ Λγt (y ), and suppose x → i and y → j within cycle

Kℓ. Suppose the procedure reassigns x to point to j . If j ∈ C (y ), then j ∈ C (x ) as above.

Otherwise, j /∈C (y ) and there are two cases.

Case 1. C (y ) =∅. Thus, all i ′ ∈
⋂

z∈Λγt (y )
C z have been assigned prior to step t .

Case 2. C (y ) 6= ∅. Because y is not pointing to an element of C (y ), it must have been reas-

signed to point to j in some prior iteration ℓ′ < ℓ of the cycle trimming procedure.

Suppose at iteration ℓ′, x ′ → j and y ∈ Λγt (x ′). Invoking the induction hypothe-

sis, if j ∈ C (x ′), then j ∈ C (y ), a contradiction. Thus, j /∈ C (x ′) and there exists an

i ′ ∈
⋂

z∈Λγt (x ′)
C z ⊆

⋂

z∈Λγt (y )
C z who was assigned by the algorithm in step t ′ < t .
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Lemma 8. Let E = 〈I , X , F,≻,ω〉 be an economy satisfying (A1)–(A4) and (B1)–(B3). Let (µ,γ)

be a feasible outcome identified by Algorithm 1. Suppose agent j was assigned good y at step

t of Algorithm 1. For every x ∈ Λγ(y ), there exists i ∈ C x who was assigned his consumption

allocation in step t or earlier.

Proof of Lemma 8. Let x ∈ Λγ(y ). Because good y was assigned in step t , good x must be

produced in step s ≤ t . (If x is a primary good, s = 1.) Let K be the final cycle identified by

Algorithm 1 in step s that determines the consumption assignments of agents. There exists a

good x ′ ∈ K ∩ X such that x ∈ Λγs (x ′). (If x ∈ K , then x = x ′.) Let i ′ ∈ K ∩ I s be the agent in

the cycle such that x ′→ i ′. Agent i ′ was assigned µ(i ′) in this step of the algorithm. Recalling

that C (x ) = C (x |γt )∩ I t = (
⋂

z∈Λγt (x )
C z )∩ I t , there are three possibilities.

Case 1. i ′ ∈C (x ′). Because x ∈Λγs (x ′), i ′ ∈C (x ′) = (
⋂

z∈Λγs (x ′)
C z )∩I s ⊆C x . Thus, agent i ′ ∈C x

was assigned µ(i ′) in step s ≤ t .

Case 2. i ′ /∈ C (x ′) and C (x ′) = ∅. This implies that (
⋂

z∈Λγs (x ′)
C z ) ∩ I s = ∅. By Lemma 6,

⋂

z∈Λγs (x ′)
C z 6= ∅. Thus, every j ′ ∈

⋂

z∈Λγs (x ′)
C z ⊆ C x must have been assigned µ( j ′)

before step s ≤ t .

Case 3. i ′ /∈C (x ′) and C (x ′) 6=∅. If x ′was pointing to an agent not in C (x ′), it is because during

the trimming procedure in step s it was reassigned to point to agent i ′. By Lemma

7(b), there exists a j ′ ∈
⋂

z∈Λγs (x ′)
C z ⊆ C x who was assigned µ( j ′) in step s ′ < s ≤ t of

Algorithm 1.

In each case, there is a member of C x assigned in or before step t .

Lemma 9. Let E = 〈I , X , F,≻,ω〉 be an acyclic economy satisfying (A1)–(A4) and (B1). The out-

come (µ,γ) identified by Algorithm 1 is feasible.

Proof of Lemma 9. It suffices to show that if a good is assigned to agent i in step t of Algorithm

1, then it is not simultaneously assigned to any firm.22 Assume the contrary. Suppose y is

assigned to an agent and to a firm in step t . If y is a produced good, then it cannot be assigned

to the firm that produces y (γt is efficient and y is not a necessary input for itself). Thus, there

exists x 6= y such that y ∈Λγt (x ). If good x is assigned to an agent at step t , then both x and y

belong to the cycle determining the consumption assignment at step t . However, this violates

the trimming procedure’s stopping criterion. Therefore, x is not assigned to another agent at

22The other possibilities are ruled out by the definition of Algorithm 1 and the feasibly of γt .
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step t . But this implies x ∈Λγt (x ′) for some x ′ that is assigned to an agent at step t . By Lemma

3(b) and (c), y ∈ Λγt (x ′). Thus, if x ′ 6= y , we arrive at a contradiction, as above. If x ′ = y , then

we contradict Lemma 3(e), which invokes acyclicity, because x 6= y , y ∈Λγt (x ), and x ∈Λγt (y ).

As each case leads to a contradiction, we conclude that no good is assigned to an agent and to

a firm in step t .

Lemma 10. Let E = 〈I , X , F,≻,ω〉 be an acyclic economy satisfying (A1)–(A4) and (B1)–(B3).

There exists an ex ante exclusion core outcome in E .

Proof of Lemma 10. Let (µ,γ) be an outcome identified by Algorithm 1 in E . We will verify that

(µ,γ) is an ex ante exclusion core outcome. To derive a contradiction, assume the contrary.

