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Abstract
This paper introduces a family of multi-period poverty measures

derived from commonly used static poverty measures. Our measures
trade-o¤ poverty levels and changes (gains and losses) over time, and
are consistent with loss aversion. We characterize the partial ranking
over income dynamics induced by these measures and use it in two
empirical applications with longitudinal household level data. Com-
paring two decades of income dynamics in the United States we �nd
that the income dynamics of the 1990s -post Welfare reform- domi-
nates the income dynamics of the 1980s -pre Welfare reform. Next,
we compare the contemporary income dynamics of three industrialized
countries and conclude that United Kingdom dominates Germany and
United States, and Germany dominates the United States if poverty
stocks are given more importance than poverty �ows. The di¤erences
between our ranking and those obtained using other welfare criteria
such as social mobility suggest that our measures capture critical in-
formation about the evolution of poverty.
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1 Introduction

In modern societies there is substantial mobility in and out of poverty. Over
the last two decades the dynamics of poverty has been the subject extensive
empirical research.1 This work has changed our understanding of poverty
by quantifying its persistence, and identifying the factors more likely to de-
termine an individual�s ability to escape poverty and the events likely to
trigger poverty over the life cycle. The �ndings have strongly in�uenced the
reform of poverty alleviation programs in the United States, Great Britain,
and other industrialized countries in recent years.2

Even though the dynamic dimension of poverty has inspired of a body
of empirical research and has in�uenced policy design, the theory of poverty
measurement has lagged behind.3 This paper introduces a family of multi-
period poverty measures derived from commonly used static poverty mea-
sures. We use these measures to rank income processes focusing on the
dynamics of poverty. The framework is used in two applications. First,
we compare poverty dynamics across two decades in the United States -the
eighties and the nineties. Second, we rank poverty dynamics across three in-
dustrialized countries -Germany, Great Britain and the United States. The
method delivers a signi�cantly di¤erent ranking than the ones that rely either
on static poverty changes or social mobility measures.
Our framework builds on recent work on multidimensional poverty mea-

surement and some of the most robust �ndings in behavioral economics. We
assume that the well-being experienced by the individual over time is de-
termined by the stream of a "welfare attribute" over time. In keeping with
the poverty literature, this welfare attribute is referred to as income and the
stream as an income path or trajectory.4 A society is described by the pro�le

1A seminal paper is Bane and Ellwood [1986] who estimate the persistence of poverty
spells in the U.S.

2A central aspect of the Welfare Reform in the United States introduced during the
nineties has been to make welfare transfers conditional on the bene�ciary�s participation
in the labor market or work-related activities such as training. An underlying principle
was to promote self-su¢ ciency over time. See Blank [2002] for an analysis of the U.S.
reforms and Hills [2004] for an overview of the Britsh reforms.

3Thorbecke [2004] argues that most of the unresolved issues in poverty analysis are
related to the dynamics of poverty. See also Kanbur [2005] and a recent collection of
essays in Addison, Hulme, and Kanbur [2009].

4The framework allows for this attribute to be a vector capturing a wide range of
dimensions of well-being including the consumption of di¤erent goods and services, en-

2



of income paths for each member of society referred as an income dynam-
ics. A multi-period poverty measure is an index that assigns a number to
such pro�le. We consider multi-period measures that are consistent with an
underlying static derivation scale. A static deprivation measure assigns a
measure of deprivation to each income level. Thus, each individual income
path can be associated to a deprivation path, the stream of deprivation lev-
els associated to each period. The pro�le of all deprivation paths in society
de�nes a poverty dynamics.
The multi-period measures proposed in this paper satisfy the core axioms

that characterize static poverty measures. In addition, we introduce axioms
that bear on the dynamic nature of our task. In particular, the paper of-
fers an axiomatic foundation for measures that allow individual well-being
to depend on both the levels of a welfare attribute and also its changes
over time. The latter builds on the literature on reference-dependence that
stresses the importance of changes as carriers of utility, as in Kanheman and
Tversky�s [1979] classic work on prospect theory. Our three main axioms
are monotonicity, stock-�ow separability, and loss aversion. Monotonicity
refers to the fact that lower levels of the welfare attribute are re�ected in
higher multi-period deprivation. The stock-�ow separability axiom implies
that measures can be expressed as a function of levels and changes of the
welfare attribute. The loss aversion axiom captures the idea that, given in-
come streams with the same levels of deprivation but in a di¤erent sequence,
an individual is better o¤ with an increasing sequence of outcomes than a
decreasing one. For illustration, suppose that at each period the depriva-
tion of an individual is summarized by an indicator of whether or not the
individual is poor given her income level.5 Thus, over two periods of time,
there are four possible deprivation trajectories: An individual can be poor in
both periods -always poor, non-poor in both periods -never poor, start poor
and end non-poor -poverty out�ow, or start non-poor and end poor -poverty
in�ow. Monotonicity implies that the always poor and the never poor paths
are respectively the worse and best paths. The other two paths involve a
change in poverty status over time and, in the absence of further restric-
tions, the relative ranking of these paths is unclear. The loss aversion axiom

dowments, and measures of psychological and physical health, among others. It should
be clear however that our primary source of multidimensionality is the consideration of
attributes -possibly a single one- over multiple periods of time.

5This example assumes that the underlying static deprivation scale is the poverty "head-
count".
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postulates that paths associated to poverty in�ows have lower experienced
well-being than those associated to poverty out�ows.6

Theorem 1 in section 4 provides a complete characterization of the in-
dividual multi-period measures that satisfy our axioms. At the aggregate
level we show that the multi-period poverty measures de�ned by our axioms
can be decomposed into two terms (Lemma 3). The �rst term is population
average of an increasing function of the levels of the welfare attribute. The
second term is a population average of a function that evaluates gains and
losses between consecutive periods. We use this representation theorem to
provide a complete characterization of the partial ranking induced by these
measures on the space of poverty dynamics. The characterization obtains
from solving an optimal control problem and the partial ranking we derive
is determined by a set of stochastic dominance conditions. For example, If
the underlying static deprivation scale used is the headcount or poverty in-
dicator, society A dominates B if three conditions are satis�ed. First, there
are more individuals that are never poor in A than in B. Second, the level
of �nal poverty -the sum of those who are always poor and those who enter
poverty- is lower in A and B. Third, there are less individuals that are always
poor in A than in B. Hence, the welfare criterion implied by our measures
is determined both by the "stocks" and "�ows" of poverty over time.
Two empirical applications using longitudinal household level data are

developed. We �rst compare two decades of income dynamics in the United
States and �nd that income dynamics of 1990s dominates the income dy-
namics of the 1980s. Next we compare the contemporary income dynamics
of three industrialized countries and conclude that Great Britain dominates
both the United States and Germany. It is not possible to rank the United
States and Germany for all the measures consistent with our axioms. Indeed,
for measures that give su¢ ciently high weight to poverty in�ows and out�ows
relative to poverty stocks, the United States ranks better. Conversely, if the
measure gives lower relative importance to poverty creation and destruction
than poverty stocks, Germany is favored in the comparison. As discussed in
detail in the sequel, the applications illustrate that the ranking produced by
our method can be quite di¤erent than those based on social mobility.

6At the individual level the axiom consistent with the �ndings of behavioral economics,
including the preference for improving outcome sequences with commensurable aggregate
outcomes, recent evidence on the evolution subjective well-being showing that it is easier
to adapt to a positive income shock than a negative shock, and, of course, loss aversion.
We summarize this evidence in section 2.
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Our paper is closely related to the poverty measurement and the social
mobility literatures. For illustration, consider a two-period society. The do-
main of our multi-period poverty measures is the set of bivariate distributions
of two-period income paths. Given any distribution f over income paths the
income distribution in period t 2 f1; 2g, ft, is just the marginal distribution
of f for period t. Static poverty measures rank income distributions and
cannot be applied to rank income processes but can be used to measure the
change in poverty from distribution f1 to f2. The same poverty change will
be generated by any combination of in�ows and out�ows with a constant
di¤erence.
On the other hand, social mobility measures focus on the transition prop-

erties associated to f . For any income path (y1; y2), we can write f(y1; y2) =
f1(y1)W (y1; y2), where f1 is the marginal distribution of income in period 1
de�ned above andW (y1; y2) is the conditional probability of a transition from
income y1 in period 1 to income y2 in period 2. In most of the social mobility
literature the focus is on describing the properties of the transition matrix
W . In comparing two di¤erent income dynamics the tendency is either to
ignore the base rate f1 or, as in Atkinson�s seminal welfare-based approach
to social mobility (Atkinson [1983]), to assume that the relevant comparison
is across societies with the same marginal distribution but possibly di¤erent
transition matrices.
This suggests several di¤erences between the welfare criterion implied by

our approach and the social mobility literature, as con�rmed by our appli-
cations. First, multi-period poverty measures depend not only on income
transitions described by W but also on the stock of people who are poor
f1. Second, our measures focus on the mobility in and out of poverty rather
than mobility across the entire distribution of income. Third, a consequence
of monotonicity is that poverty out�ows increase welfare but poverty in�ows
decrease welfare. In contrast, the welfare-based approach to social mobility
that followed Atkinson�s seminal work is guided by the principle of equalizing
opportunities,7 which leads to a favorable view of societies characterized by
high "circulation", i.e., those with large numbers of individuals both rising

