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A Perfectly Robust Approach

to Multiperiod Matching Problems

Maciej H. Kotowski†

February 26, 2020

Abstract

Many two-sided matching situations involve multiperiod interaction. Traditional co-

operative solutions, such as pairwise stability or the core, often identify unintuitive out-

comes (or are empty) when applied to such markets. As an alternative, this study proposes

the criterion of perfect α-stability. An outcome is perfect α-stable if no coalition prefers

an alternative assignment in any period that is superior for all plausible market contin-

uations. The solution posits that agents have foresight, but cautiously evaluate possible

future outcomes. A perfect α-stable matching exists, even when assignments are inter-

temporal complements. The perfect α-core, a stronger solution, is nonempty under stan-

dard regularity conditions, such as history-independence. Our analysis extends to mar-

kets with arrivals and departures, transfers, and many-to-one assignments.
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1 Introduction

In many markets, agents are partitioned into two groups—men and women, firms and work-

ers, students and schools—and must match together to realize benefits. A common feature

is that these markets’ participants interact over a period of time. Matches may be fleeting or

may last several periods; a few are irrevocable, but many permit revision and change.

This paper extends Gale and Shapley’s (1962) model of a two-sided matching market by

allowing agents to interact over multiple periods, possibly changing assignments with time.

Though a natural extension of a classic setting, there is no unequivocal analogue to Gale and

Shapley’s stability concept to guide analysis. This paper’s contribution is a family of solu-

tions for the analysis of multiperiod two-sided matching problems with limited commitment.

Models with this structure been proposed to study student-school assignment with multi-

child households (Dur, 2012), teacher assignment (Pereyra, 2013), the assignment of children

to daycares (Kennes et al., 2014, 2019), and the matching of medical residents to hospitals

(Kadam and Kotowski, 2018a; Liu, 2018). The changing nature of matches is a key feature of

the foster care and adoption system in the United States (MacDonald, 2019). Further applica-

tions include labor markets and ride-sharing platforms. Market mechanisms that coordinate

agents on stable outcomes are more durable (Roth, 2002). Therefore, identifying appropriate

formulations of stability for such situations has immense practical relevance.

As context for our study, it is helpful to see why a benchmark approach to dynamic two-

sided matching markets is a topic of continuing debate, with many recent proposals. (We

discuss the literature below.) A multiperiod matching problem straddles two conceptually-

distinct structures that have been traditionally examined with tools from different paradigms.

Reconciling the resulting mishmash of intuitions is not straightforward.

First, ignoring the market’s time dimension, any plausible solution must resolve the stan-

dard two-sided matching problem. Here, cooperative solutions, such as stability or the core,

have proven most useful. Markets are naturally studied from the cooperative perspective since

agents must act together—by matching or trading—to accomplish anything of value. The de-

tails of a market’s operation are formidable and focusing on observed outcomes, rather than

all contingent and counterfactual interactions, is a compelling and practical simplification.

Second, bracketing the within-period matching problem, a multiperiod economy involves

sequential interactions with outcomes realized at multiple moments in time. On this front,

traditionally non-cooperative approaches appear more successful. The logic of backward in-

duction or subgame perfection is hard to ignore. Questions regarding dynamic consistency

and (lack of) commitment over time have been most ably tackled with these tools in mind.
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Our family of solutions, whose baseline is called perfect α-stability, threads together the

above observations according to the following prototypical principle:

A matching is α-stable in period t if (given the elapsed history) there is no coali-

tion of agents who prefer an alternative period-t assignment given all plausible

continuations of the market at the proposed alternative. A plausible continuation

must be α-stable in period t + 1. A perfect α-stable matching is α-stable in each

period.

The above definition embeds three features. First, the solution is cooperative and focuses on

outcomes that cannot be improved upon, or “blocked,” by any coalition. Second, a perfection

requirement and an intuitive recursive structure ensure the credibility of realized outcomes

and potential blocking plans despite limited commitment. Third, because alternatives must

be superior for “all plausible continuations,” the definition incorporates a robustness notion

similar to the α-core (Aumann and Peleg, 1960; Aumann, 1961). The α-core is well-suited for

the study of economies with externalities (Scarf, 1971, p. 174). Although externalities are not

formally in our model, they arise endogenously in a multiperiod economy, as explained below.

The definition stated above is incomplete. That is because the “plausibility” of a continu-

ation remains undefined. We suggest three ways of defining this term that differ in—loosely

speaking—agents’ beliefs concerning market developments. Our proposals are hardly ex-

haustive and institutional or behavioral suppositions will motivate further variations on their

themes. Perfect α-stability, our baseline, posits a cautious, “worst-case” disposition. A per-

fect α-stable matching exists, even when assignments are inter-temporal complements. The

perfectα-core and perfectα∗-stability are refinements that increase agents’ proclivity to block

assignments by moderating beliefs. The perfect α-core constrains beliefs concerning the be-

havior of blocking coalition members; perfect α∗-stability rules out “incredible beliefs” reliant

on dominated outcomes. Each solution allows for general coalitions to form and, surprisingly,

effective blocking coalitions may involve only multiple agents from the same side of the mar-

ket. Though novel in models of two-sided matching markets, actions by one-sided coalitions

are empirically relevant. Strikes and cartel behavior are familiar examples.

Outline The next section reviews the literature and Section 3 introduces the model. Section

4 sketches the shortcomings of stability and the core, two standard static solutions. Sections 5,

6, and 7 introduce perfect α-stability, the perfect α-core, and perfect α∗-stability, respectively.

An important feature of perfect α-stability is its adaptability to many related problems and

applications. Section 8 extends our analysis to markets with arrivals and departures, transfers,
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many-to-one assignments, and an infinite time horizon. Appendices A and B collect all proofs

and omitted examples.

2 Literature

The extension of Gale and Shapley’s stability notion to a multiperiod or dynamic setting has

drawn interest from many authors. Kadam and Kotowski (2018a,b) study a model closest to

ours and propose a solution that is a weakening of Gale’s (1978) sequential core (see below) or

Becker and Chakrabarti’s (1995) recursive core.1 Though tractable, solutions in this class have

three drawbacks. First, they are often empty. Second, they require blocking coalitions to dis-

engage from the wider economy. Third, a blocking plan’s credibility is often debatable. Dami-

ano and Lam (2005) tackle the final shortcoming through their concepts of self-sustaining sta-

bility and strict self-sustaining stability. These solutions impose a coalition proofness (Bern-

heim et al., 1987) requirement on blocking plans. Damiano and Lam assume time-separable

preferences, a restriction we do not impose.

A matching in our model only specifies realized allocations. Kurino (2020) and Doval (2018)

define a “matching” as a complete contingent plan for the market. Liu (2018) studies a “match-

ing process,” which is similar.2 This approach follows Corbae et al. (2003) who use a dy-

namic bilateral matching market to investigate questions in monetary economics. Corbae

et al. (2003), Doval (2018), and Liu (2018) impose a perfection requirement in their solutions,

a feature shared by our proposals. Kurino (2020) and Doval (2018) show that their solutions

may be empty when applied to a multiperiod, one-to-one matching market. Their analyses

are confined to different preference domains than we consider.3

The above studies mainly focus on one-to-one matching markets. Bando (2012) consid-

ers a multiperiod market where agents match with multiple counterparties each period. His

solution adapts the usual stability definition from a static many-to-many matching market

(Roth, 1984). An agent blocking a matching in period t takes his assignments in period t ′ > t

as given, an assumption not shared by our approach.

Pereyra (2013), Kennes et al. (2014, 2019), and Dur (2012) study a related class of assign-

ment problems where agents’ preferences and priorities to objects (typically seats at a school)

1Related to Gale (1978) is a literature on dynamic core concepts for incomplete market economies. Habis and

Herings (2011) discuss several proposed definitions.
2Ali and Liu (2019) study “plans” and “conventions” in repeated games, which are also related.
3Kurino (2020) assumes time-separable preferences. Doval (2018) posits that agents match only one time and

allows for stochastic arrivals. See also Thakral (2019). Altınok (2019) extends Doval’s (2018) model to the case of

many-to-one matching while Du and Livne (2016) examine a similar problem allowing for transfers.
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vary with time and with prior assignments. They propose fairness criteria for their assignment

problems, which can be interpreted as stability notions in a two-sided market. Their propos-

als involve institutional features of specific applications and differ from our analysis. Some

studies examine matchings that form over multiple periods via an iterative process (Narita,

2018; Haeringer and Iehlé, 2019). Our model can be interpreted in this way, though we posit

agents care about the sequence of (interim) assignments and not just the final-period match.4

Diamantoudi et al. (2015) and Zhang and Zheng (2016) explore the role of commitment in

multiperiod matching markets. Throughout we assume no commitment.

The solutions we study relate to theα-core (Aumann and Peleg, 1960; Aumann, 1961; Scarf,

1971).5 They involve identifying outcomes that cannot be improved upon by any coalition, in-

dependently of others’ contemporaneous actions. This logic’s application to our problem is

inspired by Sasaki and Toda’s (1996) study of a one-period matching market with externali-

ties. The conceptual parallel is the following. In Sasaki and Toda (1996), agents impose ex-

ternalities on others when they match. In our setting, direct externalities are absent, but an

agent’s period-t assignment affects what outcomes can be stable in period t ′ > t . This en-

dogenously introduces an externality. The complementary coalition’s period-t assignments

matter through this channel and motivate our adaptation of the α-core idea.6

Doval (2019) studies a dynamic matching market with stochastically arriving agents who

form irrevocable assignments. Her solution concept, “dynamic stability,” also relies upon pes-

simistic conjectures (Sasaki and Toda, 1996) to tackle the externality arising when agents de-

lay matching.7 Agents may match multiple times in our model. Thus, the nature of inter-

temporal externalities differs due to the complementarity or substitutability of successive as-

signments. Moreover, our solutions allow for general blocking coalitions while Doval (2019)

focuses on pairwise blocking. This distinction is substantive, as explained in Section 6. A

technical difference is also notable. Doval (2019) constructs dynamically stable matchings by

4For example, many school admission systems allow for appeals or reapplications. Interpreted within our

model, the initial assignment is the period 1 matching. The final assignment, after appeals/reapplications are

processed, is the period 2 matching. A participant will care about the sequence of assignments if, for example,

there are transaction, opportunity, or psychological costs associated with the appeals/reapplications process.
5The α-core was proposed as a method for translating a strategic-form game into a cooperative game. This is

not precisely the exercise pursued here since the within-period interaction in our model is a cooperative game.
6Corbae et al. (2003), Liu (2018), and Kurino (2020) acknowledge the dependence of a blocking coalition’s pay-

off on others’ actions through the change in history. They address this dependence by assuming non-blocking

coalition members either become unmatched or continue with their prior assignment. This assumption implic-

itly imposes some structure on the market’s within-period operation. By adapting the α-core’s reasoning, our

solution is robust to all within-period interactions among agents, which we do not model directly.
7“Dynamic stability” (Doval, 2019) weakens the solution examined by Doval (2018) by introducing pessimistic

conjectures. Both solutions differ from “dynamic stability” as defined by Kadam and Kotowski (2018a,b).
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examining a sequence of markets with successively longer time horizons. Our analysis relies

on backward induction instead.