Thus, there exists a feasible outcome (σ,ψ) and nonempty coalition C ⊆ I such that σ(i ) ≻i

µ(i ) for all i ∈C and

µ( j )≻ j σ( j ) =⇒ µ( j ) ∈Ωγ(C |ω,µ). (14)

Without loss of generality, we may assume that C contains all agents for whomσ(i )≻i µ(i ) is

true. Algorithm 1 assures thatσ(i )≻i µ(i )�i x0 for all i ∈C .

Algorithm 1 constructed (µ,γ) sequentially by removing sets of agents (Ĩ 1, Ĩ 2, . . .) and goods

(X̃ 1∪ X̂ 1, X̃ 2∪ X̂ 2, . . .). Each i ∈ Ĩ t was assigned (his consumption allocation) in step t and each

x ∈ X̃ t ∪ X̂ t was removed from the market in step t . The latter can occur for two reasons: (a)

each x ∈ X̃ t was assigned to an agent or to a firm in step t and its capacity was depleted;

or, (b) the production of each x ∈ X̂ t became impossible given the assignments in step t .

Colloquially, the firm (potentially) producing x was “shut down.”

For every i ∈ C assigned in step t (i.e., i ∈ Ĩ t ), σ(i ) must have been removed from the

market in step t ′ < t (i.e., σ(i ) ∈ X̃ t ′ ∪ X̂ t ′). If this were not true, then agent i would not have

been pointing to his most preferred good among those available at the beginning of step t .

Claim 1. There exists an agent j such that µ( j ) ≻ j σ( j ). Moreover, this agent was assigned his

consumption allocation before any member of coalition C .

Proof of Claim 1. Consider the good x ∈σ(C ) removed from the market earliest by Algorithm 1.

(If there are multiple such goods, pick any of them.) Suppose this occurs in step t . Since x

was removed from the market, x /∈µ(C ). (Otherwise, there would be some x ′ ∈σ(C ) removed

from the market strictly earlier than x .) Thus, C ∩ Ĩ t ′ =∅ for all t ′ ≤ t .

Since the assignment of x is different at (µ,γ) than at (σ,ψ), three cases are possible.

Case 1. There exists j ∈ I such that µ( j ) = x . Thus, j is assigned x in step t of Algorithm 1.

Since preferences are strict, j /∈C andσ( j ) 6=µ( j ) imply that µ( j )≻ j σ( j ).
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Case 2. There exists f ∈ F such that x ∈ γ(f ). Thus, there is some produced good x ′ such

that (i) x ′ is assigned to some agent j in step t , and (ii) x ∈Λγt (x ′). Since x must have

capacity one, if x ∈ σ(C ) then it is unavailable as an input at (σ,ψ). Because each

production function is Leontief, if x is unavailable as an input for f , then f cannot

produce. (The input assignment at γ was efficient.) Therefore, good x ′ also cannot

be produced at (σ,ψ). Thus, agent j ’s consumption must be different at (σ,ψ), i.e.,

x ′ =µ( j ) 6=σ( j ). Since j /∈C , it follows that µ( j )≻ j σ( j ).

Case 3. The firm producing good x is “shut down” at step t of Algorithm 1. This occurs only

if an (indirect) input x ′ for the production of x becomes unavailable at step t . An

indirect input becomes unavailable only if it is assigned as a consumption good to

some agent j (i.e., µ( j ) = x ′) in step t . (This is because x is available at the beginning

of step t and the production network γt is feasible.) But, if x is consumed at (σ,ψ),

then x ′ cannot be consumed by j at σ. Hence, σ( j ) 6=µ( j ). Since no member of C is

assigned in step t or earlier, j /∈C and we conclude that µ( j ) ≻ j σ( j ).

In each case, there is an agent j assigned in step t of Algorithm 1 for whom µ( j )≻ j σ( j ). ⋄

Given Claim 1, let j be the agent who was assigned earliest by Algorithm 1 and for whom

µ( j ) ≻ j σ( j ). (If there are multiple such agents, choose any of them.) Let t ∗ be the step in

which j ’s assignment was set. By Claim 1, each i ∈C was assigned strictly after step t ∗.

Next, we show that µ( j ) /∈ Ωγ(C |ω,µ), which will contradict (14) and thus prove the the-

orem. Define Zℓ = ∅ for all ℓ ≤ −1 and Zℓ = Zℓ−1 ∪ω(C ∪µ
−1(Zℓ−1))∪αγ(Zℓ−1) for each ℓ ≥ 0.

Suppose µ( j ) ∈ Z0 = ω(C ). By Lemma 8, there exists i ∈ C µ( j ) ⊆ C who was assigned at step

t ∗ or earlier. However, from above we know that no member of C was assigned in step t ∗, or

earlier, of Algorithm 1—a contradiction.

Proceeding by induction, let k ≥ 1 and assume that for k ′ = k − 1, (a) no agent in C ∪

µ−1(Zk ′−1)was assigned at any step t ≤ t ∗ by Algorithm 1, and (b) µ( j ) /∈
⋃k ′

ℓ=0
Zℓ. We will verify

that (a) and (b) are true for k ′ = k .