7One interpretation of this principle is the notion of "origin reversal" which captures
the idea that an income process is more desireable to the extent that an initial position in
the income distribution is easily reversed (Dandardoni [1993]). Another interpretation rest
on the notion of "origin independence" which captures the idea that an income process
is more desireable to the extent that future well-being is independent of an individual�s
initial income. See Gottshalk and Spolaore [2001] for a discussion.
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and falling in the income distribution. We argue that, by design, our mea-
sures are better suited to re�ect the evolution of well-being of the poor. This
is not a critique of social mobility measures but it emphasizes that our mea-
sures are guided by a di¤erent normative benchmark and capture di¤erent
information, one we believe might be relevant for policy and research.
Finally, our paper also contributes in two active areas of research in wel-

fare economics. The �rst of these is the recent literature of multidimensional
poverty and poverty over time.8 Foster [2007] proposes a de�nition of poverty
over time. In contrast, as discussed shortly, we side-step the issue of identi-
fying the "poor over time". Instead we axiomatize a family of multi-period
poverty measures consistent with any de�nition of poverty over time. Our
focus is on characterizing the ordering induced by this family on income dy-
namics. Atkinson and Bourbignon [1982] and more recently Bourbignon and
Chakravarty [2002] and Duclos et al. [2006] study the orderings associated
to multidimensional poverty measures. These papers provide a characteri-
zation for measures that satisfy properties other than the ones considered
here and, more importantly, they do not focus on the dynamic dimension of
poverty. As argued in section 2, the dynamic dimension may require speci�c
normative guidelines as explored in this paper.
At the same time our work contributes to a growing literature that informs

applied welfare analysis with the �ndings of behavioral economics. Other
examples in this vein include Kanheman and Sugden [2005], Kanheman and
Krueger [2006], and Chetty [2009a,2009b]. To the best of our knowledge, this
is the �rst paper to provide an axiomatic poverty framework with axioms
founded on evidence from the �eld of psychology and economics.9

The rest of the paper is organized as follows. In Section 2 we discuss
the empirical evidence on well-being over time, other normative aspects as-
sociated to the dynamic nature of our framework, and overview the main
properties of our measures and the ranking they induce with an example.
Section 3 introduces multi-period poverty measures. In Section 4 we intro-
duce the main axioms and provide a representation theorem of the measures
that satisfy them. Section 5 characterizes the partial ordering induced by

8An important paper in general multidimensional poverty measures is Bourbignon and
Chakravati [2003].

9While the nature of this paper is normative, as discussed in section 4, our measures
are related to the reference-dependent preferences over consumption streams introduced
in Gilboa [1989] and Shalev [1997]. See also Bowman, Minehart and Rabin [1999], Koszegi
and Rabin [2006], and Rozen [2009].
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these measures. Our applications are in section 6 and 7.

2 Well-being over Time: A Normative Base-
line

In this section we provide some foundations for the assumptions that underlie
our social welfare criterion. We focus on those that are speci�c to the dynamic
nature of our problem. An overview of the measures obtained by our axioms
is presented next.

2.1 The Preference for Improving Sequences of Out-
comes

In our framework social welfare is a function of the distribution of individual
trajectories of "well-being attributes" over time. A body of recent research
has shown that, in a wide variety of choice situations, individuals prefer
improving sequences of outcomes to declining ones that have comparable
aggregate features (Loewenstein and Sicherman [1991], Frank and Hutchens
[1993], Frederick, Loewenstein and O´Donoghue [2002]). This �nding has
proved to be particularly robust for sequences of monetary outcomes such as
wage, income, and consumption pro�les. Indeed, some of the studies show
that people are willing to trade-o¤ present income value in exchange for ris-
ing outcomes (Hsee, Abelson, and Salovey [1991]). In addition to monetary
outcomes, preference for improving sequences has also been documented for
certain health outcomes (Ross and Simonson [1991], Varey and Kahneman
[1993], Chapman [2000]). A number of explanations have been o¤ered to
explain this pattern of choice which provides yet another piece of evidence
against the commonly used discounted utility model. They include the an-
ticipation of future well-being, commitment mechanisms, and debt aversion,
among others.
Most of the studies above involve hypothetical "ex-ante" choices. A po-

tential problem with this evidence is that hypothetical choices could be driven
by a misperception of the actual well-being associated to the di¤erent type of
trajectories.10 In fact, mispredictions of future utility at the decision-making

10For example, some of this hypothetical choices could simply re�ect the fact that in-
dividuals exhibit a tendency to like what they expect. Hence, if people expect rising
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stage are well documented. For example, people tend to adapt more than
they expect to changes in their circumstances.11 Is it the case that improving
sequences are associated with higher "experienced" (as opposed to "antici-
pated") well-being than declining sequences? Di Tella, Haisken-DeNew and
MacCulloch [2007] �nd that changes in subjective well-being are consistent
with loss aversion. Self-reported happiness adapts considerably less to nega-
tive income shocks than to comparable positive changes.12

In sum, the preference for rising rather than falling outcome pro�les with
commensurate aggregate outcomes is supported both by studies on ex-ante
choices and evidence involving ex-post "experienced" well-being. We believe
this individual-level evidence serves as a microfoundation for the loss aversion
axiom presented in the sequel.

2.2 Poverty Status and Poverty Dynamics

A starting point of the poverty measurement literature is to identify those
who are poor. In the simplest case, poverty is based on a single attribute
of well-being, "income". In this unidimensional world, poverty is conceived
as a condition or status associated with levels of income below an absolute
threshold, the poverty line. The social welfare functional embodied by the
poverty measure is then assumed to satisfy the focus axiom, which establishes
that social welfare should only respond to the well-being of those who are
poor.
The de�nition of a poverty status with multiple attributes of well-being

is more delicate. Suppose for illustration that the poverty region is de�ned
with respect to a vector of thresholds, one for each attribute. If an individual
is above the threshold for some attributes but not others, should he or she be
considered poor or not? Should we require individuals to below the poverty
threshold in each attribute, one attribute alone or a subset of them? Assum-
ing that a sensible choice is possible, the focus axiom can be applied to the
corresponding poverty region just as in the case of unidimensional poverty
measures. In practice, there is no obvious criterion to make this choice.
However, the problem of de�ning poverty is even more subtle in our case.

Here multidimensionality arises from considering multiple periods even if

wages pro�les over their productive lifes, these expectations could cause them to express
a preference for rising wage pro�les.
11See Kanheman (1997) and Gilbert (2005).
12Ongoing work by the authors con�rms these �ndings.

8



a single per-period attribute such as consumption or income is considered.
While the concept "poverty status" makes explicit reference to stable or
static condition, in a dynamic setting welfare attributes may change over
time. Instead of proposing a speci�c "dynamic" de�nition of poverty, we
describe these welfare attributes in reference to an underlying static poverty
de�nition. We adhere to the view that individuals may transition in and out
of a static poverty condition. This has a number of advantages. First, from
conceptual perspective, we avoid de�ning a poverty region which may be hard
to justify and even at odds with the ontology of poverty status. Second, any
static poverty measure induces a classi�cation of individuals used to identify
those who are dispossessed at a particular moment in time. In practice,
this classi�cation is often used to target policies and programs. Introducing
a "dynamic" de�nition of poverty based on paths will necessarily lead to
inconsistencies with respect to that classi�cation.13 Third, as will be clear
later, the rankings produced by our measures will hold for any "dynamic"
de�nition of poverty that takes deprivation at each period as a starting basis.