3 Model and Notation

Let M = {m1, . . . , mn} and W = {w1, . . . , wn ′} be finite and disjoint sets of agents, labeled men

and women, respectively. We denote generic agents by i , j , k ∈ I := M ∪W . Agents inter-

act over T <∞ periods. In every period, each man (woman) can be matched to one woman

(man) or not matched to anyone. By convention, an unmatched agent is “matched to him/herself.”

Thus, the set of potential partners for m ∈M in period t is W ∪{m}. Symmetrically, the set of

potential partners for w ∈W in period t is M ∪{w }.

A (multiperiod) matching µ: M ∪W → (M ∪W )T specifies each agent’s partner in each

period. It is a tuple µ = (µ1, . . . ,µT ) of T (one-period) assignments that satisfy the following

standard properties: (a) µt (m ) ∈W ∪ {m} for all m ∈M , (b) µt (w ) ∈M ∪ {w } for all w ∈W ,

and (c) µt (i ) = j =⇒ µt ( j ) = i . The sets of assignments and matchings areA andM :=A T ,

respectively.

Each agent has a strict preference over sequences of assigned partners. For each m ∈M ,

≻m is a strict preference defined over (W ∪{m})T ;≻w is defined symmetrically for each w ∈W .

We write x ≻i y if agent i prefers the assignment sequence x over y and x �i y if x ≻i y or

x = y . Notwithstanding the lack of indifferences or externalities, this is the most general class

of preferences applicable to our matching problem. Successive assignments may be comple-

ments or substitutes. Of course, history-independent preferences are a special case.

Notation We end this section by introducing notation used throughout the sequel. Given

K ⊆ I and µt ∈A , let µt (K ) :=
⋃

i∈K µt (i ). For any K , K ′ ⊆ I andA ′ ⊆A ,

A ′(K , K ′) :=
�
µt ∈A

′
�� µt (K ) = K ′
	

is the set of assignments inA ′ where agents in K are assigned to agents in K ′. When K = K ′

and agents in coalition K are assigned only among themselves, we writeA ′(K ) :=A ′(K , K ).

The set of matchings where agents in coalition K match among themselves in each period is

M (K ) :=A (K )T . GivenA ′ ⊆A , µt ∈A
′, and K ⊆ I ,

A ′(µt |K ) :=
�
µ′

t
∈A ′
�� µ′

t
(i ) =µt (i ) ∀i ∈ K
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is the set of assignments inA ′ that coincide with µt on K , but possibly differ on I \K .

The truncation of µ ∈ M at period t is µ≤t := (µ1, . . . ,µt ) ∈ M≤t . Its continuation from

period t is µ≥t := (µt , . . . ,µT ) ∈ M≥t . We define µ<t ∈ M<t and µ>t ∈ M>t similarly. The

matching (µ<t ,µ′
t
, eµ>t )means (µ1, . . . ,µt−1,µ′

t
, eµt+1, . . . , eµT ). The setsM<1 andM>T are empty.

4 Stability and the Core

Stability and the core are the standard solutions applied to two-sided matching problems. The

next definition applies irrespective of time horizon.

Definition 1. The coalition K ⊆ I can block µ ∈M if there exists σ ∈M (K ) such that σ(i )≻i

µ(i ) for all i ∈ K .

A matching is (pairwise) stable if it cannot be blocked by either a single agent or a man-woman

pair. A matching is in the core if it cannot be blocked by any nonempty coalition.

Stability and the core yield appealing predictions in a one-period economy. When T = 1,

our model reduces to that of Gale and Shapley (1962); the stable set and the core coincide and

are not empty. However, applying these solutions to a multiperiod market can be dissatisfying,

especially if commitment is imperfect. (Under Definition 1, blocking happens ex ante.) A way

to introduce imperfect commitment is to additionally allow blocking coalitions to form in any

period conditional on the market’s history.

Definition 2. The coalition K ⊆ I can block µ ∈ M in period t if there exists σ≥t ∈ M≥t (K )

such that (µ<t (i ),σ≥t (i ))≻i µ(i ) for all i ∈ K .

A matching is in the sequential core if it cannot be blocked in any period by any nonempty

coalition (Gale, 1978).

None of the above solutions offers entirely satisfactory predictions in a multiperiod match-

ing market. Problems arise even if there is only one man and one woman.

Example 1. Consider a two-period market with one man and one woman.8 Their preferences

are:

≻m : w m , w w
σ

, mm
µ

, m w ≻w : mm
σ

, ww
µ

, m w , w m .

8This example is adapted from Kadam and Kotowski (2018a). Hatfield and Kominers (2017) propose a related

example of a doctor and a hospital contracting morning and afternoon shifts.
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We state preferences by listing assignment sequences in preferred order. We omit the usual

brackets and commas for clarity. Matchings are identified by highlighting the relevant as-

signments. In this case, both agents prefer to match for two periods (σ) rather than remain

unmatched (µ). However, m ’s most-preferred option is to match with w only for period 1.

Some reflection suggests that µ, where the agents are unmatched, is this example’s likely

outcome. Both agents would rather match for two periods, but m prefers to be unmatched in

period 2 conditional on matching with w in period 1 (w m ≻m w w ). If m refuses to continue

the matching with w after period 1, w is worse off than had she not matched with m at all

(w w ≻w m w ). Presumably, she would anticipate this possibility and shunσ entirely.

Neither the core nor the sequential core select µ in this example. The matching σ is this

economy’s unique pairwise stable and core matching. Its flaws were explained above. The

sequential core is empty since m can block σ in period 2.

5 Perfect α-Stability

In this section we introduce perfect α-stability, our baseline solution. We start by formalizing

the principle stated in the introduction to define cautiousα-blocking. The definition is recur-

sive and we provide a step-by-step explanation of its components and an example below.

Definition 3. The coalition K ⊆ I can cautiously α-block µ ∈ M in period t if there exists

σt ∈A (K ) such that σt (i ) 6=µt (i ) for some i ∈ K and for each i ∈ K ,

�
µ<t (i ),σt (i ),σ>t (i )

�
≻i µ(i ) for all σ>t ∈

⋃

eσt ∈A (σt |i )

S
�
(µ<t , eσt )
�

(1)

where S ((µ<t , eσt )) is the set of continuations σ>t ∈ M>t such that (µ<t , eσt ,σ>t ) cannot be

cautiously α-blocked in any period t ′ > t .

A matching is perfectα-stable if it cannot be cautiouslyα-blocked in any period by any nonempty

coalition.

To unpack Definition 3, it is best to start in period T . Coalition K can cautiously α-block

µ in period T if and only if there exists σT ∈ A (K ) such that (µ<T (i ),σT (i )) ≻i (µ<T (i ),µT (i ))

for all i ∈ K . The next lemma is an immediate implication. Its proof is omitted.

Lemma 1. If µ = (µ1, . . . ,µT ) cannot be cautiously α-blocked in period T , then µT is a core

assignment in a one-period economy where the strict preference Pi of each agent i satisfies

j Pi k ⇐⇒ (µ<T (i ), j )≻i (µ<T (i ), k ). (2)
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Lemma 1 implies that perfectα-stability reduces to (pairwise) stability in a one-period market.

Cautious α-blocking in period t < T is more intricate. An assignmentσt ∈A (K )must be

preferred by each member of coalition K given all plausible market continuations, the latter

half of expression (1). Per Definition 3, agent i considers the continuation σ>t plausible if it

cannot be cautiously α-blocked in the future given the market’s history (µ<t ) and given some

period-t assignment (eσt ) that preserves agent i ’s assignment atσt , i.e., eσt ∈A (σt |i ) = {σ
′
t
∈

A |σ′
t
(i ) = σt (i )}. A cautiously α-blocked matching is unlikely to arise since a coalition has

a robust incentive to depart from its prescriptions. A blocking agent benefits whatever else

happens in period t .

Example 1 (Continued). Recall the market with one man and one woman. The matchingσ is

not perfect α-stable. It can be blocked by m in period 2. The matching µ is perfect α-stable.

It cannot be blocked in period 2 since both agents prefer to remain unmatched if unmatched

in period 1. Likewise, µ cannot be cautiously α-blocked in period 1. To block µ in period 1, m

and w must pursue σ1 ∈ A ({m , w }) where σ1(m ) = w and σ1(w ) =m . For each i ∈ {m , w },

A (σ1|i ) = {σ1}. Conditional on σ1, there is one assignment (i.e., continuation) that cannot

be blocked in period 2: S (σ1) = {σ
′
2
} where σ′

2
(m ) = m and σ′

2
(w ) = w . However, µ(w ) =

(w , w )≻w (m , w ) = (σ1(w ),σ
′
2
(w )). Thus, w is unwilling to block in period 1.

Several features distinguish perfect α-stability from the solutions surveyed in Section 2.

First, a blocking coalition does not disengage from the wider economy forever. Second, the

credibility of a blocking action initiated in period t is assured as agents anticipate its continu-

ation (in periods t ′ > t ) to be stable. Third, members of a blocking coalition do not take their

original future assignments as given. Instead, they anticipate stable assignments given their

new arrangement. Fourth, the existence of a perfect α-stable outcome does not depend on

a narrow preference domain. This feature is important as inter-temporal complementarities,

switching costs, and other history-dependencies arise in many applications.

Theorem 1. The set of perfect α-stable matchings is not empty.

Despite yielding a nonempty solution, perfect α-stability is not a “weak” concept per se. Ex-

ample 1 demonstrates its logical independence from the core, which may in general be empty.9

Examples B.1–B.3 in Appendix B show that it is not weaker than the sequential core or the sta-

bility concepts of Damiano and Lam (2005), Kennes et al. (2014), and Kadam and Kotowski

(2018a). It is also not weaker than Kurino’s (2020) proposal, which is weaker than pairwise

stability in a one-period economy.

9Kadam and Kotowski (2018a) provide an example of a two-period economy with an empty core.
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The next two corollaries follow from the proof of Theorem 1. First, Definition 3 does not re-

strict a blocking coalition’s composition. Nevertheless, cautious α-blocking reduces to block-

ing by singletons or pairs.

Corollary 1. A coalition can cautiously α-block µ ∈M in period t if and only if µ can be cau-

tiously α-blocked in period t by either a single agent or a man-woman pair.

Second, perfect α-stability captures an important dimension of subgame perfection.

Corollary 2. If µ = (µ1, . . . ,µT ) is perfect α-stable, then µ≥t = (µt , . . . ,µT ) is perfect α-stable in

the “submarket” beginning in period t where the preference Pi of each agent i satisfies

(xt , . . . , xT )Pi (yt , . . . , yT ) ⇐⇒ (µ<t (i ), xt , . . . , xT )≻i (µ<t (i ), yt , . . . , yT ).