Verification of (a). Suppose i ∈C ∪µ−1(Zk−1)was assigned at step t ≤ t ∗ by Algorithm 1. Since

Z0 ⊆ · · · ⊆ Zk−1 and no member of C ∪µ−1(Zk−2) was assigned at any step t ≤ t ∗, i ∈ µ−1(Zk−1 \

Zk−2). Because Zk−1 = Zk−2 ∪ω(C ∪µ
−1(Zk−2))∪αγ(Zk−2), it must be the case that µ(i ) ∈ω(C ∪

µ−1(Zk−2))∪αγ(Zk−2). There are two cases.

Case 1. µ(i ) ∈ ω(C ∪µ−1(Zk−2)). By Lemma 8, there exists i ′ ∈ C µ(i ) ⊆ C ∪µ−1(Zk−2) who was

assigned at step t ≤ t ∗ of Algorithm 1—a contradiction with point (a) above.
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Case 2. µ(i ) ∈ αγ(Zk−2). Since Zk−2 is a critical input set for µ(i ), there exists x ∈ Zk−2 such

that x ∈Λγ(µ(i )). By Lemma 8, there exists i ′ ∈C x who was assigned his consumption

allocation in step t ≤ t ∗ of Algorithm 1. Since i ′ is assigned before step t ∗, by the

induction hypothesis i ′ /∈C ∪µ−1(Zk−2). Therefore, x /∈ω(C ∪µ−1(Zk−2)). By Lemma 4,

there exists y ∈ω(C ∪µ−1(Zk−3)) such that y ∈Λγ(x ). By Lemma 3(c) , y ∈Λγ(µ(i )). By

Lemma 8 , there exists an i ′′ ∈C y ⊆C ∪µ−1(Zk−3)who was assigned his consumption

allocation in step t ≤ t ∗ of Algorithm 1. However, this is a contradiction as no member

of C ∪µ−1(Zk−3) can be assigned in step t ∗ or earlier.

Each case leads to a contradiction. Therefore, no agent in C ∪µ−1(Zk−1) is assigned at step t ∗,

or earlier, by Algorithm 1.

Verification of (b). Toward a contradiction, suppose µ( j ) ∈
⋃k

ℓ=0
Zℓ. Necessarily, this implies

µ( j ) ∈ Zk \Zk−1 and, in particular, µ( j ) ∈ω(C ∪µ−1(Zk−1))∪αγ(Zk−1). Applying the same argu-

ments (with all indices shifted up by one) from the verification of (a) above, together with the

induction conclusion of (a), we reach a contradiction and establish that µ( j ) /∈
⋃k

ℓ=0
Zℓ.

As the number of goods is finite,
⋃∞

ℓ=0
Zℓ =

⋃L

ℓ=0
Zℓ for some L ∈ N. Thus, the preceding

induction argument confirms that µ( j ) /∈
⋃∞

ℓ=0
Zℓ.

Definition 8. Let E = 〈I , X , F,≻,ω〉 be an economy satisfying (A1)–(A4) and (B1)–(B3). Let

{F1, . . . , FL} denote the strongly connected components of E ’s input network and for each k =

1, . . . , L , let Wf̂k
:= (

⋃

f ∈Fk
Wf )\ (

⋃

f ∈Fk
X f ) and X f̂k

:= (
⋃

f ∈Fk
X f )∩{x ∈ X ||{ f ∈ Fk |x ∈Wf }|< qx }.

The condensation of E is the economy Ê = 〈Î , F̂ , X̂ , ≻̂,ω̂〉where:

• The set of agents is Î := I .

• The set of firms is F̂ := { f̂1, . . . , f̂K }where, relabeling if necessary, F̂ consists of all f̂k such

that Wf̂k
6= ∅. Each firm’s production function is f̂k (Z ) = X f̂k

if Z ⊇ Wf̂k
and f̂k (Z ) = ∅

otherwise. Let F̃ = { f̂K +1, . . . , f̂L} be the set of all remaining f̂k for whom Wf̂k
=∅.

• The set of goods is X̂ := X0 ∪ (
⋃

f̂ ∈F̃ X f̂ ) ∪ (
⋃

f̂ ∈F̂ X f̂ ). The set of primary goods is X̂0 :=

X0 ∪ (
⋃

f̂ ∈F̃ X f̂ ).

• The preference of each i ∈ Î equals ≻i restricted to X̂ , i.e., ≻̂i = ≻i |X̂ .

• The endowment of each coalition C ⊆ Î is defined as x ∈ ω̂(C ) ⇐⇒ [x ∈ X̂ & Ĉ x ⊆ C ]

and each Ĉ x is defined as follows. If x ∈ X0, then Ĉ x :=C x . Otherwise, x ∈ X f̂k
for some

f̂k ∈ F̂ ∪ F̃ and

Ĉ x :=C x ∩
�
⋂

y ∈Yf̂k

C y
�

(15)
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where Yf̂k
= (
⋃

f ∈Fk
Wf )∩ (

⋃

f ∈Fk
X f ).

Lemma 11. Let E = 〈I , X , F,≻,ω〉 be an economy satisfying (A1)–(A4) and (B1)–(B3). There

exists an ex ante exclusion core outcome in the condensation of E .