2.3 Overview of the Results

Consider an individual i that lives for two periods of time. At each period
t 2 f1; 2g we observe a "well-being attribute" yit, assumed to be a positive
number. In the economics tradition, it is natural to think of yit as consump-
tion, but it could also be a measure of health, psychological well-being, or
any dimension of human well-being.14 Our method characterizes a family
of multi-period measures of deprivation based on an underlying static de�-
nition of deprivation. We focus on static poverty measures with a (static)
poverty line z > 0. The static measure takes the value of the attribute yit as
an input to determine individual deprivation �z(yit) at time t. The simplest
static poverty measure is based on the poverty indicator function given by
�z(y) = 1 if y � z and 0, otherwise. For this function, adding deprivation
across all individuals in society, yields the head count measure of poverty.
Another widely used poverty measure is the poverty gap, de�ned by the in-

13For example, if we decide that a "poor over time" is someone who is poor in one period
and the government targets transfers to this group, it may provide transfers to someone
extremely wealthy who escaped poverty.
14It is straighforward to extend the framework to a multidimensional vector of well-being

attributes. This is done in section 4, which also discusses how to extend the framework to
more than two periods.
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dividual deprivation function �z(y) = maxf0; 1 � y
z
g, a normalized measure

of the distance to the poverty line for those who are poor. Given any static
deprivation function �z, we can associate to the stream yi = (yi1; yi2) a indi-
vidual deprivation stream di=(di1; di2) where dit = �z(yit). For example, if
�z is the poverty indicator, the deprivation stream (0; 0) corresponds to an
individual that was not poor in either period, (0; 1) is the stream of someone
who was not poor in period 1 but fell into poverty in period 2, and so on.
Our method associates a dynamic deprivation measure that takes the

individual�s deprivation stream di as an argument. An example used in the
applications is the multi-period deprivation function

M(di) =
1

2
(di1 + di2) + �(di2 � di1) (1)

where � : R! R is given by

�(x) =
1

2
(�maxf0; xg+ minf0; xg) : (2)

The function � values "losses" or increases in deprivation (x > 0) at rate �
and "gains" or decreases in deprivation (x < 0) at a possibly di¤erent rate
. Note that �(0) = 0, so paths associated with no change in deprivation
over time have a dynamic deprivation equal to static deprivation in both
periods. More generally, the measure implies that an individual�s deprivation
over time is an increasing function of absolute levels of deprivation at each
period and also of changes in deprivation.15 Aggregating across individuals
we obtain the multi-period poverty measure

Q =
1

2
(�1 + �2) +

1

2
(�L� G) (3)

where �t is the static poverty measure in period t 2 f1; 2g,

L =
X

i:di2�di1>0

jdi2 � di1j and G =
X

i:di2�di1<0

jdi2 � di1j.

15There is a parallel between this function and the preferences considered by Koszegi
and Rabin [2006]. In their model, an agent�s utility depends on absolute consumption
levels c1 and c2 and also on changes in consumption relative to a reference point r. They
consider a utility u(c1; c2; r) = c1+c2+�(c2�r), where � is a function satisfying prospect
theoretic properties. The parallel with (1) is immediate if the reference is consumption in
the �rst period, i.e., r = c1.
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Observe that Q combines information both about the poverty "stocks" as
captured by the average static poverty term 1

2
(�1 + �2), and poverty "�ows"

as captured by the term L associated to poverty creation and G associated to
poverty destruction. For example, if the underlying static poverty measure
is the poverty indicator then L is simply the number of people who fall into
poverty in period 2 -those who lose- and G is the number of people who
escape poverty in that period. As discussed later, for the poverty gap, the
"�ow" terms are, roughly, a weighted measure of individual income growth
rates for the poor.
It is important to highlight two properties of (1) common to all the mea-

sures we consider. First, for �xed di2 � di1, increases in deprivation at any
period lead to higher dynamic deprivation. However, this does not imply
that the multi-period measure is monotonic in d1 and d2. The measures
we consider satisfy this additional monotonicity restriction. For the above
example, this translates into constraints on the values of � and . In partic-
ular monotonicity requires jj � 1 and j�j � 1. Thus, monotonicity places
an upper bound on the importance of "poverty �ows" relative to "poverty
stocks".

1

Monotonicity Box

1
Loss Aversion Line

1

1

Figure 1: Monotonicity and Loss Aversion restrict weights on poverty
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creation and destruction.

Our second key axiom is the loss aversion axiom, which is consistent with
the evidence just discussed. To illustrate it, let di=(di1; di2) and consider the
deprivation path bdi=(di2; di1), i.e., bd "reverses" the deprivation stream di.
This means that, while the aggregate static deprivation across time is the
same for both paths, if di is associated with an increase in deprivation, bdi is
associated with decrease of the same magnitude. Note that

M(di)�M(bdi) = 1

2
(�+ )(di2 � di1)

so that, if � +  > 0, the sign is positive for an increase in deprivation and
negative for decrease.16

Figure 1 illustrates the constraints imposed by our axioms -monotonicity
and loss aversion- in the two-dimensional space (�; ) of parameters that
de�ne the family of linear measures of poverty dynamics introduced above.
Measures satisfying both of these axioms are associated with the shaded
triangle.
We conclude this section with a numerical example that illustrates the

order induced by the set of measures just described on the space of income
dynamics. Table 1a below summarizes the distribution of income streams
for individuals in three hypothetical societies A;B and C. The poverty line
is assumed to be 10 monetary units, and incomes above this threshold are
coded as 10+. For simplicity, we assume that there are four categories of
income trajectories, one corresponding to those who are never poor, one cor-
responding to those who are always poor (but who still experiment an income
rise from 5 to 7.5), individuals who fall into poverty, and individuals who en-
ter poverty. The �rst three columns of the table describe the distribution of
income streams for each society. For example, in society A 88% of the pop-
ulation is never poor and so on. The last two columns of Table 1a presents
the deprivation streams for each of the corresponding income trajectories.
Each of these columns uses one of the underlying static poverty measures
introduced above, the poverty indicator and the poverty gap, respectively.

16Observe that this restriction does not necessarily imply that gains will be associated
with a decrease in deprivation, which requires  > 0. While this is certainly a possibility,
the framework allows for upwards "adjustment costs" but it requires these costs to be
smaller for poverty out�ows than poverty in�ows.
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Table 1a: Numerical Example: Income and Deprivation Streams

Society A Society B Society C (y1; y2) (d1; d2) (d1; d2)
Indicator Gap

0.88 0.80 0.85 (10+; 10+) (0; 0) (0; 0)
0.06 0.10 0.02 (5; 10+) (0; 1) (0; 0:5)
0.03 0.05 0.05 (10+; 5) (1; 0) (0:25; 0)
0.03 0.05 0.08 (5; 7:5) (1; 1) 1

Table 1b: Numerical Example: Poverty Stocks and Flows

Society A Society B Society C
1. Poverty Indicator
Static poverty at t = 1: �1 0.09 0.15 0.10
Static poverty at t = 2: �2 0.06 0.10 0.13
Poverty Creation: L 0.03 0.05 0.05
Poverty Destruction: G 0.06 0.10 0.02
2. Poverty Gap
Static poverty at t = 1: �1 0.0450 0.0750 0.0500
Static poverty at t = 2: �2 0.0225 0.0375 0.0450
Poverty Creation: L 0.0150 0.0250 0.0250
Poverty Destruction: G 0.0375 0.0625 0.0300

Using Table 1a it is straightforward to compute static poverty �t at each
period t, poverty creation L and poverty destruction G. This is reported
in table 1b. These are the inputs required to compute the multi-period
poverty measure of formula (3). For example, taking the poverty gap as the
underlying static poverty measure, the multi-period poverty measures for
each society as a function of � and  are given by

QA(�; ) = 0:03375 + �0:015� 0:0375
QB(�; ) = 0:05625 + �0:025� 0:0625; and
QC(�; ) = 0:0475 + �0:025� 0:0300:

For a �xed pair (�; ) these indexes de�ne a ranking between societies. The
family of all measures consistent with monotonicity and loss aversion induces
a partial order: the income dynamics of society X dominates the income
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dynamics of society Y if QX(�; ) � QY (�; ) for all pairs (�; ) in the
shaded triangle of Figure 1. From above, we have that

�QAB(�; ) � QA �QB = �0:01375� �0:01 + 0:025;
which can be shown to be strictly negative for all � and .17 Hence, society
A dominates society B. Note that poverty reduction �2 � �1 is higher in
society B and so is "poverty mobility" as measured by L + G. However,
our measures weigh stocks, and average poverty in society A is considerably
lower than in society B. Further, even though society B has considerably
more poverty destruction than A it also has more poverty creation, and losses
are more important than gains for indexes consistent with loss aversion. A
similar exercise shows that A also dominates C.
Comparing B and C we see that

�QBC(�; ) � QB �QC = 0:00875� 0:0325:
This number is positive if  � 13=35 ' 0:27 and positive otherwise. Thus,
for some measures in the family B is better than C and for others the rank-
ing is reversed. In particular, if poverty �ows are valued relatively more,
society B is ranked better than society C and vice versa. Indeed, society
B has considerably higher average poverty than C but also more poverty
destruction.
This simple example illustrates that, in general, the ranking induced by

our measures will be di¤erent than the ones induced by looking at poverty
reduction and poverty mobility. We further discuss this in light of our em-
pirical applications. In the sequel we present the main axioms that de�ne
our multi-period poverty measures consistent with a preference for increas-
ing sequences of outcomes given the same aggregate deprivation across time.
We then characterize the order induced by these measures over the space of
income dynamics.