Unlike a subgame perfect strategy profile in a non-cooperative game, a perfectα-stable match-

ing does not define particular outcomes in counterfactual histories. This distinguishes it from

solutions studied by Corbae et al. (2003), Doval (2018), Kurino (2020), and others.

The importance of timing and incentives in a sequential market means that many proper-

ties of stable matchings in a one-period economy no longer apply when T ≥ 2. For example,

a perfect α-stable matching may not be Pareto optimal (Example 1).10 A one-period economy

also has an “optimal stable matching” for each side of the market (Gale and Shapley, 1962).

That is, among all stable matchings, all men (women) agree which is best. This alignment of

interest does not extend to the perfect α-stable set (Example B.4 in Appendix B).11

6 The Perfect α-Core

When coalition K cautiously α-blocks µ in period t with σt , agent i ∈ K considers all eσt ∈

A (σt |i ) as possible period-t outcomes. This set includes assignments where members of the

blocking coalition other than i and his partner are not matched according toσt . Considering

these possibilities can be sometimes prudent. Agent i ’s information may be limited due to

imperfect monitoring or he may distrust others. Nevertheless, removing this layer of cautious,

seemingly non-cooperative, beliefs from Definition 3 is tempting. Doing so involves replacing

A (σt |i ) in (1) withA (σt |K ). Now, agent i ∈ K is confident that the assignment of each j ∈ K

is fixed at σt ( j ). This weakening of Definition 3 results in a stronger solution.

10The possible inefficiency of stable or equilibrium outcomes in a dynamic model is not unusual. See Damiano

and Lam (2005) or Kurino (2020) for other examples. In Sasaki and Toda (1996), a Pareto optimal stable matching

always exists. Thus, our results are not implied by their analysis despite the connection noted in Section 2.
11The absence of an optimal stable matching implies that the perfect α-stable set is not a lattice under the

common preference ordering. See Roth and Sotomayor (1990) for this property’s definition and implications.
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Definition 4. The coalition K ⊆ I can α-block µ ∈ M in period t if there exists σt ∈ A (K )

such thatσt (i ) 6=µt (i ) for some i ∈ K and for each i ∈ K ,

�
µ<t (i ),σt (i ),σ>t (i )

�
≻i µ(i ) for all σ>t ∈

⋃

eσt ∈A (σt |K )

C
�
(µ<t , eσt )
�

(3)

where C ((µ<t , eσt )) is the set of continuations σ>t ∈ M>t such that (µ<t , eσt ,σ>t ) cannot be

α-blocked in any period t ′ > t .

The perfect α-core is the set of matchings that cannot be α-blocked in any period by any

nonempty coalition.

Theorem 2. Every perfect α-core matching is perfect α-stable.

If µ cannot be α-blocked in period T , then µT is a core matching in a one-period econ-

omy where (2) defines agents’ preferences. Thus, the perfect α-core equals the core and the

perfect α-stable set in a one-period economy. In general, however, the perfect α-core can be

a strict subset of the perfect α-stable set. Moreover, α-blocking by a coalition does not reduce

to α-blocking by singletons or man-woman pairs (cf. Corollary 1). In the following example,

a matching is blocked by a coalition of two women. Neither woman can α-block the outcome

independently. Though superfluous in typical (static) matching market models, one-sided

collective actions are economically relevant, with strikes being a familiar example.12 Defini-

tions 3 and 4 do not restrict a blocking coalition’s membership. Thus, the relevance of non-

singleton and non-pairwise coalitions is driven entirely by agents’ beliefs concerning others’

matches at a blocking assignment σt , the setsA (σt |i ) andA (σt |K ) in (1) and (3).

Example 2. Consider a two-period economy with two men and two women. Their prefer-

ences are:
≻m1

: w2w2

σ

, m1w1

µ

, m1m1, . . . ≻w1
: w1m1

µ

, m2m2

σ

, w1w1, . . .

≻m2
: w1w1

σ

, m2w2

µ

, m2m2, . . . ≻w2
: w2m2

µ

, m1m1

σ

, w2w2, . . .

There are two perfect α-stable matchings, µ and σ. Only µ is in the perfect α-core. Neither

woman can α-block σ alone. Instead, σ is α-blocked by a coalition of both women being

unmatched in period 1.13

12In the case of a matching between men and women, Aristophanes’ Lysistrata provides another example.
13An analogue of the blocking action in this example has been documented among drivers using ride-sharing

platforms. Drivers collectively refuse rides to improve terms for subsequent matches. Quoting a news report:

Every night, several times a night, Uber and Lyft drivers at Reagan National Airport simultaneously
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The perfect α-core may be empty (Example B.5 in Appendix B). Nonemptiness is assured

on some preference domains and we examine two cases of interest.

History Independence When preferences are history independent, an agent’s assessment

of a continuation at period t does not depend on prior assignments. Formally, ≻i is history

independent if for each t and all x = (x1, . . . , xT ) and y = (y1, . . . , yT ), (x<t , x≥t ) ≻i (x<t , y≥t ) =⇒

(y<t , x≥t )≻i (y<t , y≥t ). For example, the preference

j k ≻i k k ≻i k j ≻i j j (4)

is history independent. Agent k is the superior period-2 assignment irrespective of the period-

1 match. Time-separable preferences, often defined with an additively-separable utility func-

tion, are history independent.14 As noted in Section 2, history independence and time-separability

are common assumptions in the literature.

Theorem 3. If each agent’s preference is history independent, then the perfect α-core is not

empty and equals the perfect α-stable set.

Sequential Sacrifice Aversion A limitation of history independent preferences is that they

cannot capture inter-temporal complementarities, switching costs, or status quo bias, all com-

mon phenomena (Samuelson and Zeckhauser, 1988). An example of a preference exhibiting

these features in our model is

j j ≻i j k ≻i k k ≻i k j . (5)

In (5), agent i prefers to continue a matching with j conditional on matching with j in period

1. However, conditional on matching with k in period 1, continuing that assignment is best.

Clearly, (5) is not history independent.

A class of preferences that includes (5) and allows for inter-temporal complementarities is

turn off their ride share apps for a minute or two to trick the app into thinking there are no drivers

available—creating a price surge. When the fare goes high enough, the drivers turn their apps back

on and lock into the higher fare. (Sweeney, 2019)

14Let T = {1, . . . , T } be the set of period indices. Agent i ’s preference ≻i is time-separable if for each subset of

period indices,T ′ ⊆T , and all x = (xT ′ , xT \T ′ ) and y = (yT ′ , yT \T ′ ), (xT ′ , xT \T ′ )≻i (xT ′ , yT \T ′ ) =⇒ (yT ′ , xT \T ′ )≻i

(yT ′ , yT \T ′ ). For example, j k ≻i k k ≻i j j ≻i k j is time-separable. Time-separability implies history indepen-

dence. The converse is not true. The preference in (4) is not time-separable.
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the following. The preference ≻i is sequentially sacrifice averse (SSA)15

(x<t , xt , . . . , xT )�i (x<t , j , . . . , j ) =⇒ (x<t , xt ′, . . . , xt ′)�i (x<t , j , . . . , j )

for every t ′ = t , . . . , T . In words, if a sequentially sacrifice averse agent prefers a sequence

of assignments over a constant assignment (starting in period t ), then the sequence cannot

involve any assignment that is a worse long-term outcome than the constant matching. Thus,

the agent is averse to even a moment of sacrifice.

Theorem 4. If each agent’s preference satisfies SSA, then the perfect α-core is not empty.

7 Perfect α∗-Stability

A potential drawback of perfect α-stability is that a matching may be rationalized by “incredi-

ble beliefs.” In this section, we propose a refinement to address this peculiarity, which is illus-

trated by the following example. To limit repetition, the refinement’s analogue for the perfect

α-core is only sketched in Remark 1 below.

Example 3. Consider a two-period economy with two men and two women. Their prefer-

ences are:

≻m1
: w1w1

µ,σ

, m1m1, . . . ≻w1
: m1m1

µ,σ

, w1w1, m2m2, . . .

≻m2
: w2w2

σ

, m2w2

µ

, m2m2, w1w1, . . . ≻w2
: w2m2

µ

, m2m2

σ

, w2w2, . . .

The matchings µ and σ constitute this market’s perfect α-stable set. Agent w2 may wish to

(cautiously) α-block σ by remaining unassigned in period 1. If w2 is unassigned in period 1,

w1 and m2 could match in period 1 instead. But then, m2 and w1 will prefer to match again

in period 2. Thus, w2 would be unmatched in both periods, an outcome that is worse than

σ(w2) =m2m2. Hence, w2 is content atσ and the matching is perfect α-stable.

Two facts suggest w2’s hesitation about blockingσ should be unfounded. First, the above

logic requires w1 and m1 to forgo their most-preferred outcome (as if to “punish” w2). And

second, it also assumes w1 and m2 put aside their individual rationality. For instance, the best

that w1 can achieve after matching with m2 in period 1 is m2m2, which is worse than had she

15Kadam and Kotowski (2018b) introduce a weaker preference restriction that they call sacrifice aversion. The

definitions are equivalent when T ≤ 2.
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not matched with him at all. Together, these reasons suggest that w2 should ignore the con-

tingency where w1 and m2 match in period 1 when evaluating the implications of remaining

unmatched in period 1. Thus, we might regard σ with some skepticism.

Motivated by Example 3, a natural refinement of perfect α-stability posits that agents ig-

nore “dominated” outcomes when evaluating a blocking assignment. Eliminating dominated

strategies from rationalizing beliefs has been considered by Bernheim (1984), Pearce (1984),

Ambrus (2006), and Liu et al. (2014), among others. We use this idea to thin the setA (σt |i )

in Definition 3 by removing dominated assignments for agents j 6= i . We call the resulting

blocking notion cautious α∗-blocking.

Following Definition 3, cautious α∗-blocking is defined recursively, a fact incorporated

into the underlying dominance notion. Accordingly, let S ∗(µ≤t ) be the set of all µ′
>t
∈ M>t

such that the matching (µ≤t ,µ′
>t
) cannot be cautiously α∗-blocked in any period t ′ > t by any

nonempty coalition.

Definition 5. Let µ<t ∈ M<t , σt ∈ A , and K ⊆ I . Assignment νt ∈ A (σt |K ) is considered

by K to be cautiously α-dominated at (µ<t ,σt ) if there exists a nonempty J ⊆ I \ K and bνt ∈

A (νt |K )∩A (J ) such that for all j ∈ J , all

bν>t ∈
⋃

bν′t ∈A (bνt | j )

S ∗
�
(µ<t ,bν′

t
)
�

, (6a)

and all

ν>t ∈
⋃

ν′t ∈A (νt | j )

S ∗
�
(µ<t ,ν′

t
)
�

, (6b)

(µ<t ( j ),bνt ( j ),bν>t ( j ))≻ j (µ<t ( j ),νt ( j ),ν>t ( j )) .