Proof of Lemma 11. It suffices to show that the condensation Ê = 〈Î , F̂ , X̂ , ≻̂,ω̂〉 satisfies the

hypotheses of Lemma 10. First, Ê is acyclic. This is because the input network of Ê is a sub-

graph of the condensation of the input network of E . The condensation of a directed graph is

acyclic (Bondy and Murty, 2008, pp. 91–92). Second, by definition, each f̂k ∈ F̂ has a Leontief

production function that is monotone and satisfies the no free lunch property. We demon-

strate the remaining three requirements as separate claims.

Claim 1. The endowment system ω̂ satisfies (A1)–(A4).

Proof of Claim 1. It suffices to show that Ĉ x 6=∅ for each x ∈ X̂ . When this is true, properties

(A1)–(A4) follow from the definition of ω̂. If x ∈ X0, then Ĉ x = C x 6= ∅. If x ∈ X f̂k
for some

f̂k ∈ F̂ ∪ F̃ , then Ĉ x = C x ∩ (
⋂

y∈Yf̂k

C y ) where Yf̂k
= (

⋃

f ∈Fk
Wf )∩ (

⋃

f ∈Fk
X f ). If y ∈ Yf̂k

, then

y ∈ Λγ(x ) by Lemma 3(f). By Lemma 3(b),
⋂

Z∈Λγ(x )
(
⋃

z∈Z C z ) 6= ∅ reduces to
⋂

z∈Λγ(x )
C z 6= ∅.

Thus,

Ĉ x = C x ∩
�
⋂

y∈Yf̂k

C y
�

⊇C x ∩
�
⋂

y ∈Λγ(x )
C y

�

=
⋂

z∈Λγ(x )
C z 6=∅ (16)

where the second equality follows from the fact that x ∈Λγ(x ). ⋄

Claim 2. There exists a feasible production network γ′ : F̂ → 2X̂ such that X̂ = X̂0∪ f̂F̂ (γ
′).

Proof of Claim 2. Define γ′ : F̂ → 2X̂ as follows. Let γ′( f̂k ) = (
⋃

f ∈Fk
Wf ) \ (

⋃

f ∈Fk
X f ) for each

f̂k ∈ F̂ . At γ′, the output of f̂ ∈ F̂ is X f̂ . Thus, X̂0 ∪ f̂F̂ (γ
′) = X̂0 ∪ (

⋃

f̂ ∈F̂ X f̂ ) = X̂ .

Next we verify thatγ′ is feasible. Suppose x ∈ γ′(F̂ ). Thus, x ∈ γ′( f̂k ) = (
⋃

f ∈Fk
Wf )\(

⋃

f ∈Fk
X f )

for some f̂k ∈ F̂ . In particular, x ∈Wf for some f ∈ Fk . There are two possibilities. If x is a

primary good, then x ∈ X0 ⊆ X̂0. Otherwise, x ∈ X f ′ for some f ′ ∈ Fℓ 6= Fk . We know that

X f̂ℓ
= (
⋃

f ∈Fℓ
X f )∩ {x ∈ X |qx > |{ f ∈ Fℓ|x ∈Wf }|}. Clearly, x ∈ X f̂ℓ

if and only if (strictly) fewer

than qx other firms in Fℓ employ x as an input. If qx =∞, this is trivially true. If qx = 1 and

f ′′ ∈ Fℓ uses x as an input, then f and f ′′ cannot both produce in E at γ, contradicting (B2).

Thus, γ′(F̂ )⊆ X̂0 ∪ f̂F̂ (γ
′).

Finally, suppose qx < |{ f̂ ∈ F̂ |x ∈ γ′( f̂ )}| for some x ∈ X̂ . Since qx = 1, there exist two or

more firms that are assigned x as an input at γ′. This implies there exist f , f ′ ∈ F such that

Wf ∩Wf ′ 6=∅. Thus, both f and f ′ cannot produce at γ, contradicting (B2). ⋄

Claim 3. Ĉ (x |γ′) :=
⋂

Z∈Λγ′ (x )
(
⋃

z∈Z Ĉ z ) 6=∅ for all x ∈ X̂ .
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Proof of Claim 3. By Lemma 3(b), Ĉ (x |γ′) =
⋂

Z∈Λγ′ (x )
(
⋃

z∈Z Ĉ z ) =
⋂

z∈Λγ′ (x )
Ĉ z . If x is a primary

good or is not produced at γ′, then Λγ′(x ) = {x } and Ĉ (x |γ′) = Ĉ x 6= ∅. Otherwise, x ∈ X f̂k
for

some f̂k ∈ F̂ . If z is an (indirect) critical input for x at γ′, it must also be an (indirect) critical

input for x at γ in E . This is because each firm’s production function is Leontief. Therefore,