3 Multi-period Poverty Measures

We introduce poverty measures based on a multi-period stream of welfare
attributes. Society consists of a cohort of N individuals. Each time period
17Since �QAB(�; ) is linear in the parameters, minimizing over those pairs (�; ) that

are in the shaded triangle is a linear program. The minimum is thus achieved by one
of the vertexes of the triangle and evaluating the objective at these vertices shows that
min�QAB(�; ) < 0.
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or "time window" is denoted t 2 f1; :::; Tg.18 For short, the welfare attribute
is referred as "income". The income of individual i at time period t is de-
noted by yit and yi = (yi1; yi2; :::yiT ) is individual i�s income path. The set
of possible income levels is denoted by Y . We assume that Y is endowed
with a complete linear order denoted by �. In particular this allows for a
categorical welfare attribute such as the employment status of an individ-
ual.19 The set of all possible income paths is Y T . At time t the cohort has a
pro�le of incomes fyitgNi=1 2 Y N : The latter is equivalent to a static income
distribution. A pro�le of income paths for the cohort is fyigNi=1 2 Y TN . We
focus on multi-period poverty measures based on transitions in and out of
a poverty status. This status is based on an underlying static (per period)
de�nition and measure of poverty.

3.1 Poverty Status and Underlying Static Poverty

The static poverty line is an income level z 2 Y and an individual i 2 N
is said to be poor at time t if yit � z. Static poverty measures are based
on an individual measure of deprivation and aggregation across individuals.
The individual measure of deprivation satis�es a set of "core" axioms: focus,
monotonicity, continuity, and normalization. The main axioms for aggre-
gation are symmetry and subgroup decomposability.20 The static measures
considered hereafter satisfy these axioms as well. The properties implied by
these axioms are summarized by the following de�nition.

De�nition 1 (Static Measure) A function �z : Y ! R is an individual
static measure of deprivation or poverty if it is non-increasing, �z(0) = 1 and

18In our empirical applications each "time window" corresponds to �ve calendar years.
Hence, time periods should not be confounded with calendar years. The number of cal-
endar observations per window is dictated by the underlying de�nition of poverty. In our
applications, poverty status is de�ned on the basis of �ve years of income observations.
19As illustrated by our applications our method requires longitudinal data. In many

developing countries panel data on relevant welbeing attributes are hard to �nd but it
might be possible to construct past values of a stream by required the subjects surveyed
for information from previous years. In this case, categorical data such as the employment
status might be considerably less noisy than other measures.
20See the Appendix for a formal de�ntion of the axioms. Subgroup decomposability

implies that the poverty measure is additive across members of society. Symmetry implies
that the poverty index levels of the variables that de�ne poverty depend exclusively on the
level of income of a particular individual rather than her idenitity, thus the same individual
deprivation function is used across individuals.
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�z(y) = 0 for all y > z. A function � : Y N ! R is said to be an admissible
static poverty measure if

�(fyitg) =
1

N

X
i2N

�z(yit):

for some individual deprivation function �z. The set of all admissible static
poverty measures is denoted by �.

We write �[�z] to designate the static poverty measure with individual
deprivation function �z. For example, if 1(�) is the indicator function and

�0z(y) = 1(y � z)

then �[�0z] is the headcount ratio, the share of individuals that are poor
at a given moment in time. A popular family of static poverty measures
introduced by Foster, Greer and Thorbecke [1984] (FGT) is de�ned by a
single parameter � � 0 and the individual deprivation function

��z (y) = �
0
z(y)

���1� y
z

���� :
For � = 0, the reduces to the poverty indicator. For � > 0, the formula is
sensitive to the distance to the poverty line. The case of � = 1 corresponds
to the widely used poverty gap.
For simplicity we consider an additional restriction on static poverty mea-

sures. In particular, we assume that unless the poverty measure is the head-
count ratio (�z = �0z), individual deprivation is strictly monotonic in the
poverty region. Fix a static deprivation measure �z and let D[�z] = �z(Y ) be
the set of possible deprivation values and write D = D[�z] whenever it leads
to no confusion. Our previous assumption, implies that either D = f0; 1g =
�0z(Y ) or else D = [0; 1] as is the case for all the FGT family when � > 0.

21

3.2 Multi-period Deprivation and Poverty Dynamics

We de�ne measures of poverty associated to income paths that satisfy a
similar set of basic axioms than the ones assumed for static measures.22

21This is a mild restriction and is mostly for exposition.
22In this context, intertemporal deprivation is determined by two attributes, incomes at

period 1 and 2. The same axioms used to derive static income based poverty measures and
can be used to derive multidimensional poverty measures. See for example Bourguignon
and Chakravarty [2003].
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De�nition 2 A function q : Y T ! R is an individual measure of multi-
period poverty if it is non-increasing, its minimum value is zero and its max-
imum value is 1. A function Q : Y TN ! R is said to be an admissible
multi-period poverty measure if

Q(fyig) =
1

N

X
i2N

q(yi): (4)

Just as in the case of static poverty measures, the above de�nition as-
sumes that the individual multi-period poverty measures satisfymonotonicity
and normalization. Similarly, the aggregate poverty measure can be derived
from the subgroup decomposability and the symmetry axioms. However,
in contrast to static poverty measures we do not require the existence of a
multi-period poverty region. The above de�nition is agnostic about identi-
fying perfectly those who are "poor over time". As argued below, we are
ultimately interested in the orders on income processes induced by a family
of poverty measures and, these poverty measures should allow for any rea-
sonable multidimensional de�nition of poverty over time. In what follows
we provide axioms that restrict the nature of the individual multi-period
deprivation measure q.

4 Main Axioms and Representation

We introduce an axiomatic foundation for a family of measures that gener-
alize the one introduced in section 3. Our main result is an explicit repre-
sentation characterizing the individual multi-period measures that satisfy it.
All proofs are in Appendix.
In the example of section 3, the individual multi-period deprivation mea-

sures are allowed to depend both on levels and changes of an index of de-
privation or disutility over time. This index serves as the unit measure to
evaluate the well-being at each period and its changes -gains and losses- over
time. Our scaling axiom introduces this measure.

Axiom (SC) [Scaling] For each q there exists an static deprivation index
�z such that q(y) = M(�z(y1); :::; �z(yT )) for some monotonic function M :
DT ! [0; 1], where D = �z(Y ).
A few remarks are in place. First, we use q[M; �z] to designate a mea-

sure that satis�es axiom (SC) for a given scale �z and a monotonic function
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M: Second, given �z a measure q is entirely determined by the monotonic
transformationM . Further for a �xed �z, any income path y = (y1; :::; yT ) is
associated with a deprivation path d = (�z(y1); :::; �z(yT )). All of our axioms
can be restated in terms of deprivation paths for a �xed �z and interpreted
as restrictions on the space of monotonic functions M . We have chosen to
present the axioms in terms of incomes to emphasize the primitive. Third,
from theoretical point of view, axiom does not prevent the measure to depend
directly on levels or paths of the welfare attributes yt. For example, Y = R
�z is linear (as in the poverty gap), and the poverty line z can be chosen
to be arbitrarily large. The axiom allows for much more general disutility
indexes, it accommodates an arbitrary increasing function �z and z:. From
a practical point of view, however, we �nd it useful to focus on commonly
static poverty measures. In this context, axiom (SC) says that the poverty
measure keeps track of transitions in and out of a pre-de�ned static poverty
status.
To introduce our next axioms, we point out that a deprivation path

d = (d1; :::; dT ) can always be described by the (T � 1)-component vector
of deprivation changes w(d) = (d2�d1; :::; dT �dT�1), and a real-valued map
�(d) that is strictly increasing in all of its arguments. Formally, for any such
� : DT ! R, the map that assigns to each d the pair (w(d); �(d)) is a bijec-
tion. Furthermore, the map � can be chosen to depend exclusively on income
levels regardless of their sequence in the stream. To make this precise, we
introduce some notation. Each income stream y 2 Y T induces a probability
distribution �(y) 2 �(Y ) on income levels: for each by 2 Y the distribu-
tion �(y) assigns the "empirical" frequency �(y)(by) � PT

t=1 �(yt = by)=T
to income by. The distribution �(y) on Y induced by y is invariant to per-
mutations of the sequence of incomes over time periods.23 The distribution
induced by a path is entirely independent of the trajectory or income changes
between consecutive periods. Thus, if q(y) is a function of �(y) alone it is
independent of income or deprivation changes. On the other hand, given an
index �z and an income path y, the (T �1)-dimensional vector of deprivation
changes is