Intuitively, νt is dominated if a group of agents J has an assignment that is superior to νt

in every contingency (accounting for continuation matchings themselves being stable). Let

A ∗
µ<t
(σt |K )⊆A (σt |K )be the set of assignments that are not considered by K to be cautiously

α-dominated at (µ<t ,σt ). This set is not empty (Lemma A.2 in Appendix A). The next defini-

tion mirrors Definition 3 withA ∗
µ<t

andS ∗ replacingA andS , respectively.

Definition 6. The coalition K can cautiously α∗-block µ ∈ M in period t if there exists σt ∈

A (K ) such thatσt (i ) 6=µt (i ) for some i ∈ K and for each i ∈ K ,

�
µ<t (i ),σt (i ),σ>t (i )

�
≻i µ(i ) for all σ>t ∈

⋃

eσt ∈A
∗
µ<t (σt |i )

S ∗
�
(µ<t , eσt )
�
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where S ∗((µ<t , eσt )) is the set of continuations σ>t ∈ M>t such that (µ<t , eσt ,σ>t ) cannot be

cautiously α∗-blocked in any period t ′ > t .

A matching is perfect α∗-stable if it cannot be cautiously α∗-blocked in any period by any

nonempty coalition.

Theorem 5. The set of perfect α∗-stable matchings is not empty.

Theorem 6. Every perfect α∗-stable matching is perfect α-stable.

Though equivalent in a one-period economy, perfect α∗-stability is stronger than perfect α-

stability. In Example 3,σ is not perfect α∗-stable.

Remark 1. An analogous refinement of the perfect α-core, the perfect α∗-core, can be pro-

posed. Call the associated blocking notion α∗-blocking. In Definition 5, replace S ∗ in (6a)

and (6b) with the set of continuations that cannot be α∗-blocked in any future period. Also,

replace A (bνt | j ) in (6a) and (6b) withA (bνt |J ). This ensures that the premise of α-blocking

(the assignment of all blocking coalition members is fixed) is reflected in the dominance cri-

terion. The definitions of α∗-blocking and the perfect α∗-core follow accordingly.

Remark 2. Perfect α∗-stability is but one possible refinement of perfect α-stability. Any alter-

native only requires a sensible trimming ofA (σt |i ) along with an accompanying adjustment

to S (·). Institutional features may help formulate refinements in applications. In his exten-

sion of Sasaki and Toda’s (1996) analysis of a matching market with externalities, Hafalir (2008)

proposes a different refinement of that model’s analogue ofA (σt |i ). Hafalir’s proposal adds

assignments to a set of possibilities. Our proposal shrinks a large initial set.

8 Extensions

The framework afforded by perfect α-stability can accommodate many extensions.

Arrivals and Departures The set of market participants often changes with time. Some

agents might be long-lived; others may be active for only one period. The model above re-

quires two changes to admit arrivals and departures. First, replace the set of assignmentsA

with a date-specific set of admissible assignmentsAt . Each µt ∈At is an assignment among

agents present in period t , say It = M t ∪Wt . The set At passes through to the rest of the

model—the set of matchings becomesM = ×T
t=1
At , the set A (K ) becomes At (K ), and so

15



on. Second, restrict agents’ preferences to the periods when they are in the market.16 The rest

of the analysis is unchanged.

Historical Dependencies Above we assumed that an agent’s preferences may depend on his

prior assignments. In practice, the prior assignments of others matter too. For example, many

employers value workers with experience in the same industry and colleges care about ap-

plicants’ prior education. It is simple to verify that a perfect α-stable matching exists when

agents’ preferences over continuations from period t (the setM≥t ) depend on the market-

wide history of assignments up to period t , µ<t (·). Only a minor amendment to the proof of

Theorem 1—additionally conditioning on µ<t (·)—is required.

Transfers Perfectα-stability provides a template that can be adapted to many problems. For

example, consider a multiperiod version of Shapley and Shubik’s (1971) matching market with

transfers. The market has two sides and only bilateral matches generate surplus. Following

convention, we now say that an assignment for period t is a matrix xt = [x
m w
t
] such that (a)∑

w∈W x m w
t
≤ 1 for all m ∈M , (b)

∑
m∈M x m w

t
≤ 1 for all w ∈W , and (c) x m w

t
∈ {0, 1} for all m

and w . If x m w
t
= 1, then m and w are matched and generate v m w

t
≥ 0 in surplus. LetX be the

set of assignment matrices and letX (K ) be the set of assignment matrices where each agent

in coalition K is matched with another member of K or is unassigned.

An imputation for period t is a division of the period-t surplus. It is a vector u t = (u
i
t
)i∈I ∈

R|I | of utility values, one for each agent. An imputation u t is feasible for coalition K at xt ∈

X (K ) if
∑

i∈K u i
t
≤
∑
(m ,w )∈M∩K ×W ∩K x m w

t
v m w

t
.17 An imputation is feasible if it is feasible for

the grand coalition K = I . A period-t outcome γt = (xt , u t ) consists of an assignment and a

feasible imputation. An outcome γ= (γ1, . . . ,γT ) is a tuple of T one-period outcomes.

Each agent’s preference is defined over sequences of per-period utilities. An important

special case assumes that agent i ’s preference is represented by the function

Ui

�
u i

1
, . . . , u i

T

�
=

T∑

t=1

δt−1u i
t
. (7)

where δ ∈ (0, 1) is a discount factor.

We adapt prior ideas in the natural way to this model. For each γt = (xt , u t ), letA (γt |K )

be the set of all period-t outcomes eγt = (ext , eu t ) such that eu t is feasible at ext and the period-t

16For example, an agent active from period t to period t +2 would have preferences defined over triples of the

form i j k , his period t , t + 1, and t + 2 assignments.
17By convention

∑
i∈J (·) = 0 if J =∅.
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outcome of members of K equals γt , i.e., ex m w
t
= x m w

t
for all m , w ∈ K and eu i

t
= u i

t
for all i ∈ K .

Definition 7. The coalition K ⊆ I can cautiously α-block the outcome γ in period t if there ex-

istsσt = (yt , st ) ∈X (K )×R
|I | such that (a) st is feasible for coalition K at yt , (b) the assignment

or imputation of some i ∈ K changes, and (c) for each i ∈ K ,

�
u i
<t

, s i
t

, s i
>t

�
≻i

�
u i

1
, . . . , u i

T

�
for all σ>t ∈

⋃

eσt ∈A (σt |i )

S
�
(γ≤t , eσt )
�

,

where s i
t

and s i
>t

are the utilities for agent i atσt andσ>t , respectively, andS ((γ<t , eσt )) is the

set of continuationsσ>t such that (γ<t , eσt ,σ>t ) cannot be cautiously α-blocked in any period

t ′ > t by any nonempty coalition.

An outcome is perfectα-stable if it cannot be cautiouslyα-blocked in any period by any nonempty

coalition. The definition of (non-cautious) α-blocking mimics Definition 7 withA (·|K ) and

C (·) replacingA (·|i ) andS (·), respectively. The perfect α-core is the set of outcomes that can-

not be α-blocked in any period by any nonempty coalition.

Theorem 7. Suppose each agent’s preference is represented by (7). The set of perfect α-stable

outcomes is not empty and equals the perfect α-core.

Many-to-One Assignments The original many-to-one assignment model concerns college

admissions (Gale and Shapley, 1962). One interpretation of this model in a multiperiod setting

is that students pursue “education plans” by attending a sequence of schools.18 For example,

a student may plan to enroll in community college and then transfer to a university. About

26,500 California community college transfer students were admitted to the University of Cal-

ifornia system in 2019 (UCOP, 2019) and the system has particular programs, such as the UC

Transfer Admission Guarantee and Transfer Admissions Pathways, to facilitate transfers.

Adopting standard nomenclature, let S = {s1, . . . , sn} and C = {c1, . . . , cn ′} be the sets of stu-

dents and colleges, respectively. College c has capacity q c
t

in period t . Now, a feasible period-

t assignment is a function µt : C ∪ S → C ∪ 2S such that (a) µt (s ) ∈ C ∪ {s} for all s ∈ S , (b)

µt (c ) ∈ 2S and |µt (c )| ≤ q c
t

for all c ∈ C , and (c) for s ∈ S and c ∈ C , µt (s ) = c ⇐⇒ s ∈ µt (c ).

LetAt be the set of feasible period-t assignments. A matching µ= (µ1, . . . ,µT ) ∈M =×
T
t=1
At

is a tuple of T feasible assignments. Each student’s preference ≻s is defined over (C ∪ {s})T .

Each college’s preference ≻c is defined over sequences of enrolled classes (sets of students).

18Each period can be an academic year. Enrolled students are typically assured “admission” to the same school

for the following year. This practice can be encoded in the schools’ preferences.
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We can extend standard solutions to the static college admissions problem to this dynamic

setting via the template provided by perfect α-stability. For brevity, we define only the ana-

logue of group stability (Roth and Sotomayor, 1990, Definition 5.4).19

Definition 8. Coalition K ⊆ C ∪ S can cautiously α-block µ ∈ M in period t if there exists

σt ∈At ,σt (i ) 6=µt (i ) for some i ∈ K , such that

(a) σt (s ) ∈ (K ∩C )∪{s} for all s ∈ K ∩S ,

(b) σt (c ) ⊆ (K ∩S )∪µt (c ) for all c ∈ K ∩C , and

(c) for each i ∈ K , (µ<t (i ),σt (i ),σ>t (i )) ≻i µ(i ) for all σ>t ∈
⋃
eσt ∈At (σt |i )

S ((µ≤t , eσt )) where

S ((µ≤t , eσt )) is the set of continuations σ>t ∈M>t such that (µ<t , eσt ,σ>t ) cannot be cau-

tiously α-blocked by any nonempty coalition in any period t ′ > t .

Point (a) says each blocking student matches with a college in the blocking coalition or is unas-

signed. Point (b) says each blocking college may enroll new students while possibly keep-

ing or dropping some prior assignments. (The college’s capacity constraint is satisfied since

σt ∈At .) Point (c) is the usual decision criterion for cautious α-blocking.

A matching is perfect α-group stable if it cannot be cautiously α-blocked by any coalition

in any period. In a one-period economy, this definition reduces to group stability and a re-

striction on the colleges’ preferences is needed to ensure that a group stable outcome exists.

A common assumption is responsiveness (Roth, 1985). A ranking Pc of 2S is responsive if for

each xt , yt ∈ 2S such that i /∈ yt , j ∈ yt , and xt = yt ∪ {i } \ { j }, xt Pc yt ⇐⇒ {i }Pc { j }. Call the

preference of college c conditionally responsive if for all t and µ<t ∈M<t there exists a strict

and responsive ranking of 2S , P µ<t
c

, such that (µ<t (c ), xt , x>t )≻c (µ<t (c ), yt , y>t ) ⇐⇒ xt P µ<t
c

yt .

Theorem 8. Suppose colleges have conditionally responsive preferences. (No additional restric-

tions are placed on the students’ preferences.)

(a) If coalition K can cautiouslyα-blockµ ∈M in period t , thenµ can be cautiouslyα-blocked

in period t by either a student alone, a college alone, or a college-student pair.