Λγ′(x ) ⊆ Λγ(x ). Thus,
⋂

z∈Λγ′ (x )
Ĉ z ⊇

⋂

z∈Λγ′ (x )
(
⋂

y ∈Λγ(z )
C y )⊇

⋂

y ∈Λγ(x )
C y 6= ∅. The first set inclu-

sion is by (16). The second is because if z is an indirect critical input x at γ′ and y is an indirect

critical input for z at γ, then y is an indirect critical input for x at γ. The final inequality is true

because (B3) holds in E and by Lemma 3(b). ⋄

Proof of Theorem 3. Consider the economy E = 〈I , F, X ,≻,ω〉. Let {F1, . . . , FL} be the strongly

connected components of its input network. By Lemma 11, its condensation Ê = 〈Î , F̂ , X̂ , ≻̂,ω̂〉

has an exclusion core outcome (µ̂, γ̂). As in Definition 8, each f̂k ∈ F̂ ∪ F̃ is defined with re-

spect to the corresponding strongly connected component Fk . If f̂k ∈ F̂ , then Wf̂k
6= ∅. If

f̂k ∈ F̃ , then Wf̂k
= ∅ and X f̂k

⊆ X̂0 in Ê . Define the outcome (µ,γ) in E as follows. For each

i ∈ I , let µ(i ) = µ̂(i ). For each f ∈ Fk ⊆ F , let

γ(f ) =











Wf if f̂k ∈ F̂ produces its output X f̂k
at (µ̂, γ̂) in Ê (i.e., γ̂( f̂k ) 6=∅)

Wf if f̂k ∈ F̃

∅ otherwise

.

We will verify that (µ,γ) is an exclusion core outcome in E .

Claim 1. The outcome (µ,γ) is feasible in E .

Proof of Claim 1. Let x ∈µ(I )∪γ(F ). Suppose x /∈ X0 ∪{x0}. There are two cases.

Case 1. If x ∈ µ(I ), then x is available at (µ̂, γ̂) in Ê . Since x /∈ X0 ∪ {x0}, there exists some

f̂k ∈ F̂ ∪ F̃ such that x ∈ X f̂k
and some f ∈ Fk such that x ∈ X f . By definition of γ(·),

γ(f ) =Wf . Thus, x is produced at (µ,γ) in E , i.e., x ∈ fF (γ).

Case 2. Suppose x ∈ γ(F ). Thus, there exists f ∈ Fk ⊆ F such that x ∈ Wf = γ(f ). Since

γ(f ) 6=∅, X f̂k
is available at (µ̂, γ̂) in Ê . There are two subcases.

(a) If x ∈Wf̂k
, then x ∈ X f̂ℓ

for some f̂ℓ ∈ F̂ ∪ F̃ and f̂ℓ 6= f̂k . This implies there exists

some f ′ ∈ Fℓ ⊆ F such that x ∈ X f ′ and, by definition of γ(·), γ(f ′) =Wf ′ . Therefore,

x is produced at (µ,γ) in E , i.e., x ∈ fF (γ).
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(b) If x /∈ Wf̂k
, then f̂k ∈ F̃ and the producer of x , say f ′, must belong to the same

strongly connected component Fk . In this case, the definition of γ(·) implies that

γ(f ′) =Wf ′ . Thus, good x is produced by f ′ at (µ,γ) in E , i.e., x ∈ fF (γ).

Cases 1 and 2 imply that if x /∈ X0 ∪{x0}, then x ∈ fF (γ). Hence, µ(I )∪γ(F )⊆ X0 ∪{x0}∪ fF (γ).

Next, consider good x with capacity qx = 1. The following three points together imply that

|{i ∈ I |µ(i ) = x }|+ |{ f ∈ F |x ∈ γ(f )}| ≤ qx for all x ∈ X and prove the claim.

(i) At most one agent can be assigned x at (µ,γ) in E . This is because µ(i ) = µ̂(i ) for each i

and (µ̂, γ̂) is feasible in Ê .

(ii) At most one firm can be assigned x at (µ,γ) in E . To see this, suppose f 6= f ′ are both

assigned x as an input. Because qx = 1, firms f and f ′ cannot both produce at γ, a

contradiction since all goods are produced at γ.

(iii) It is impossible for an agent and a firm to be simultaneously assigned x at (µ,γ) in E .

Suppose this was not true and µ(i ) = x and x ∈ γ(f ) =Wf . By definition, µ̂(i ) = x in Ê .

Since firm f ∈ Fk ⊆ F is assigned an input at (µ,γ), the set of goods X f̂k
must be available

at (µ̂, γ̂) in Ê . If x ∈Wf̂k
= (
⋃

f ∈Fk
Wf )\ (

⋃

f ∈Fk
X f ) then we have a contradiction as x would

be simultaneously assigned to i and f̂k in the (feasible) outcome (µ̂, γ̂) in Ê . Thus, x ∈
⋃

f ∈Fk
X f and, because x is assigned to agent i at (µ̂, γ̂), x ∈ X f̂k

= (
⋃

f ∈Fk
X f )∩{x ∈ X ||{ f ∈

Fk |x ∈Wf }|< qx }. But then |{ f ∈ Fk |x ∈Wf }|< qx = 1, which is a contradiction since the

set Fk contains at least one firm that uses x as an input. ⋄

Next we show that (µ,γ) cannot be ex ante exclusion blocked in E . Suppose the contrary.

Thus, there exists a coalition C ⊆ I and a feasible outcome (σ,ψ) in E such thatσ(i )≻i µ(i ) for

all i ∈ C and µ( j ) ≻ j σ( j ) =⇒ µ( j ) ∈ Ωγ(C |ω,µ). Without loss of generality, we may assume

that C contains all agents i for whomσ(i )≻i µ(i ) is true and thatψ is efficient.