!(y; �z) = (�z(y2)� �z(y1); :::; �z(yT )� �z(yT�1)):

Our next axiom imposes a key separability condition.
23For example, if T = 2, y = (10; 20) and y0 = (20; 10), then �(y) = �(y0), and this

distribution assigns probability 1=2 to both 10 and 20 regardless of their sequence in time
(and 0 to any other y 2 Y ).
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Axiom (SF) [Stocks-Flows Separability] There exists a function � : Y T ! R
increasing in all of its arguments (and strictly so for yt < z) and such that
(SF1) �(y) = �(y0)) �(y) = �(y0)
(SF2) For all x;x0;y;y0 2 Y T such that �(x) = �(y), �(x0) = �(y0),

!(y;�z) = !(y
0; �z) and !(x; �z) = !(x0; �z)

q(x) � q(x0)) q(y) � q(y0):

We note that condition (SF1) vacuous on its own since, as just argued, we
can always decompose a stream into a component that keeps track of changes
from one period to the next and a "residual" that is invariant to permutations
of income levels across periods. However, combined with (SF2), the residual
must be such that a deprivation measure can be expressed as a separable
function of �(y) and !(y0; �z). Indeed, in the Appendix we show that axiom
(SF ) implies the existence of a monotonic function S : R! R and a function
� : U ! R such that q(y) = S(�(y)) + �(!(y0; �z)), where U = fw 2
[�1; 1]jw = d� d0, d; d0 2 Dg is the set of possible deprivation changes from
one period to the next.. Intuitively, we can think of S(�(y)) as valuation of
income levels that is independent of the "shape" of the stream. Thus, (SF) is
a strong restriction as it makes the valuation of deprivation changes -"�ows"
independent of the valuation of deprivation levels -"stocks" as captured by
�(y). At the same time, this stock-�ow separability yields an intuitive and is
shared by prominent examples in the recent literature on reference-dependent
preferences over consumption streams (Gilboa [1989], Bowen, Minehart, and
Rabin [1999], Koszegi and Rabin [2006]). We view it as intuitive benchmark
that, as shown brie�y, allows for an explicit characterization of dominance
relationship on the space of income stream distributions. Note also that,
combined with axiom (SC), we must have that �(y) = �(�z(y1); :::; �z(yT ))
for some function � that is also invariant to permutations of its arguments.
In our motivating example, T = 2, �(d1; d2) = (d1 + d2)=2 and �(w) =
�maxf0; wg+ minf0; wg.
We need some notation to introduce our next axiom. Let R : Y T ! Y T

denote the "re�ection map" de�ned by R(y1; y2; :::; yT ) = (yT ; :::; y2; y1). We
write

I(y; y) = fy 2 Y T jy1 = y; yT = y; and yt+1 � yt; yt 2 fy; ygg

for the set of increasing incomes streams with "support" fy; yg, i.e., at each
period income is either y or y. Observe that if y 2 I(y; y) is a path of
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increasing incomes then R(y) is a path of declining incomes.24 Note also that
�(y) = �(R(y)), i.e., y and R(y) are associated with the same distribution
on fy; yg. Hence, while each of these paths is associated with exactly the
same number of periods of incomes y and y, y is associated with a gain over
time, whereas R(y) is associated with a loss.

Axiom (LA) [Loss Aversion] For any y; y 2 Y with y � y and any income
stream y 2 I(y; y), the individual deprivation measure of multi-period poverty
q : Y T ! [0; 1] satis�es q(y) � q(R(y)), and q(R(y))�q(y) weakly increases
as y � y increases.

In words, in line with the evidence discussed in section 2, axiom (LA)
expresses the idea that an individual experiences (weakly) higher well-being
from an increasing path than a decreasing one.
Our next two axioms restrict the dependency of our measures on trajec-

tories when T � 3. Let r � 1 and s � T and denote by A = [r; s] the interval
of times fr; r + 1; :::; sg. Given two arbitrary income streams x;k 2 Y T we
use (kA;x�A) to denote the income stream x0 2 Y T such that x0t = kt for
t 2 A and x0t = xt for t 2 TnA.

Axiom (TD) [Time Decomposability] For any non-empty time interval A =
[r; s] and income streams x;y;k 2 Y T such that

xr�1 = yr�1 and xs+1 = ys+1

the multi-period deprivation measure q : Y T ! [0; 1] satis�es

q(kA;x�A) � q(kA;y�A), q(k0A;x�A) � q(k0A;y�A)

for any k0 2 Y T .

The axiom says that the ranking between two income streams that coin-
cide on an interval of times A and that are also identical in the time periods
that border it must be determined by their values outside this interval. It

24We remind the reader that, in keeping with the poverty literature, in this paper, "in-
come" refers simply the relevant welfare attribute. Perhaps consumption would correspond
more precisely to what most economist would consider a natural carrier of utility and, in
this line, a declining (increasing) could be thought of as a path of declining (increasing)
consumption.
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captures a limited notion of time-separability of individual multi-period de-
privation. Indeed, the axiom places no restriction on intervals that coincide
onA but not on the borders ofA. Without this restriction a standard additive
representation of q would obtain. Instead, Lemma 5 in the Appendix shows

that (TD) implies that q can be represented as q(y) =
XT�1

t=1
qt+1(yt;yt+1),

i.e., a sum of period-deprivation functions that can depend on previous period
income.25 The axiom is appealing for at least two reasons. First, it allows for
dependence on trajectories, i.e., for complementarity between income values
across di¤erent periods. Second, it limits these complementarities to consec-
utive periods. In sum, it allows deprivation to depend on levels and changes
from one period to the next but not on more global properties of the income
stream. In general, it might reasonable to expect well-being on other char-
acteristics of the income path. This may ultimately depend on the choice
of a time window. Further, the fact that the measure is only a function of
consecutive periods allows the analyst to make a welfare assessment as soon
as a new time period observation is added, something important in practice.
Axioms (SF ) and (TD) jointly imply the following:

Lemma 1 The admissible (individual) multi-period poverty measure q[M; �z]
satis�es axioms (TD) and (SF ) if and only if there exist m : D ! [0; 1] with
m(0) = 0 and m(1) = 1, and �ow-value functions �t : U ! R with �t(0) = 0,
t 2 f1; :::; T � 1g such that

M(d) =
1

T

TX
t=1

m(dt) +
1

T

T�1X
t=1

�t(dt+1 � dt) (5)

for each d = (d1; d2; :::; dT ).

Thus, M has two components, one that evaluates deprivation levels and
other one that evaluates changes in deprivation. Our �nal axiom requires
the valuation of changes in well-being over time to remain constant over
life-cycle. That is, the multi-period deprivation value of a gain (loss) is
independent of whether this change takes place early or late along the income
path. This means that the measure of multi-period deprivation is symmetric

25This limited-time separability is also shared by the by the preferences in Gilboa [1989]
and Koszegi and Rabin [2006]. The (TD) axiom is weakening of Gilboa�s Variation-
Preserving Sure Thing Principle axiom.

21



with respect to time-periods, something referred as calendar neutrality. To
avoid duplicating notation, we state the axiom as a strengthening of the
(SF) axiom. Each vector of deprivation changes w = (w1; :::; wT�1) induces
a distribution �w(w) on the set of possible deprivation changes U such that
where the probability of each bw 2 U is simply the "empirical frequency"
�w(w)( bw) =PT�1

t=1 �(wt = bw)=(T � 1) that w assigns to it.

Axiom (CN) [Calendar Neutrality] For all x;y 2 Y T such that �(x) = �(y)
and �w(!(x;�z)) = �w(!(y; �z)) we have that q(x) = q(y).

In words, the (CN) axiom says that income streams associated with the
same distribution of income levels � and also the same distribution of depri-
vation changes �w yield the same multi-period deprivation. Combined with
Lemma 1 we obtain the following:

Lemma 2 Suppose the admissible (individual) multi-period poverty measure
q[M; �z] satis�es axioms (TD) and (SF ). If, in addition, q[M; �z] satis�es
axiom (CN) then there exists � : U ! R such that (5) is satis�ed with �t = �
for all t 2 f2; :::; Tg.

Thus, the framework allows to incorporate deprivation measures that ac-
count for life-cycle adjustments in the valuation of deprivation changes by
relaxing the (CN) axiom. It might be sensible to consider di¤erent depriva-
tion standards as the individual ages.
Lemmas 1 and 2 provides us with a representation of M that is entirely

determined by a pair of functions (m;�); where the �rst component values de-
privation levels and the second one values changes. We write M =M(m;�).
However, this representation does not incorporate two of our key properties,
the monotonicity of M and the (LA) axiom.