(b) The set of perfect α-group stable matchings is not empty.

19Roth and Sotomayor (1990) describe several solution concepts for the college admissions model—stability,

group stability, and the core with weak or strict domination. Stability limits blocking coalitions to singletons or

college-student pairs. It is equivalent to group stability when colleges have responsive preferences.
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Infinite Time Horizon As a final extension, we revisit our original model but allow for an

infinite time horizon. Since there is no final period on which to anchor beliefs about future

outcomes (required for backward induction), we generalize our solution by explicitly defining

such beliefs. A consistency requirement closes the definition.

Definition 9. The matching µ is perfect α-stable if there exists a mapping S :
⋃∞

t=0
M≤t →⋃∞

t=0
M>t such that:

(a) No coalition K ⊆ I can cautiously α-block µ (given S (·)) in any period t . That is, there

does not exist a coalition K ⊆ I , period t , and σt ∈A (K ) such that σt (i ) 6=µt (i ) for some

i ∈ K and for each i ∈ K , (µ<t (i ),σt (i ),σ>t (i ))≻i µ(i ) for allσ>t ∈
⋃
eσt ∈A (σt |i )

S ((µ<t , eσt )).

(b) S (·) is consistent. That is, σ>t ∈ S (σ≤t ) if and only if (σ≤t ,σ>t ) cannot be cautiously α-

blocked (givenS (·)) in any period t ′ > t by any coalition.

In the preceding definition, the functionS (·) represents agents’ common beliefs about plau-

sible market continuations. In a finite-horizon market, S (·) is pinned down by backward in-

duction and perfect α-stability reduces to perfect α-stability.

Payoff restrictions are necessary to ensure the existence of an equilibrium in infinite hori-

zon games. The situation here is no different. We say that agent i eventually prefers constant

assignments if there exists a Ti such that for all t ≥ Ti , (x<t , x≥t ) �i (x<t , i , i , . . .) =⇒ x≥t =

( j , j , . . .). Every (finite) T -period market satisfies this condition (i.e., Ti = T for each i ). Intu-

itively, the condition says that agents do not value changes in assignments that occur suffi-

ciently far in the future. The condition allows us to defineS (µ≤t ) consistently for sufficiently

large t without reference toS (µ≤t ′) for t ′ > t .

Theorem 9. If each agent eventually prefers constant assignments, then there exists a perfect

α-stable matching.

9 Summary and Conclusion

Agents often must act together to generate surplus and the details of the interaction leading

to an outcome are very complex. The theory developed above offers a flexible framework

to analyze markets where, in addition, time plays a critical role. The template is simple and

adaptable. An outcome µ = (µ1, . . . ,µT ) is unstable if a coalition has a feasible joint action σt
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in some period t such that for each coalition member i ,

�
µ<t (i ),σt (i ),σ>t (i )

�
≻i µ(i ) for all σ>t ∈

⋃

eσt ∈A (σt |i )︸ ︷︷ ︸
|

set of period-t outcomes agent i thinks

may arise if the coalition pursuesσt

set of future outcomes that

are stable given (µ<t , eσt )
|︷ ︸︸ ︷

S
�
(µ<t , eσt )
�
.

The sets “A (·|·)” and “S (·)” parameterize a family of solutions by adjusting agents’ beliefs

about contemporaneous and future market developments, respectively. In applications, these

sets’ definitions may draw on the market’s institutional details or incorporate behavioral re-

finements. Sharper predictions are likely to result. The proposals above, however, are natural

departure points for an initial analysis. And, the application of the proposed framework to

problems beyond two-sided matching is promising as well.

A Appendix: Proofs

Proof of Theorem 1. It is sufficient to show that S (µ<t ) 6= ∅ for every µ<t ∈ M<t and t . The

theorem follows from the t = 1 case. Let µ<T ∈M<T . By Lemma 1, µT ∈ S (µ<T ) if and only if

µT is a stable matching in a one-period economy where the preference of each agent i , Pi , is

given by (2). Such an assignment exists (Gale and Shapley, 1962). Thus,S (µ<T ) 6=∅.

Proceeding by induction, suppose that for every t ′ > t and all µ<t ′ ∈M<t ′ ,S (µ<t ′) 6=∅. Let

µ<t ∈M<t . For each i ∈ I , define a ranking Pi of agent i ’s potential partners as follows:

j Pi k ⇐⇒
min
eµt ∈A (i , j )

min
eµ>t ∈S ((µ<t ,eµt ))

�
µ<t (i ), eµt (i ), eµ>t (i )

�

≻i min
eµ′t ∈A (i ,k )

min
eµ′>t ∈S ((µ<t ,eµ′t ))

�
µ<t (i ), eµ′t (i ), eµ

′
>t
(i )
�

.
(A.1)

We interpret the righthand side of (A.1) as follows. For each eµt ∈A such that eµt (i ) = j , eµ>t ∈

M>t is such that (µ<t , eµt , eµ>t ) cannot be cautiously α-blocked in any period t ′ > t . By the

induction hypothesis,S ((µ<t , eµt )) 6=∅; hence, eµ>t exists. We find the least favorable matching

of this form with respect to ≻i . This is the entry to the left of “≻i ” in (A.1). To the right of “≻i ,”

the same steps are repeated but eµt (i ) = k . Thus, j Pi k if and only if the “worst” outcome to i
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of matching with j is better than the “worst” outcome of matching with k .20

Let bµt ∈ A be a stable assignment in a one-period market where the preference of each

agent i is Pi , as defined in (A.1). Such an assignment exists (Gale and Shapley, 1962). By the

induction hypothesis, S ((µ<t , bµt )) 6= ∅. Select some bµ>t ∈ S ((µ<t , bµt )). We argue that bµ≥t =

(bµt , bµ>t ) belongs to S (µ<t ). Suppose the contrary. Since bµ>t ∈S ((µ<t , bµt )), (µ<t , bµ≥t )must be

blocked in period t . Thus, there exist K ⊆ I andσt ∈A (K ) such that for all i ∈ K ,

�
µ<t (i ),σt (i ),σ>t (i )

�
≻i

�
µ<t (i ), bµ≥t (i )
�

for all σ>t ∈
⋃

eσt ∈A (σt |i )

S
�
(µ<t , eσt )
�

. (A.2)

There are two cases.

Case 1. Suppose σt (i ) = i 6= bµt (i ) for some i ∈ K . In this case,A (σt |i ) =A (i , i ) and (A.2) is

equivalent to mineσt ∈A (i ,i ) mineσ>t ∈S ((µ<t ,eσt ))
(µ<t (i ), eσt (i ), eσ>t (i ))≻i (µ<t (i ), bµt (i ), bµ>t (i )).

As above, the minimizations are with respect to the order ≻i . Hence,

min
eσt ∈A (i ,i )

min
eσ>t ∈S ((µ<t ,eσt ))

�
µ<t (i ), eσt (i ), eσ>t (i )

�

≻i min
eµt ∈A (i ,bµt (i ))

min
eµ>t ∈S ((µ<t ,eµt ))

�
µ<t (i ), eµt (i ), eµ>t (i )

�
.

But this implies i Pi bµt (i ). Thus, bµt cannot be a stable assignment in a one-period

economy where Pi is the preference of agent i .

Case 2. Suppose σt (i ) = j 6= bµ(i ), for some i ∈ K . Thus, j ∈ K and σt ( j ) = i . Noting that

A (i , j ) =A (σt |i ) andA ( j , i ) =A (σt | j ), a parallel argument to that of case 1 shows

that j Pi bµt (i ) and i Pj bµt ( j ). Thus, bµt cannot be stable. Agents i and j with preferences

Pi and Pj , respectively, are a blocking coalition.

As each possible case leads to a contradiction, we conclude that bµ≥t ∈S (µ<t ).

Proof of Theorem 2. It suffices to show that C (µ<t ) ⊆ S (µ<t ) for every µ<t ∈ M<t and t . Let

µ<T ∈M<T . The assignment µT is inC (µ<T ) if and only if it is a core matching in a one-period

economy where the preference of each agent i , Pi , is given by (2). That economy’s core is not

empty and equals the pairwise stable set (Gale and Shapley, 1962). Thus,C (µ<T ) =S (µ<T ).

20Sasaki and Toda (1996) also define a preference ranking for each agent by homing in on worst case out-

comes. Our definition differs since we additionally exploit our model’s temporal structure—eµ>t must belong to

S ((µ<t , eµt )). The unconstrained worst case selects eµ>t fromM>t .
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Proceeding by induction, suppose C (µ<t ′) ⊆ S (µ<t ′ ) for all µ<t ′ ∈M<t ′ and all t ′ > t . Fix

µ<t ∈ M<t . Suppose µ≥t ∈ C (µ<t ). If µ≥t /∈ S (µ<t ), then (µ<t ,µ≥t ) must be cautiously α-

blocked in some period t ′ ≥ t . Since C (µ<t ′ ) ⊆ S (µ<t ′ ) for all t ′ > t , (µ<t ,µ≥t )must be cau-

tiously α-blocked in period t . Thus, there exist K ⊆ I and σt ∈ A (K ) such that for each

i ∈ K , (µ<t (i ),σt (i ),σ>t (i ))≻i µ(i ) for all σ>t ∈
⋃
eσt ∈A (σt |i )

S ((µ<t , eσt )). Recall thatA (σt |K )⊆

A (σt |i ) if i ∈ K . And, by the induction hypothesis,C ((µ<t , eσt ))⊆S ((µ<t , eσt )) for all eσt ∈A .

Therefore, coalition K can α-block (µ<t ,µ≥t ) in period t —a contradiction. Thus, the assump-

tion that µ≥t /∈S (µ<t ) was incorrect. And so,C (µ<t )⊆S (µ<t ).

The next lemma is invoked in the proof of Theorem 3. It is an immediate consequence of

history independence and its proof is omitted.

Lemma A.1. Suppose each agent’s preference is history independent. Let µ<t ,µ′
<t
∈ M<t . (a)

S (µ<t ) =S (µ
′
<t
). (b)C (µ<t ) =C (µ

′
<t
).

Proof of Theorem 3. It is sufficient to show that C (µ<t ) = S (µ<t ) for every µ<t ∈ M<t and t .

The proof of Theorem 2 shows that C (µ<T ) = S (µ<T ) for all µ<T ∈ M<T . Proceeding by in-

duction, suppose C (µ<t ′) = S (µ<t ′) for all µ<t ′ and t ′ > t . Let µ<t ∈ M<t . Since C (µ<t ) ⊆

S (µ<t ) (see proof of Theorem 2), it is sufficient to establish the converse inclusion. Accord-

ingly, let µ≥t ∈ S (µ<t ). Suppose (µ<t ,µ≥t ) can be α-blocked in period t ′ ≥ t . If t ′ > t , then

µ≥t ′ ∈ S ((µ<t ,µt , . . . ,µt ′−1)) = C ((µ<t ,µt , . . . ,µt ′−1)). The equality follows from the induction

hypothesis. And so, (µ<t ,µ≥t ) cannot be α-blocked in period t ′ > t .