Consider the outcome (σ̂,ψ̂) in Ê defined as follows. For each i ∈ Î , σ̂(i ) =σ(i ). For each

f̂k ∈ F̂ , ψ̂( f̂k ) = (
⋃

f ∈Fk
ψ(f )) \ (

⋃

f ∈Fk
X f ). We will show that coalition C can ex ante exclusion

block the outcome (µ̂, γ̂) in Ê with (σ̂,ψ̂). This will contradict (µ̂, γ̂) being in the ex ante ex-

clusion core of Ê , thus proving the theorem. The argument’s remainder is divided into three

claims implying this conclusion.

Claim 2. The outcome (σ̂,ψ̂) is feasible in Ê .

Proof of Claim 2. Let x ∈ σ̂(Î )∪ ψ̂(F̂ ). Suppose x /∈ X0 ∪{x0}. There are two cases.
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Case 1. If x ∈ σ̂(Î ), then σ̂(i ) = x for some i ∈ Î . Since σ̂(i ) =σ(i ), good x must be available

at (σ,ψ) in E . As x /∈ X0 ∪{x0}, x ∈ X f for some f ∈ Fk ⊆ F andψ(f ) =Wf . (Sinceψ is

efficient, any firm f producing atψ is allocatedψ(f ) =Wf .) There are two subcases.

If f̂k ∈ F̃ , then x ∈ X f̂k
⊆ X̂0. This is because x was assigned to an agent. Hence, it

must either have infinite capacity or it must not be assigned as an input to any other

firm in Fk .

Otherwise, f̂k ∈ F̂ . We know that ψ(f ′) =Wf ′ for all f ′ ∈ Fk ; otherwise, f ∈ Fk would

not be able to produce its output. Therefore, ψ̂( f̂k ) = (
⋃

f ∈Fk
Wf )\ (

⋃

f ∈Fk
X f ) and X f̂k

is

available at (σ̂,ψ̂). If x /∈ X f̂k
, then qx = 1 and x ∈Wf ′ for some f ′ ∈ Fk . However, this

implies that at (σ,ψ), σ(i ) = x and x ∈ψ(f ′)—a contradiction. Thus, x ∈ X f̂k
.

Case 2. Suppose x ∈ ψ̂(F̂ ). Thus, there exists f̂k ∈ F̂ such that x ∈ ψ̂( f̂k ). Hence, x ∈ψ(f ) for

some f ∈ Fk . Sinceψ is efficient, x ∈Wf . Because (σ,ψ) is feasible, the firm producing

x , say f ′, must produce at (σ,ψ). There are two subcases.

Suppose f ′ ∈ F ′
k

and f̂ ′
k
∈ F̃ . Since x was assigned to firm f atψ, x either has infinite

capacity or it was not assigned as an input to any other firm in F ′
k

. But then, we know

that x ∈ X f̂ ′
k
⊆ X̂0.

Otherwise, suppose f ′ ∈ F ′
k

and f̂ ′
k
∈ F̂ . All firms in the strongly connected compo-

nent F ′
k

must also produce at (σ,ψ). If F ′
k
= Fk , then x ∈ ψ̂( f̂k ), which is not pos-

sible. Therefore, F ′
k
6= Fk . If all f ∈ F ′

k
produce at (σ,ψ), then ψ(f ) = Wf for all

f ∈ F ′
k

. Thus, ψ̂( f̂ ′
k
) = (

⋃

f ∈F ′
k

Wf ) \ (
⋃

f ∈F ′
k

X f ) and f̂ ′
k

produces X f̂ ′k
= (

⋃

f ∈F ′
k

X f ) ∩
�

x ∈ X
�

� |{ f ∈ F ′
k
|x ∈Wf }|< qx

	

, at (σ̂,ψ̂). If x /∈ X f̂ ′k
, then its capacity is one and there

exists some firm f ′′ ∈ F ′
k

such that x ∈Wf ′′ . However, above we saw that x ∈Wf and

f /∈ F ′
k

. Thus there exist two firms, f and f ′′, that require the same input good for

production. However, this contradicts condition (B2) that was satisfied by E .

Cases 1 and 2 imply that if x /∈ X0∪{x0}, then x ∈ f̂F̂ (ψ̂). Hence, σ̂(Î )∪ψ̂(F̂ )⊆ X̂0∪ f̂F̂ (ψ̂)∪{x0}.

Next, consider good x with capacity qx = 1. The following three points together imply that

|{i ∈ Î |σ̂(i ) = x }|+ |{ f̂ ∈ F̂ |x ∈ ψ̂( f̂ )}| ≤ qx for all x ∈ X̂0 ∪{x0}∪ f̂F̂ (ψ̂) and prove the claim.

(i) At most one agent can be assigned x at (σ̂,ψ̂). This is because (σ,ψ) is feasible andσ = σ̂.

(ii) At most one firm can be assigned x at (σ̂,ψ̂). To see this, suppose f̂k and f̂ℓ are both

assigned x at (σ̂,ψ̂). This implies there exist two distinct firms fk ∈ Fk and fℓ ∈ Fℓ such

that x ∈ψ(fk ) and x ∈ψ(fℓ). But this means that both firms would not be able to produce

at γ, contradicting (B2).
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(iii) It is impossible for an agent and a firm to be simultaneously assigned x at (σ̂,ψ̂) in Ê .