De�nition 3 Let m : D ! [0; 1] and � : U ! R. The pair (m;�) is said to
respect monotonicity if for any d; d0 2 D such that d0 � d and any d+; d� 2 D
we have that

(M1) �(d+ � d)� �(d+ � d0) � m(d0)�m(d)
(M2) �(d0 � d�)� �(d� d�) � m(d0)�m(d)

and, if T � 3 then

(M3) �(d+ � d)� �(d+ � d0)� (�(d0 � d�)� �(d� d�)) � m(d0)�m(d):
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The conditions are equivalent to the monotonicity requirement onM(m;�).
Observe that if m and � are di¤erentiable the (M1) and (M2) translate into
j�0(w)j � 1 for each w 2 [�1; 1]; and if T � 3, (M3) is j�0(w)��0(v�w)j � 1
for each v; w 2 [�1; 1]. Intuitively, monotonicity restricts the contribution of
�ows to deprivation relative to the contribution of stocks. In our motivating
example it constrains the (absolute) values of  and � -which measure the
importance of deprivation changes relative to levels, to be bounded above by
one.
Similarly, the (LA) axiom constrains the �ow value function �: In partic-

ular, it distinguishes between the contributions of losses and gains to multi-
period deprivation.

De�nition 4 The �ow function � satis�es the loss aversion (LA) property
if for each w � 0 we have that

(LA) �(w) � �(�w) and �(w)� �(�w) increases with w:

The property says that, in absolute value, the contribution of losses in
well-being of multi-period deprivation is larger than the contribution of gains,
and that this di¤erence increase with the size of the change. Note that the
(LA) property allows both for a gain in well-being to contribute or reduce
intertemporal deprivation. The �rst case can be interpreted an adjustment
cost regardless of the direction of change (as in Gilboa [1989]). A stronger
version of the (LA) axiom is required to produce the more restrictive version
of loss aversion in which gains are associated with a positive �ow of utility,
losses with a negative �ow, and "losses loom larger than gains".26

A complete characterization of the family of measures that satisfy all of
the axioms above is summarized by the Theorem below.

Theorem 1 The admissible (individual) multi-period poverty measure q[M; �z]
satis�es axioms (SF ), (LA), (TD), and (CN) if and only if there exist a pair

26In particular, this is exactly what obtains if we strengthen the (LA) axiom as follows:
for the set paths with support fy; yg that have have the same distribution of incomes (i.e.,
the same number of periods at y and y) the path associated with an increasing income
is stream (i.e., yt = y for t � n and yt = y for t > n) is the one associated withe the
lowest deprivation. This strengthening, implies that for v > 0, � satis�es �(v) > 0 for
and �(v) � ��(�v).
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of functions m : D ! [0; 1] with m(0) = 0 and m(1) = 1, and � : U ! R
with �(0) = 0 such that

M(d) =
1

T

TX
t=1

m(dt) +
1

T

T�1X
t=1

�(dt+1 � dt) (6)

for each d = (d1; d2; :::; dT ). Furthermore, the �ow-value function � satis�es
the (LA)-property and (�;m) satis�es the monotonicity restrictions (M1)-
(M3).

Theorem 1 says that any deprivation function q[M; �z], consistent with
the (LA) can be expressed as the sum of term S(d) = 1

T

PT
t=1m(dt) that

is insensitive to the trajectory and depends exclusively on the levels of de-
privation experienced at each period regardless of the order in the sequence,
and a function �(d) =

PT�1
t=1 �(dt+1 � dt) that measures the value of �ows

and captures the preference for increasing sequences. In addition, an admis-
sible deprivation function M(�) must be monotonic. Comparing (1) and (6),
the function M is generalizes the linear multi-period measure presented in
section 2.3 as m and � are not piece-wise linear.
We conclude this section mentioning the fact that while our characteri-

zation has focused on dynamics that track the evolution of a single welfare
attribute, it is relatively straightforward to extend the framework multiple
well-being attributes if the corresponding static multi-attribute poverty re-
gion and measure has been de�ned.

5 Ranking Poverty Dynamics

In this section we provide a complete characterization of the (partial) ranking
induced by our measures on the space of income stream pro�les or distrib-
utions. We start with some basic notation and de�nitions. Fix underlying
static deprivation measure �z and recall that D � �z(Y ). Given �z we can
identify a pro�le of income streams fyig 2 Y TN with the pro�le of depriva-
tion streams fdig 2 DTN where each di = (�z(yi1); :::; �z(yiT )) 2 DT :

De�nition 5 (Poverty Dynamics) Fix �z and let fdig 2 DTN be a pro�le
of deprivation streams. The poverty dynamics associated to fdig is the dis-
tribution f 2 �(DT ) such that f(x) = 1

N

P
i2N 1(di = x) for each x 2 DT .
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The distribution f summarizes the realized deprivation paths for all indi-
viduals in the cohort of N individuals. Recall that, by assumption, we either
have that D = f0; 1g -binary deprivation levels associated to the poverty
indicator (�z = �

0
z), or else D = [0; 1] (�z is strictly increasing and continuous

on Y ). In the latter case, the space of all possible poverty dynamics �(DT )
is independent of �z. Of course, the same pro�le of income streams will be
associated with di¤erent elements of �(DT ) as we vary �z.
For this �xed �z an individual deprivation measure q consistent with our

axioms is entirely determined by a map M : D ! [0; 1] that satis�es the
conditions of Theorem 1. The set of all such functions is denotedM. With
some abuse of notation, whenever it leads to no confusion, we write q[M ]
instead of q[M; �z] for the individual poverty measure induced by M 2 M
given �z: Similarly, we use Q[M ] for the aggregate measure associated to
q[M ] and, for this measure, multi-period poverty for a society described by
f is given by

Q[M ](f) =

Z
x2DT

M(x)f(x)dx:

Each family of multi-period poverty measures induces a partial order on
�(DT ), the space of poverty dynamics:

De�nition 6 (Multiperiod Poverty Order) Let Q a set of multi-period
poverty measures. Given two poverty dynamics fA; fB 2 �(DT ), we say that
fA dominates fB for the set Q if Q(fA) � Q(fB) for any Q 2 Q. Whenever
this holds we write fA � fB.

In the sequel we characterize partial order on induced by the family Q� =
fQ[M ]jM 2Mg of multi-period measures satisfying our axioms.

Remark 1 The Dominance Optimal Control Problem.

Let K[M ](fA; fB) � Q[M ](fA)�Q[M ](fB) and

Kmax(fA; fB) � sup
M2M

K[M ](fA; fB): (DOCP)

Note that fA & fB , Kmax(fA; fB) � 0. Hence, characterizing the domi-
nance relation & is equivalent to characterizing the value of the optimization
problem (DOCP).
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Before turning to a characterization the solution of (DOCP) we introduce
some notation. Let u�t = (u1; :::; ut�1; ut+1; :::; uT ) 2 DT�1 and write ft(x) =R
DT�1 f(u1; :::; ut�1; x; ut+1; :::; uT )du�t for the period-t marginal distribution
of deprivation levels associated to poverty dynamics f . Observe that static
poverty at time t is �t =

R
D
xft(x) = 1�

R
D
Ft(x), where Ft is the cumulative

distribution. Denote by

f(x) � 1

T

TX
t=1

ft(x)

the time-average of these marginal distributions. Thus, the time-average of
static poverty over periods 1 through T is � =

R
D
xf(x) = 1�

R
D
F (x):

Similarly let

ft;t+1(x; x
0) =

Z
DT�1

f(u1; :::; ut�1; x; x
0; ut+2; :::; uT )du1:::dut�1dut+2:::duT

be the density of deprivation paths with deprivation levels dt = x and dt+1 =
x0 in periods t and t+ 1 respectively, associated to the poverty dynamics f .
We can use this density to compute the distribution of deprivation changes
between these time periods. Recall that U = fvj v = x0�x, x; x0 2 Dg is the
set of all possible deprivation changes. Let C(v) = f(x; x0) 2 D2jx0 � x = vg
be the set of deprivation pairs that lead to a deprivation change v 2 U . Given
ft;t+1 the distribution of deprivation changes from t to t+ 1 induced by f is
given by

ht;t+1[f ](v) =

Z
C(v)

ft;t+1(x; x
0)dxdx0

for each v 2 U . We de�ne the average (normalized) distribution of depriva-
tion changes induced by f as integral

hf (u) =
1

T

T�1X
t=1

ht;t+1[f ](u):

Lemma 3 Suppose that M satis�es (6) for the pair (m;�). Then

Q[M ](f) =

Z 1

0

m(x)f(x)dx+

Z 1

�1
�(v)hf (v)dv:

The result uses Theorem 1 and shows that we can express the aggregate
multi-period deprivation Q[M ](f) associated to poverty dynamics f as a lin-
ear functional of the time-average of the marginal distributions of deprivation
levels f and changes hf (u). We use this result to solve (DOCP).
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5.1 Dominance with Binary Deprivation Levels

If �z = �
0
z is poverty indicator (headcount) the set of possible period-deprivation

values is D = f0; 1g and U = f�1; 0; 1g. From Theorem 1, since m(1) = 1;
m(0) = 0 and �(0) = 0, the individual multi-period measure M(m;�) is
entirely determined by two parameters: �L � �(1), the value of an increase
in deprivation (loss), and �G � �(�1) -the value of a decrease in deprivation
(gain). In this case, as shown in the Appendix, (DOCP) is a linear pro-
gram with two variables �L and �G: This variables are constrained by the
monotonicity conditions (M1)-(M3) and the (LA) property, which are linear.
These constraints de�ne polytope with a set extreme points ET given by

ET =

�
f(1; 1); (�1;�1); (1;�1)g if T = 2

f(1=2;�1=2); (0;�1); (1; 0); (1=2; 1=2)g if T � 3:

The following Theorem follows:

Theorem 2 Suppose �z = �0z so that D = f0; 1g (binary deprivation). Then
poverty dynamics fA dominates poverty dynamics fB if and only if

f
A
(1) + �LhfA(1) + �GhfB(�1) � f

B
(1) + �LhfB(1) + �GhfB(�1)

for each (�L; �G) 2 ET .

Fix a poverty dynamics f and observe that for the poverty indicator the
time-average of poverty is � = 1 � f(1) + 0 � f(0) = f(1). Similarly, the
time-average of poverty creation between consecutive periods is L = hf (1),
and each of these units contributes �L to societal multi-period deprivation.
Similarly, the time-average poverty destruction over time is G = hf (�1)
with each unit contributing �G. Thus, overall multi-period deprivation Q =
� + �LL+ �GG, a weighted sum of average of poverty is �, poverty creation
L and poverty destruction G. The weights are constrained by the axioms so
that j�Lj; j�Gj � 1 (monotonicity) and �L � �G (loss aversion). Hence, the
Theorem just says that the weighted sum for fA must be smaller than the
one for fB.
The following Proposition is an immediate Corollary of the Theorem for

T = 2, which we use in applications. We use f(i; j) to denote the share of
individuals having deprivation levels i and j in periods 1 and 2 respectively.
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Proposition 1 Suppose that �z = �0z and T = 2. Then f
A dominates fB if

and only if

(i) fA(0; 0) � fB(0; 0);
(ii) fA(0; 0) + fA(1; 0) � fB(0; 0) + fB(1; 0);
(iii)fA(0; 0) + fA(1; 0)+ fA(0; 1) � fB(0; 0) + fB(1; 0) + fB(0; 1):

The Proposition unpacks the conditions of Theorem 1, by deriving ex-
plicit formulas for the bivariate poverty dynamics. Condition (i) requires A
to have a larger share of individuals with incomes above the poverty line in
both periods than B, i.e., more individuals who are never poor. Condition (ii)
requires static poverty in A at period 2 to be smaller than in B.27 Finally, us-
ing the fact that

P
i;j f(i; j) = 1, (iii) can be restated as f

A(1; 1) � fB(1; 1).
This means that society A must have lower share of individuals under the
poverty line during both periods than B, i.e., less individuals who are always
poor. We illustrate the main di¤erences between the partial order on income
processes just derived and the rankings generated using measures of social
mobility and static poverty measures in our applications.

5.2 Dominance with a Continuum of Deprivation Lev-
els

We now turn to the case in which �z is continuous so that D = [0; 1]. For
each number s let [s]+ = maxfs; 0g. Fix two poverty dynamics fA and fB:
Let �FA;B(x) � FA(x)� FB(x), �HA;B(v) � HfA(v)�HfB(v),

rA;B1 (v) �
�

[�HA;B(v)]+ if �HA;B(v) � �HA;B(�v)
[��HA;B(�v)]+ if �HA;B(�v) � �HA;B(v)

(7)

and

rA;B2 (v) �
�

[��HA;B(v)]+ if �HA;B(v) � �HA;B(�v)
[��HA;B(�v)]+ � [�HA;B(v)] if �HA;B(�v) � �HA;B(v):

(8)
The following Theorem characterizes dominance for T = 2.

Theorem 3 Fix �z and suppose that D = [0; 1] (continuum). If T = 2 Then
fA dominates fB if and only if

27Note that the headcount of non-poor in period 2 is precisely f(0; 0) + f(1; 0).
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(i) F
A
(u) � FB(u) (or �FA;B(u) � 0) for all u 2 [0; 1];

(ii)
R u
0

�
�FA;B(x)� rA;B1 (x)

�
dx � 0 for all u 2 [0; 1];

(iii)
R 1
u

�
�FA;B(x)� rA;B2 (x)

�
dx � 0 for all u 2 [0; 1]:

If T � 3 conditions (i)-(iii) are su¢ cient for dominance.

Condition (i) says that the (time-average) cumulative distribution of de-
privation levels F

B
FOSD F

A
. This is restriction that follows frommonotonic-

ity alone. Note that the time-average of poverty for society A is �A =

1�
R 1
0
F
A
(u) and, similarly, for B we have �B = 1�

R 1
0
F
B
(u). Hence, a nec-

essary condition implied by (i) is that �A � �B. To interpret conditions (ii)
and (iii) observe that the integrands have two terms. The term �FA;B(x)
measures the di¤erence in average cumulative deprivation between A and
B. On the other hand, both rA;B1 (v) and rA;B2 (v) measure di¤erences in the
cumulative distribution of deprivation changes.
We provide some insight on the proof. In contrast to the binary case,

with a continuum of deprivation levels, (DOCP) is a calculus of variations
problem. In the Appendix we characterize its solution for the case of T = 2
in two steps.28 First, for a �xed increasing function m : D ! [0; 1] with
m(0) = 0 and m(1) = 1, let �(m) be the set of "�ow-value" functions" �
such that the multi-period deprivation function M = M(m;�) satis�es our
axioms for any � 2 �(m). We �rst �nd

K[m](fA; fB) � sup
�2�(m)

K[M(m;�)](fA; fB): (DOCPm)

Next, givenK[m](fA; fB) for eachm, we maximize acrossm: Kmax(fA; fB) =
supmK[m](f

A; fB). The �rst step exploits the fact that, by the monotonic-
ity ofM , m and � are di¤erentiable a.e. in their respective domains. Using a
di¤erential version of the monotonicity constraints (M1)-(M2) and the (LA)
property we obtain an explicit solution of (DOCPm). To solve the second
stage we use an approximation argument that relies on the fact that step
functions are dense in the space of cumulative distribution functions, so that
any m can be approximated by a sequence of step functions. In particular,
for any �xed �nite grid In on [0; 1] we de�ne the space of cumulative distri-
bution functions that are constant on each of the n subintervals of the grid.
28Finding a solution of (DOCP) for T � 3 is harder as it involes the additional

monotonicity constraint (M3). This signi�cantly complicates the characterization of the
optimal control problem.
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This is �nite-dimensional space as each of these step functions is entirely de-
termined by a �nite-dimensional "density" vector that measure the "jumps"
of the c.d.f. in each subinterval. We are able to �nd an explicit solution
of supmK[m](f

A; fB) and its value under the additional restriction that m
be one of these step functions. Using an approximation argument and domi-
nated convergence leads to a complete characterization ofKmax(fA; fB). The
conditions of the Theorem simply express that Kmax(fA; fB) � 0.
Theorem 1 provides an explicit characterization that can be numerically

implemented. At the same time, it seems desirable to obtain conditions
that allow for a more transparent comparison with measures derived in
the social mobility literature and work for any T . For this purpose, we
derive the order on poverty dynamics induced by the family of piece-wise
linear multi-period deprivation measures Ql � Q� introduced in section 2.
These are two-parameter measures that satisfy Theorem 1 for m(d) = d and
�(u) = 1=2(�maxf0; ug + minf0; ug). Extending notation of section 2 for
an arbitrary T , let

L =
T�1X
t=1

X
i:dit+1�dit>0

jdit+1 � ditj and G =
T�1X
t=1

X
i:dit+1�dit<0

jdi2 � di1j,

which correspond to the overall poverty creation and destruction over time.
The next result characterizes the partial order �l induced by Ql. As for
the case of binary deprivation levels, the linearity of measures in � and ,
implies that the corresponding (DOCP) is a linear program, as shown in
the Appendix. The extreme points of the constraint set for � and  is ElT =
f(1; 1); (�1; 1); (1;�1)g if T = 2 andElT = f(1=2;�1=2); (�1=2; 1=2); (0; 1); (1; 0)g
if T � 3 for T = 2 :

Proposition 2 Let fA and fB two poverty dynamics. Then fA �l fB if
and only if

�A + �LA � GA � �B + �LB � GB

for each (�; ) 2 ElT . In particular, if T = 2 this reduces to:
(i) �A1 + L

A � �B1 + LB
(ii) �A2 � �B2
(iii) �A1 �GA � �B1 �GB:

Proposition 2 is intuitive. Condition (i) compares poverty stocks �1 in
period one plus poverty creation L between periods 1 and 2. Condition (iii)
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compares stocks poverty stocks �1 in period one minus poverty destruction G
between periods 1 and 2. The di¤erence in sign between poverty destruction
and creation across these two conditions re�ects the fact that, in contrast
to social or poverty mobility measures, our criterion puts di¤erent signs on
the contribution of poverty in�ows and out�ows to social welfare. Finally,
condition (ii) compares poverty levels in period 2.