Therefore, (µ<t ,µ≥t )must beα-blocked in period t . Thus, there exist K ⊆ I andσt ∈A (K )

such that for each i ∈ K , (µ<t (i ),σt (i ),σ>t (i ))≻i (µ<t (i ),µ≥t (i )) for allσ>t ∈
⋃
eσt ∈A (σt |K )

C ((µ<t , eσt )).

By the induction hypothesis,C ((µ<t , eσt )) =S ((µ<t , eσt )) for each eσt ∈A (σt |K ). Furthermore,

by Lemma A.1, S ((µ<t , eσt )) = S ((µ<t ,σ′
t
)) where σ′

t
∈ A is arbitrary. Thus, for each i ∈ K

and all σ>t ∈
⋃
eσt ∈A (σt |i )

S ((µ<t , eσt )), (µ<t (i ),σt (i ),σ>t (i )) ≻i (µ<t (i ),µ≥t (i )). But this implies

µ≥t /∈S (µ<t )—a contradiction. And so, µ≥t ∈C (µ<t ).

Proof of Theorem 4. It is sufficient to show that C (µ<t ) 6= ∅ for every µ<t ∈ M<t and t . The

proof of Theorem 2 shows thatC (µ<T ) =S (µ<T ) 6=∅ for all µ<T ∈M<T . Proceeding by induc-

tion, supposeC (µ<t ′) 6=∅ for all µ<t ′ ∈M<t ′ and t ′ > t . Let µ<t ∈M<t . For each i ∈ I , define a

ranking Pi of agent i ’s potential partners as follows:

j Pi k ⇐⇒
�
µ<t (i ), j , . . . , j
�
≻i

�
µ<t (i ), k , . . . , k
�
. (A.3)

When t = 1 in (A.3), Pi reduces to the “isolated preference relation” of Kennes et al. (2014) or
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the “ex ante spot ranking induced by≻i ” of Kadam and Kotowski (2018a). Letµ≥t = (µt , . . . ,µT )

be a matching where eachµs , s = t , . . . , T , is the same core assignment from a one-period mar-

ket where Pi is the preference of each agent i . Such an assignment exists (Gale and Shapley,

1962). Next, we argue that µ≥t ∈C (µ<t ). Suppose the contrary. Thus, there exist K ⊆ I , s ≥ t ,

andσs ∈A (K ), such thatσs ( j ) 6=µs ( j ) for some j ∈ K and for each i ∈ K ,

�
µ<t (i ),µt (i ), . . . ,µs−1(i ),σs (i ),σ>s (i )

�
≻i

�
µ<t (i ),µ≥t (i )
�

for all σ>s ∈
⋃
eσs∈A (σs |K )

C ((µ<t ,µt , . . . ,µs−1, eσs )). (Recall that C ((µ<t ,µt , . . . ,µs−1, eσs )) 6= ∅ by

the induction hypothesis.) There are two possible cases.

Case 1. Let i ∈ K and suppose σs (i ) = i 6= µs (i ). Since µt (i ) = · · · = µT (i ), SSA implies that

(µ<t (i ), i , . . ., i ) ≻i (µ<t (i ),µt (i ), . . . ,µT (i )). Hence, i Piµt (i ). But this contradicts µt be-

ing in the core of a one-period market.

Case 2. Let i ∈ K and suppose σs (i ) = j 6= µs (i ). Then j ∈ K and σs ( j ) = i 6= µt ′ ( j ). The same

reasoning as in case 1 lets us conclude that j Piµt (i ) and i Pjµt ( j ). Thus, µt cannot

be a core assignment in the corresponding one-period market. Agents i and j with

preferences Pi and Pj , respectively, are a blocking coalition.

As each case leads to a contradiction, we conclude that µ≥t ∈C (µ<t ).

The next lemma is used in the proof of Theorem 5.

Lemma A.2. Fix i ∈ I and µ<t ∈M<t . Suppose S ∗((µ<t ,µt )) 6=∅ for all µt ∈A .

(a) Suppose σt ,σ′
t
∈A andσt (i ) =σ

′
t
(i ), thenA ∗

µ<t
(σt |i ) =A

∗
µ<t
(σ′

t
|i ).

(b) The setA ∗
µ<t
(σt |i ) is not empty for everyσt ∈A .

Proof of Lemma A.2. Part (a) follows from Definition 5 and the fact that A (σt |i ) = A (σ
′
t
|i )

wheneverσt (i ) =σ
′
t
(i ). To prove part (b), fix i ∈ I ,µ<t ∈M<t , andσt ∈A . Let J = I \{i ,σt (i )}.

If J = ∅, then by Definition 5, no assignment in A (σt |i ) can be considered cautiously α-

dominated. Similarly, if J = { j }, then eσt ( j ) = j for all eσt ∈ A (σt |i ).
21 Thus, there is no al-

ternative assignment among agents in J that agent j strictly prefers. Hence, no assignment

inA (σt |i ) is cautiously α-dominated. In the preceding cases,A ∗
µ<t
(σt |i ) =A (σt |i ) 6=∅.

21There are two possibilities: (i) I = {i , j } and σt (i ) = i , which necessarily means σt ( j ) = j . In this case

A (i |σt ) = {σt }. (ii) I = {i , k , j } andσt (i ) = k , which necessarily meansσt ( j ) = j . Again,A (i |σt ) = {σt }.
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Henceforth, suppose |J | ≥ 2. For each j ∈ J define a ranking Pj of potential partners in J

(including him/herself) as follows:

k Pj ℓ ⇐⇒
min
eµt ∈A (σt |i )∩A ( j ,k )

min
eµ>t ∈S ∗((µ<t ,eµt ))

�
µ<t ( j ), k , eµ>t ( j )

�

≻ j min
eµt ∈A (σt |i )∩A ( j ,ℓ)

min
eµ>t ∈S ∗((µ<t ,eµt ))

�
µ<t ( j ),ℓ, eµ>t ( j )

�
.

(A.4)

In (A.4), A (σt |i )∩A ( j , k ) is the set of one-period assignments where i is assigned to σt (i )

and j is assigned to k . Since neither j nor k can equal i or σt (i ), this set is not empty. By

assumption,S ∗((µ<t , eµt )) 6=∅ for all eµt . Thus, Pj is well-defined for each j ∈ J .

Defineνt ∈A as follows. For i andσt (i ), letνt (i ) =σt (i ) andνt (σt (i )) = i . On J , letνt (·)be

any stable assignment among agents in J where the preference of each j ∈ J is Pj , as defined

in (A.4). Such an assignment exists (Gale and Shapley, 1962). Observe that νt ∈A (σt |i ).

We argue that νt ∈ A
∗
µ<t
(σt |i ). Suppose the contrary. Thus, there exist K ⊆ J and bνt ∈

A (νt |i )∩A (K ) such that for all j ∈ K ,

min
bν′t ∈A (bνt | j )

min
bν′>t ∈S ∗((µ<t ,bν′t ))

�
µ<t ( j ),bνt ( j ),bν′>t

( j )
�

≻ j max
ν′t ∈A (νt | j )

max
ν′>t ∈S ∗((µ<t ,bν′t ))

�
µ<t ( j ),νt ( j ),ν

′
>t
( j )
�

.
(A.5)

In (A.5), which follows from Definition 5, the minimizations and maximizations are with re-

spect to the preference ≻ j . But this implies

min
bν′t ∈A (bνt | j )

min
bν′>t ∈S

∗((µ<t ,bν′t ))

�
µ<t ( j ),bνt ( j ),bν′>t

( j )
�

≻ j min
ν′t ∈A (νt | j )

min
ν′>t ∈S

∗((µ<t ,bν′t ))

�
µ<t ( j ),νt ( j ),ν

′
>t
( j )
�

.
(A.6)

Fix j ∈ K ⊆ J . If bνt ( j ) = k , then (A.6) implies that k Pjνt ( j ). (The case where j = k is possible.)

Since bνt ∈A (K ), k ∈ K as well. By similar reasoning, j Pkνt (k ). But, if k Pjνt ( j ) and j Pkνt (k ),

thenνt is not a stable matching among agents in J , a contradiction. Thus,νt ∈A
∗
µ<t
(σt |i ).

Proof of Theorem 5. It is sufficient to show thatS ∗(µ<t ) 6=∅ for every µ<t ∈M<t and t . When

t = T , cautious α∗-blocking and cautious α-blocking coincide. Thus, S ∗(µ<T ) = S (µ<T ) 6= ∅

for every µ<T ∈ M<T . Proceeding by induction, suppose S ∗(µ<t ′) 6= ∅ for every t ′ > t and

every µ<t ′ ∈M<t ′ . Fix µ<t ∈M<t . For i , j ∈ I let

A ∗
µ<t
(i , j ) :=
⋃

µt ∈A (i , j )

A ∗
µ<t
(µt |i ) (A.7)

24



be the set of assignments where i is assigned to j that are not considered cautiouslyα-dominated

by agent i . SinceA ∗
µ<t
(µt |i ) 6=∅,A ∗

µ<t
(i , j ) 6=∅. Next, define a ranking P ∗

i
of potential partners

for agent i as follows:

j P ∗
i

k ⇐⇒

min
eµt ∈A

∗
µ<t (i , j )

min
eµ>t ∈S ∗((µ<t ,eµt ))

�
µ<t (i ), eµt (i ), eµ>t (i )

�

≻i min
eµ′t ∈A ∗µ<t (i ,k )

min
eµ′>t ∈S

∗((µ<t ,eµ′t ))

�
µ<t (i ), eµ′t (i ), eµ

′
>t
(i )
�

.

The ranking P ∗
i

is like Pi from (A.1) exceptA ∗
µ<t

andS ∗ replaceA andS , respectively.

Let bµt be a stable assignment in a one-period market where the preference of each agent

i is P ∗
i

. Such an assignment exists (Gale and Shapley, 1962). By the induction hypothesis,

S ∗((µ<t , bµt )) 6= ∅. Select some bµ>t ∈ S
∗((µ<t , bµt )). We argue that bµ≥t = (bµt , bµ>t ) ∈ S

∗(µ<t ).

Suppose the contrary. Since bµ>t ∈S
∗((µ<t , bµt )), (µ<t , bµ≥t )must be be cautiously α∗-blocked in

period t . Thus, there exist K ⊆ I andσt ∈A (K ) such that for each i ∈ K , (µ<t (i ),σt (i ),σ>t (i ))≻i

(µ<t (i ), bµt (i ), bµ≥t (i )) for allσ>t ∈
⋃
eσt ∈A

∗
µ<t (σt |i )

S ∗((µ<t , eσt )). There are two cases.