Suppose the contrary. If σ̂(i ) = x and x ∈ ψ̂( f̂k ), then there exists a firm f ∈ Fk ⊆ F such

that x ∈ψ(f ). Thus, agent i and firm f are both assigned x at (σ,ψ), a contradiction. ⋄

Claim 3. σ̂(i )≻i µ̂(i ) for all i ∈C .

Proof of Claim 3. Since σ̂=σ and µ̂=µ, it follows that σ̂(i )≻i µ̂(i ) for all i ∈C . ⋄

Claim 4. µ̂( j )≻ j σ̂( j ) =⇒ µ̂( j ) ∈Ωγ̂(C |ω̂, µ̂)

Proof of Claim 4. Recall that Ωγ(C |ω,µ) =
⋃∞

k=0
Zk where Z0 = ω(C ) and Zk = Zk−1 ∪ω(C ∪

µ−1(Zk−1))∪αγ(Zk−1) for all k ≥ 1. Likewise, Ωγ̂(C |ω̂, µ̂) =
⋃∞

k=0
Ẑk where Ẑ0 = ω̂(C ) and Ẑk =

Ẑk−1 ∪ ω̂(C ∪ µ̂
−1(Ẑk−1)) ∪ αγ̂(Ẑk−1) for all k ≥ 1. Since µ( j ) ≻ j σ( j ) =⇒ µ( j ) ∈ Ωγ(C |ω,µ),

σ(i ) = σ̂(i ) ∈ X̂ ∪{x0} for all i , and µ( j ) = µ̂( j ) ∈ X̂ ∪{x0} for all j , to prove the claim it suffices

to show thatΩγ(C |ω,µ)∩X̂ ⊆Ωγ̂(C |ω̂, µ̂). Thus, it suffices to show that Zk∩X̂ ⊆ Ẑk for all k ≥ 0.

Let k = 0. If x ∈ Z0 ∩ X̂ = ω(C ) ∩ X̂ , then C x ⊆ C . Thus, Ĉ x ⊆ C x ⊆ C . Which implies,

x ∈ ω̂(C ) = Ẑ0. Proceeding by induction, suppose Zk ′∩ X̂ ⊆ Ẑk ′ for all k ′ ≤ k −1. Let x ∈ Zk ∩ X̂ .

If x ∈ Zk−1 ∩ X̂ , then the induction hypothesis implies that x ∈ Ẑk−1 ⊆ Ẑk . Instead, suppose

x /∈ Zk−1 and x ∈ (ω(C ∪µ−1(Zk−1))∪αγ(Zk−1))∩ X̂ . There are two cases.

Case 1. Suppose x ∈ ω(C ∪ µ−1(Zk−1)). Since µ = µ̂, the range of µ(·) is contained in X̂ ∪

{x0}. Thus, µ−1(Zk−1) = µ
−1(Zk−1 ∩ X̂ ) = µ̂−1(Zk−1 ∩ X̂ ) ⊆ µ̂−1(Ẑk−1). Therefore, ω(C ∪

µ−1(Zk−1)) ⊆ ω(C ∪ µ̂
−1(Ẑk−1)). And so, C x ⊆ C ∪ µ̂−1(Ẑk−1), which implies Ĉ x ⊆ C ∪

µ̂−1(Ẑk−1). Therefore, x ∈ ω̂(C ∪ µ̂−1(Ẑk−1)) and x ∈ Ẑk .

Case 2. Suppose x ∈ αγ(Zk−1). Because each firm’s production function is Leontief, there ex-

ists y 1 ∈ Zk−1 such that x ∈αγ(y
1). There are two subcases.

(a) y 1 ∈ X̂ . Thus, y 1 ∈ Zk−1 ∩ X̂ ⊆ Ẑk−1. As y 1 is critical for x at γ, it remains so at γ̂

since each production function is Leontief. Thus, x ∈ αγ̂(Ẑk−1), which implies x ∈ Ẑk .

(b) y 1 /∈ X̂ . Thus, there exists some firm f 1 ∈ Fk ⊆ F such that y 1 ∈ X f 1 and there must

exist some other firm f 0 ∈ Fk that uses y 1 as an input. Moreover, the capacity of y 1

must be one (else it would be present in X̂ ). Since y 1 is a critical input for x , it follows

that the firm producing x must be f 0, i.e., x ∈ X f 0 and y 1 ∈Wf 0

We know that y 1 ∈ Zk−1 = Zk−2∪ω(C ∪µ
−1(Zk−2))∪αγ(Zk−2). If y 1 ∈ Zk−2, then x ∈ Zk−1,

which is a contradiction. Three possibilities remain.
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(i) y 1 ∈ ω(C ∪ µ−1(Zk−2)). In this case, C y ⊆ C ∪ µ−1(Zk−2). However, f 0, f 1 ∈ Fk .

Thus, y 1 ∈ Yf̂k
. Noting (15), this implies that Ĉ x ⊆C y . Hence, Ĉ x ⊆C ∪µ−1(Zk−2)

which (by reasoning analogous to Case 1 above) implies that Ĉ x ⊆ C ∪ µ̂−1(Ẑk−2).