Case 1. Supposeσt (i ) = i 6= bµt (i ) for some i ∈ K . By Lemma A.2 and the definition ofA ∗
µ<t
(·, ·)

in (A.7),A ∗
µ<t
(σt |i ) =A

∗
µ<t
(i , i ). Thus,

min
eσt ∈A

∗
µ<t (i ,i )

min
σ>t ∈S ∗((µ<t ,eσt ))

�
µ<t (i ), i ,σ>t (i )
�
≻i

�
µ<t (i ), bµt (i ), bµ>t (i )

�
.

And hence,

min
eσt ∈A

∗
µ<t (i ,i )

min
σ>t ∈S ∗((µ<t ,eσt ))

�
µ<t (i ), i ,σ>t (i )
�

≻i min
eµt ∈A

∗
µ<t (i ,bµt (i ))

min
eµ>t ∈S ∗((µ<t ,eµt ))

�
µ<t (i ), bµt (i ), eµ>t (i )

�
,

which implies i P ∗
i
bµt (i ). Thus, bµt cannot be a stable matching in a one-period econ-

omy where the preference of agent i is P ∗
i

.

Case 2. Suppose σt (i ) = j 6= bµ(i ), for some i ∈ K . Thus, j ∈ K and σt ( j ) = i . Noting that

A ∗
µ<t
(i , j ) =A ∗

µ<t
(σt |i ) andA ∗

µ<t
( j , i ) =A ∗

µ<t
(σt | j ), a parallel argument to that of case

1 shows that j P ∗
i
bµt (i ) and i P ∗

j
bµt ( j ). Thus, bµt cannot be stable. Agents i and j with

preferences P ∗
i

and P ∗
j

, respectively, are a blocking coalition.

As each case leads to a contradiction, we conclude that bµ≥t ∈S
∗(µ<t ).

Proof of Theorem 6. It is sufficient to show that S ∗(µ<t ) ⊆ S (µ<t ) for all µ<t ∈ M<t and t .

The proof of Theorem 5 shows that S ∗(µ<T ) = S (µ<T ) for all µ<T ∈ M<T . Proceeding by
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induction, suppose S ∗(µ<t ′) ⊆ S (µ<t ′) for all µ<t ′ ∈ M<t ′ and t ′ > t . Fix µ≥t ∈ S
∗(µ<t ).

If µ≥t /∈ S (µ<t ), then (µ<t ,µ≥t ) can be cautiously α-blocked in some period t ′ ≥ t . Since

S ∗(µ<t ′) ⊆ S (µ<t ′) for all t ′ > t , (µ<t ,µ≥t ) must be cautiously α-blocked in period t . Thus,

there exist K ⊆ I and σt ∈ A (K ) such that for each i ∈ K , (µ<t (i ),σt (i ),σ>t (i )) ≻i µ(i ) for

all σ>t ∈
⋃
eσt ∈A (σt |i )

S ((µ<t , eσt )). Recall thatA ∗
µ<t
(σt |i ) ⊆A (σt |i ). And, by the induction hy-

pothesis, S ∗((µ<t , eσt )) ⊆ S ((µ<t , eσt )) for all eσt ∈ A . Therefore, coalition K can cautiously

α∗-block (µ<t ,µ≥t ) in period t —a contradiction. Thus, the assumption that µ≥t /∈ S (µ<t ) is

incorrect. And so,S ∗(µ<t )⊆S (µ<t ).

Proof of Theorem 7. Since preferences are time-separable, the proof follows from known re-

sults and we only sketch the argument. We rely on Shapley and Shubik (1971) and Roth and

Sotomayor (1990, Chapter 7) for results on the one-period model.

For every γ<T , S (γ<T ) =C (γ<T ) 6=∅. This is because our solutions coincide with the stan-

dard definitions of stability and the core in the final period. Shapley and Shubik (1971) show

that the stable set and the core are nonempty and equal.

Given thatS (γ<T ) =C (γ<T ) 6=∅ for all γ<T , the conclusions of Theorem 2, Lemma A.1, and

Theorem 3 apply to this model. The latter two results are true because agents’ preferences are

history independent. The proofs of these results are essentially identical to those presented

above and are omitted. Thus, for all γ<t , C (γ<t ) = S (γ<t ). Therefore, to prove the theorem it

is sufficient to show that S (γ<t ) 6=∅.

Proceeding by induction, suppose S (γ<t ′) 6= ∅ for all outcomes γ<t ′ where t ′ > t . Fix γ<t

and consider the period-t market as an instance of Shapley and Shubik’s (1971) model. Each

agent i strictly prefers the outcome γt = (xt , u t ) over γ′
t
= (x ′

t
, u ′

t
) if and only if u i

t
> u ′i

t
. Let

bγt be any stable (equivalently, core) outcome in this one-period economy. Choose any bγ>t ∈

S ((γ<t ,bγt )). We will verify that bγ≥t = (bγt ,bγ>t ) ∈ S (γ<t ). To do so, it is sufficient to show that

(γ<t ,bγ≥t ) cannot be cautiously α-blocked in period t .

Suppose the contrary. Let (u<t , bu≥t ) be the tuple of utilities given outcome (γ<t ,bγ≥t ). As-

sume coalition K can cautiously α-block (γ<t ,bγ≥t ) in period t withσt = (yt , st ). Thus,

min
σ>t ∈
⋃
eσt ∈A (σt |i )

S ((γ≤t ,eσt ))
Ui

�
u i
<t

, s i
t

, s i
>t

�
>Ui

�
u i
<t

, bu i
t
, bu i
>t

�

for each i ∈ K . In the preceding expression s i
>t

is agent i ’s utility vector associated with contin-

uation σ>t . This implies, Ui (u
i
<t

, s i
t

, bu i
>t
) >Ui (u

i
<t

, bu i
t
, bu i
>t
) and hence s i

t
> bu i

t
. Thus, coalition

K can block bγt in a one-period economy—a contradiction.

Proof of Theorem 8. (a) The proof follows that of Lemma 5.5 in Roth and Sotomayor (1990).
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Suppose coalition K can cautiously α-block µ in period t with σt ∈ At . If there exists a s ∈

K ∩S such thatσt (s ) = s or a c ∈ K ∩C such thatσt (c )(µt (c ), then this agent can cautiously

α-block µ in period t alone with σt ∈At .

Instead, suppose σt (c ) * µt (c ) for some c ∈ K ∩ C . Thus, (µ<t (c ),σt (c ),σ>t (c )) ≻c

(µ<t (c ),µt (c ),µ>t (c )) for allσ>t ∈
⋃
eσt ∈At (σt |c )

S ((µ≤t , eσt )). As the college’s preference is condi-

tionally responsive, there exists a strict and responsive ranking P µ<t
c

of 2S such thatσt (c )P
µ<t

c
µt (c ).

Hence, there exist s ∈ σt (c ) \µt (c ) and s ′ ∈ µt (c ) \σt (c ) such that {s}P µ<t
c
{s ′} (Roth and So-

tomayor, 1990, p. 130). Necessarily, s ∈ K ∩S .

Now consider an assignment σ′
t
∈At where σ′

t
(s ) = c andσ′

t
(c ) = µt (c )∪{s} \ {s

′}. Since

s ∈ K ∩S andAt (σt |s ) =At (σ
′
t
|s ), (µ<t (s ),σ

′
t
(s ),σ>t (s )) ≻s (µ<t (s ),µt (s ),µ>t (s )) for all σ>t ∈⋃

eσt ∈At (σ
′
t |s )
S ((µ≤t , eσt )). Moreover, since the college’s preference is conditionally responsive,

σ′
t
(c )P µ<t

c
µt (c ) implies that (µ<t (c ),σ

′
t
(c ), x>t )≻c (µ<t (c ),µt (c ), y>t ) for all x>t and y>t . In par-

ticular, (µ<t (c ),σ
′
t
(c ),σ>t (c )) ≻c (µ<t (c ),µt (c ),µ>t (c )) for all σ>t ∈

⋃
eσt ∈At (σ

′
t |c )
S ((µ≤t , eσt )).

Thus, c and s can cautiously α-block µ in period t .

(b) The argument mirrors the proof of Theorem 1. It is sufficient to show that S (µ<t ) 6= ∅

for every µ<t ∈M<t and t . Let µ<T ∈M<T . Paralleling Lemma 1, µT ∈ S (µ<T ) if and only if

µT is group-stable in a one-period economy where the preference Ps of each s ∈ S satisfies

c Ps c ′ ⇐⇒ (µ<T (s ), c ) ≻s (µ<T (s ), c ′) and the preference Pc of each c ∈C satisfies xT Pc yT ⇐⇒

(µ<T (c ), xT )≻c (µ<T (c ), yT ). Since colleges’ preferences are conditionally responsive, each Pc is

a strict and responsive ranking of 2S . Thus, there exists a group-stable assignment (Roth and

Sotomayor, 1990). Hence, S (µ<T ) 6= ∅.

Proceeding by induction, suppose that for every t ′ > t and every µ<t ′ ∈M<t ′ ,S (µ<t ′ ) 6=∅.

Let µ<t ∈M<t . For each s ∈ S , define a ranking Ps of C ∪{s} as follows:

c Ps c ′ ⇐⇒
min
eµt ∈At (s ,c )

min
eµ>t ∈S ((µ<t ,eµt ))

�
µ<t (s ), eµt (s ), eµ>t (s )

�

≻s min
eµ′t ∈At (s ,c ′)

min
eµ′>t ∈S ((µ<t ,eµ′t ))

�
µ<t (s ), eµ′t (s ), eµ

′
>t
(s )
�

.
(A.8)

In (A.8), At (s , c ) is the set of σt ∈ At such that σt (s ) = c and the minimizations are with

respect to ≻s . For each c ∈ C , define a ranking Pc of 2S as xt Pc yt ⇐⇒ (µ<t (c ), xt , x>t ) ≻c

(µ<t (c ), yt , y>t )where x>t and y>t are fixed arbitrary sequences of feasible assignments for col-

lege c for the periods t ′ > t . Since colleges’ preferences are conditionally responsive, Pc is a

strict and responsive ranking of 2S . Let bµt ∈ At be group-stable in the one-period economy

where each student’s preference is Ps and each college’s preference is Pc , as defined above.

Such an assignment exists (Roth and Sotomayor, 1990). Next, select some bµ>t ∈ S ((µ<t , bµt )).
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(By the induction hypothesis, S ((µ<t , bµt )) 6= ∅.) We argue that bµ≥t = (bµt , bµ>t ) ∈ S (µ<t ). To

derive a contradiction, suppose this is not true. Since bµ>t ∈ S ((µ<t , bµt )), (µ<t , bµ≥t ) cannot be

cautiously α-blocked in any period t ′ > t . Thus, some coalition K can cautiously α-block

(µ<t , bµ≥t ) in period t with someσt ∈At . There are three cases.

Case 1. Suppose σt (s ) = s for some s ∈ K ∩ S . The same argument as in case 1 in the proof

of Theorem 1 establishes that s Ps bµt (s ). Thus, student s can block bµt alone and bµt

cannot be group stable, contradicting its definition.

Case 2. Suppose σt (c ) ( µt (c ) for some c ∈ K ∩ C . This implies (µ<t (c ),σt (c ),σ>t (c )) ≻c

(µ<t (c ), bµt (c ), bµ>t (c )) for all σ>t ∈
⋃
eσt ∈At (σt |c )

S ((µ≤t , eσt )). As the college’s preference

is conditionally responsive σt (c )Pc bµt (c ). Hence, college c can block bµt alone and bµt

cannot be group stable, contradicting its definition.

Case 3. Supposeσt (c )* bµt (c ) for some c ∈ K ∩C . As in the proof of part (a) above, there exist

s ∈σt (c )\ bµt (c ) and s ′ ∈ bµt (c )\σt (c ) such that {s}Pc {s
′} and s ∈ K ∩S . Considerσ′

t
∈

At where σ′
t
(s ) = c and σ′

t
(c ) = bµt (c )∪ {s} \ {s

′}. Note that σ′
t
(c )Pc bµt (c ). Moreover,

At (s , c ) =At (σt |s ) =At (σ
′
t
|s ). And, as in case 2 of the proof of Theorem 1, we can

conclude that c Ps bµt (c ). But this means bµt cannot be group stable, a contradiction.

As each possible case leads to a contradiction, we conclude that bµ≥t ∈S (µ<t ).

Proof of Theorem 9. Let T ≥maxi {Ti } and define the mappingS (·) as follows.

(a) If t ≥ T andµ<t ∈M<t , thenµ≥t ∈S (µ<t ) if and only ifµ≥t = (µt ,µt+1, . . .) is a continuation

matching such that µt =µt+1 = · · · and (µ<t (i ),µt (i ),µt+1(i ), . . .)�i (µ<t (i ), i , i , . . .) for all i .

(b) If t < T and µ<t ∈ M<t , then S (µ<t ) is defined via backward induction mimicking the

argument in the proof of Theorem 1. That is, S (µ<t ) is the set of assignments µ≥t such

that (µ<t ,µ≥t ) cannot be cautiously α-blocked by any coalition in any period s ≥ t . The

base case for the induction,S (µ<T ), is defined in part (a) above.

To prove the theorem it is sufficient to show the following:

(i) For each t ≥ T , µ<t ∈ M<t , and µ≥t ∈ S (µ<t ), the matching µ = (µ<t ,µ≥t ) cannot be

cautiously α-blocked by any coalition in any period s ≥ t .

(ii) For each t ≥ T and µ<t ∈ M<t , and µ≥t /∈ S (µ<t ), the matching µ = (µ<t ,µ≥t ) can be

cautiously α-blocked by some coalition in some period s ≥ t .
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When t < T , the argument in the proof of Theorem 1 applies and completes the proof.

Proof of (i). Fix t ≥ T and µ≥t ∈ S (µ<t ). To derive a contradiction, suppose µ = (µ<t ,µ≥t )

can be cautiously α-blocked in period s ≥ t by coalition K with σs ∈A (K ). Suppose σs (i ) =

j 6=µs (i ) for some i ∈ K (the case where j = i is possible). Thus,

(µ<t (i ),µt (i ), . . . ,µs−1(i ), j

↑

σs (i )

, k , k , . . .︸ ︷︷ ︸
σ>s (i )

)≻i (µ<t (i ),µt (i ), . . . ,µs−1(i ),µs (i ), . . .︸ ︷︷ ︸
(µt (i )=µt+1(i )=··· )

) (A.9)

for all σ>s (i ) = (k , k , . . .) ∈
⋃
eσs∈A (σs |i )

S ((µ<s , eσs )). Since agent i eventually prefers constant

assignments and t ≥ T ≥ Ti , (A.9) implies that

(µ<t (i ), i , i , . . .)�i (µ<t (i ),µt (i ), . . . ,µs−1(i ), j , k , k , . . .)≻i (µ<t (i ),µt (i ),µt+1(i ), . . .). (A.10)

However, this contradicts the definition of µ≥t (i ) = (µt (i ),µt+1(i ), . . .) in (a) above.

Proof of (ii). Fix t ≥ T and µ≥t /∈S (µ<t ). One of two cases applies.

Case 1. The continuation µ≥t (i ) is not a constant sequence for some i ∈ I . Given the assump-

tion on preferences, this implies

(µ<t (i ), i , i , . . .)≻i (µ<t (i ),µ≥t (i )). (A.11)

And ifσt ∈A (i ), the definition ofS ((µ<t ,σt )) implies that

(µ<t (i ), i ,σ>t (i ))�i (µ<t (i ), i , i , i , . . .) (A.12)

for allσ>t ∈
⋃
eσt ∈A (σt |i )

S ((µ<t , eσt )). Together, (A.11) and (A.12) imply that agent i can

cautiously α-block µ= (µ<t ,µ≥t ) in period t .

Case 2. The continuation µ≥t (i ) is a constant sequence for each agent i . Thus, from the defi-

nition ofS (µ<t ), there exists some i for whom (µ<t (i ), i , i , . . .)≻i (µ<t (i ),µ≥t (i )), which

is identical to (A.11) above. Noting the preceding argument, (A.12) also holds. Thus,

agent i can cautiously α-block µ= (µ<t ,µ≥t ) in period t .

Thus, µ= (µ<t ,µ≥t ) can be cautiously α-blocked.
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B Appendix: Examples

Example B.1. The strongest solution proposed by Damiano and Lam (2005) is self-sustaining

stability (S3). Application of S3 to our model identifies outcomes that are not perfect α-stable.

Consider the following economy with one man and two women:

≻m1
: w1w2

µ

, w2w2

σ

, m1m1, . . . ≻w1
: m1w1

µ

, w1w1

σ

, . . . ≻w2
: m1m1

σ

, w2m1

µ

, w2w2, . . .

In both µ and σ, each agent receives his/her favorite period-2 assignment. The matching µ

must satisfy S3 since m1 and w1 receive their most-preferred outcomes. The matchingσmust

also be stable in the sense of S3. Any period-1 blocking coalition must involve everyone. But

this is impossible since w2 becomes worse off. Note that the preceding argument does not rely

on the coalition-proofness aspects of S3. Instead, it depends on blocking coalition members

matching only among themselves in all periods.

The only perfect α-stable matching is µ. The matching σ can be α-blocked in period 1 by

m1 and w1. Thus, perfect α-stability is not weaker than Damiano and Lam’s proposal.

Example B.2. Kadam and Kotowski (2018a,b) study a solution they call “dynamic stability.” In

Example B.1, both µ and σ are dynamically stable. Both matchings are also in the sequential

core (see Section 4). Thus, perfect α-stability is not weaker than these solutions.

Example B.3. Kennes et al. (2014) examine the assignment of children to daycares. They pro-

pose a mechanism called the DA-IP that identifies a “stable” outcome in their model. To ap-

ply their mechanism to our model, we formulate an example that can be embedded in their

framework. The example is adapted from Kadam and Kotowski (2018a).

Consider a two-period economy with three men and three women. Their preferences are:

≻m1
: w2w2, w1w2

µ

, w1w1, m1m1, w2m1, . . . ≻w1
: m1m1, m2m2, m3m3, m1m2, m1m3

µ

, w1w1, . . .

≻m2
: w1w1, w3w3

µ

, w3w1, m2m2, . . . ≻w2
: m3m3, m1m1, m3m1

µ

, w2w2, m1w2, w2w2, . . .

≻m3
: w1w1, w2w1

µ

, w2w2, m3m3, . . . ≻w3
: m2m2

µ

, w3w3, . . .

To nest this economy in the setting of Kennes et al. (2014), interpret the men as the “children”

and the women as the “daycares,” each with unit capacity. Assume that the agents’ priorities

at daycares are initially m1 Âw1
m2 Âw1

m3, m3 Âw2
m1, and m2 Âw3

· · · . These priorities corre-

spond to the rankings of the constant assignments in the women’s preferences. Priorities for
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period 2 are derived from the preferences conditional on the period 1 matching. Thus, if m is

assigned to w in period 1, his priority at w will be highest among all agents.

The DA-IP mechanism identifies the matching µ. This matching is “stable” in the sense

of Kennes et al. (2014, Definition 8) since the preferences and priority structure satisfy their

assumptions. The matching µ can be α-blocked in period 1 by m1 and w2. Thus, perfect α-

stability is not weaker than stability in the sense of Kennes et al. (2014, Definition 8).

Example B.4 (No “Optimal” Stable Matching). Consider a two-period economy with three

men and three women. The agents’ preferences are:

≻m1
: w1w2

µ

, w3w1

ν

, w2w3

σ

, m1w3, m1m1, w1m1, w3m1, w2m1, . . .

≻m2
: w3w1

σ

, w2w3

µ

, w1w2

ν

, m2w2, m2m2, w3m2, w2m2, w1m2, . . .

≻m3
: w2w3

ν

, w1w2

σ

, w3w1

µ

, m3w1, m3m3, w2m3, w1m3, w3m3, . . .

≻w1
: m3m2

σ

, m1m3

µ

, m2m1

ν

, w1m1, w1w1, m3w1, m1w1, m2w1, . . .

≻w2
: m2m1

µ

, m3m2

ν

, m1m3

σ

, w2m3, w2w2, m2w2, m3w2, m1w2, . . .

≻w3
: m1m3

ν

, m2m1

σ

, m3m2

µ

, w3m2, w3w3, m1w3, m2w3, m3w3, . . .

Three matchings are highlighted—µ,σ, and ν. Each is perfect α-stable. The men and women

all disagree which is best. (In total, there 7 perfect α-stable matchings in this example.)

Example B.5 (Empty Perfect α-Core). The perfect α-core of the economy in Example B.4 is

empty. For example, µ can beα-blocked in period 1 by coalition K = {m2, m3, w1, w3}with the

assignment σ1(m2) = w3 and σ1(m3) = w1. Given this assignment among agents in K , there

are two possible assignments among the remaining agents, I \K = {m1, w2}.

(i) Consider eσ1 ∈ A (σ1|K ) where eσ1(m1) = w2, eσ1(m2) = w3, and eσ1(m3) = w1. Given eσ1,

there is one period-2 core assignment (C (eσ1) = {eσ2}) where eσ2(m1) = w3, eσ2(m2) = w1,

and eσ2(m3) =w2. The outcome is identical to σ and all agents in K prefer it over µ.

(ii) Consider eσ′
1
∈ A (σ1|K ) where eσ′

1
(m1) =m1, eσ′

1
(m2) = w3, and eσ′

1
(m3) = w1. This situa-

tion is the same as case (i) except m1 and w2 are unmatched in period 1. Given eσ′
1
, there
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is one core assignment in period 2 (C (eσ′
1
) = {eσ2}) where eσ2(m1) = w3, eσ2(m2) = w1, and

eσ2(m3) =w2. All agents in K prefer this outcome to µ.

The matchingsσ and ν can be blocked similarly. And, the same arguments apply to the three

perfect α-stable matchings where only one man and one woman are unmatched in period 1.

The matching where all agents are unmatched can be α-blocked by the grand coalition.
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