Therefore, x ∈ ω̂(C ∪ µ̂−1(Ẑk−2)). Thus, we can conclude that x ∈ Ẑk−1 ⊆ Ẑk .

(ii) y 1 ∈αγ(y
2)where y 2 ∈ Zk−2∩ X̂ . This implies then x ∈αγ̂(y

2). This is because y 2

is an input for f̂k and x ∈ X f̂k
. However, y 2 ∈ Zk−2 ∩ X̂ implies y 2 ∈ Ẑk−2. Thus,

x ∈αγ̂(Ẑk−2), which implies x ∈ Ẑk−1 ⊆ Ẑk .

(iii) y 1 ∈αγ(y
2)where y 2 ∈ Zk−2 and y 2 /∈ X̂ . In this case, we can repeat the preceding

argument starting at (b) either establishing that x ∈ Ẑk , as in parts (i) and (ii), or

identifying a new good y 3 such that y 3 /∈ X̂ , as in part (iii). As there is a finite

number of goods, this argument must eventually stop and it can only stop after

showing x ∈ Ẑk . ⋄

Proof of Proposition 3. For each f ∈ F , let γ̂(f ) = γ(f ) ∩Wf . (Recall that Wf are the neces-

sary inputs for firm f .) The production network γ̂ is efficient and ensures the same aggre-

gate output as γ, i.e., fF (γ̂) = fF (γ). Thus, if (µ,γ) is feasible, so is (µ, γ̂). Moreover, if x ∈

αγ(Z ) ⇐⇒ x ∈ αγ̂(Z ). This is because critical inputs necessarily belong only to Wf . Thus,

Ωγ(C |ω,µ) =Ωγ̂(C |ω,µ) and the result follows.

Proof of Proposition 4. Suppose economy E satisfies (A1)–(A4) and (B1)–(B3) and each good

has capacity one. Let Ê be its condensation. Let (µ̂, γ̂) be an outcome identified by Algorithm

1 in Ê . Suppose Algorithm 1 constructs (µ̂, γ̂) in T steps. If i ∈ I is assigned x0 in step t , let

S t = {i , x0}. Otherwise, let S t be the cycle of agents and goods defining the assignment. (This

is the cycle after any “trimming.”) Note that Algorithm 1 in step t also identifies a set of goods

X̂ t that are never produced. Given (µ̂, γ̂), define (µ∗,γ∗) in E as in the proof of Theorem 3.

To define prices p ∗ supporting (µ∗,γ∗) as an equilibrium, we adapt David Gale’s argument

(Shapley and Scarf, 1974, p. 30). Let L := |X | be the number of goods and assign the price

p ∗
x0
= 0 to the outside option. Let π1 > · · ·>πT > 0 be a set of values such thatπt > L 2Lπt+1. We

define prices inductively. Let P 0 =∅ and for each t ≥ 1 let P t be the set of goods whose prices

have been defined by the end of step t . At step t ≥ 1 define prices as follows given P t−1.

Step t . If S t ∩X =∅, set P t = P t−1 and proceed to step t +1. Otherwise, for each x ∈ S t ∩X

set p ∗
x
= πt . Let P t

0
⊇ P t−1 be the set of all goods with defined prices. Continuing inductively,

at iteration τ ≥ 1, for each good y without a defined price yet and that satisfies x ∈ X f and
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y ∈Wf for some x ∈ P t
τ−1

, set p ∗
y
= πt /Lτ. Let P t

τ
be the set of all goods with defined prices.

As there are L goods, there exists a τ∗ ≤ L such that for all τ≥ τ∗, P t
τ∗
= P t

τ
. Given these prices,

each firm producing a good whose price has been defined maximizes profits by producing

since the value of its output(s) exceeds the price it pays for all inputs.

Next consider the set of goods X̂ t . For each x ∈ X̂ t that is produced by some firm using

an input in P t
L

, set p ∗
x
= πt /L L+1. Now, let P t

L+1
be the set of goods with defined prices. Con-

tinuing inductively, at iteration τ ≥ 1, for each x ∈ X̂ t that is produced by some firm using

an input y ∈ P t
L+τ−1

and whose price has not yet been defined, set p ∗
x
= πt /L L+τ. Let P t

L+τ
be

the set of all goods with defined prices. Continue this process until all goods in X̂ t have a set

price. This process stops after at most L iterations. Let P t be the set of goods with defined

prices and proceed to step t +1. Given these prices every firm that can produce some x ∈ X̂ t

maximizes profits by not producing because the price of at least one necessary input exceeds

the maximum revenue the firm may earn selling its output.

The above process continues until step T . Set p ∗
x
= 0 for any x whose price remains unde-

fined. The feasible outcome (µ∗,γ∗) is an equilibrium relative to p ∗. If x ≻i µ
∗(i ), then good x

was removed from the market prior to i ’s assignment. Therefore, p ∗
x
> p ∗

µ∗(i )
. Similarly, by con-

struction each firm is maximizing profits. The price of its outputs exceeds its input cost. Each

firm’s production plan is efficient. Hence, it cannot increase profits by using fewer inputs.
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