6 Poverty Dynamics in the United States:
1980s versus 1990s

In this section we apply our methodology to compare poverty dynamics in the
United States across two decades, the 1980s and the 1990s using data from the
Panel Study of Income Dynamics (PSID). In this comparison, each decade is
treated as a di¤erent "society" characterized by its own income process. We
focus on the partial ordering derived from the loss aversion axiom. To apply
our framework we need to specify a time window, an individual measure
of income for this window, a poverty line z, and an individual measure of
individual deprivation �z.

6.1 Poverty Status

We consider a time window of �ve calendar years, so that each decade is
divided into two windows. For the 1980s "society", we �rst compute the
average income between 1981 and 1985 for the 1983 cohort of the PSID.
Hence, t = 1 is the window 1981-1985. For the same population, we compute
average income between 1986 and 1990. Thus, t = 2 corresponds to 1986-
1990 window. A deprivation path for an individual of the 1980s "society"
is a pair of observations specifying the individual�s poverty situation in each
window of a decade. Similarly for the 1990s, t = 1 is the window 1991-1995
and t = 2 is 1996-2001. For this decade, we compute the average income
in both time windows for the 1993 cohort of the PSID and, as before, we
compute deprivation paths for each individual based on these measures.29

Following Jalan and Ravallion (1998) we consider an individual to be
poor in society A 2 f1980s; 1990sg for the time window t 2 f1; 2g if the
29The second window was extended to 2001 because since 1997 the PSID is conducted

every other year rather than on a yearly basis.
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average income over a �ve-year window falls below the relevant poverty line
of society A. There are three reasons to adopt this de�nition of poverty.
First, it allows us to focus on changes in persistent rather than transient
poverty.30 Second, average income over �ve years closely follows consumption
expenditure, which is what are ultimately interested in. Third, averaging
income over a �ve-year period reduces measurement error in the identi�cation
of personal income.
In practice, as argued by Meyer and Sullivan [2006], empirical poverty

measures are highly sensitive to the de�nitions implemented by the researcher.
Our poverty estimates closely follow their recommendations to reduce the po-
tential arbitrariness. First, we estimate poverty at the individual level using
the household as the resource sharing unit. We account for di¤erent house-
hold sizes by applying the equivalence scale recommended by the National
Academy of Sciences (NAS): (number of adults + number of children�P )S,
where k stands for the child "consumption" proportion of an adult and S rep-
resents an economies of scale factor. We use the standard values P = 0:7 and
S = 0:7.31 Second, we use disposable income, which is post-tax and transfers
income. Again, this is di¤erent from the pre-tax money income used to com-
pute the o¢ cial poverty line in United States. By using pre-tax income we
would have excluded taxes and non-cash bene�ts such as the Earned Income
Tax Credit (EITC) or housing subsidies.32 Third, we compute real per-capita
income over time using a corrected price index proposed by the Bureau of
Labor Statistic (CPI-U-RS) instead of the widely used CPI-U.33 Finally, we
anchor the computation of the poverty line to 1980. This means that we
take the poverty rate for 1980 to be the one estimated using the Current

30As shown by Bane and Ellwood [1986] and subsequent studies, transient poverty is
signi�cant in any cross-sectional analysis. In our sample, throughout these two decades
the transient poor are between 2% and 3% of the population. Those in persistent poverty
are between 7% and 10%.
31This formula imporves upon the o¢ cial equivalence scale as it considers diminishing

marginal cost over the whole range of family size, and extra children always cost less than
extra adults.
32Using pre-tax income during this period to asses poverty dynamics is especially prob-

lematic as several new social policies during the 1990s took the form of non-cash bene�ts
and the EITC was a central instrument of the Welfare Reform (Ellwood [1999]).
33Costa [2001] and Hamilton [2001] argue that CPI-U overstates real in�ation by about

1.6 and 1.0 percentage points per year. By using the CPI-U-RS the bias is expected to be
reduced by 0.4 percentage points per year. By taking the CPI-U instead of the corrected
index we would overstate poverty systematically over time.
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Population Survey (CPS), which is 13%. Then we computed a poverty line
that generates the same poverty rate for our PSID 1980 sample.
We use z to designate the individual threshold after the equivalence scale

is applied. The annual per-capita threshold computed for this sample is
z = 6; 358 in U.S. dollars of 1992. Using a �ve-year average yit as our
measure of income, an individual i is classi�ed as poor if yit � z. We provide
a ranking of the poverty dynamics associated to the the two most commonly
used the static poverty measures, the poverty indicator or headcount ratio,
and the poverty gap.

6.2 Data

We use panel data on household income and composition for each individual
from the PSID. The PSID is a widely used longitudinal survey based on
interviews of the head of the household.34 Members of the original sample are
followed if they split from the original household. The PSID is considered to
be nationally representative with the exception of the immigrant population.
Before 1997 the surveys were conducted on a yearly basis and since then the
survey was applied every other year.
A central concern in longitudinal analysis is the potential for non-random

attrition. A �rst aspect of the problem is that panel data may not be rep-
resentative of the national population after substantial cumulative attrition.
According to Fitzgerald, Gottschalk and Mo¢ tt [1998] this is not the case
the PSID. A second dimension of attrition is also relevant for the estimation
of parameters associated with income dynamics. In particular, panel data
may be representative of the cross-sectional population, but if dynamic at-
trition during the period considered is not random, our sample estimates bf
of the poverty dynamics distribution f will be biased. Thus, it is especially
important in our case to asses the signi�cance of this problem as the likeli-
hood of attrition may well be associated with the income path of the attritor.
We conducted an extensive analysis to asses the importance dynamic attri-
tion which is reported in Appendix B. Our analysis suggests that selective
attrition on observables is not signi�cant in our application using the PSID.
In 1997 the PSID introduced important changes. The core sample was

reduced by roughly 30% and a new sample of immigrants was incorporated.
This new sample is dropped in our estimation because poverty dynamics in

34See see Hill [1992] for a detailed description of the survey.
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our 1990s society is estimated following the 1993 cohort of the PSID. In the
second time window of the 1990s decade, we used a standard imputation
procedure to predict the poverty level for those who were pulled out of the
sample.

6.3 Results: Ranking the 1980s versus the 1990s

6.3.1 Headcount Ratio

We compare poverty dynamics for both decades using the headcount ratio as
the underlying static poverty measure. The following table shows a matrix
with four entries, each representing the share of the population experiencing
a particular deprivation path f(i; j), where i; j 2 f0; 1g. We see that during
the �rst half of the eighties, 11.3% of the sample is poor under the Jalan-
Ravallion criterion. This is the percentage of the population having a �ve-
year average income below the poverty line for the 1981-1985 period. More
than half of them (5.8%), remained in this situation for the entire decade.
A few interesting facts arise when we compare both decades, and the

results con�rm Meyer and Sullivan [2006] �ndings. Namely, the stock of
poverty has decreased over time. The data shows that during the 1990s both
margins -poverty exits or entries- performed better compared to the 1980s:
more people escaped poverty (6:0% versus 5:5%) and a smaller share of the
population entered poverty (2:3% versus 3:8%).The notation bf stands for the
sample estimate of the poverty dynamics f .

34



Table 2: Poverty Dynamics in The United States (Headcount Ratio)

Table 2a: 1980sbf 80s(i; j) Non Poor 86-90 (j = 0) Poor 86-90 (j = 1) Total
Non Poor 81-85 (i = 0) 0:849 0:038 0:887
Poor 81-85 (i = 1) 0:055 0:058 0:113
Total 0:903 0:097 1:00

Table 2b: 1990sbf 90s(i; j) Non Poor 96-01 (j = 0) Poor 96-01 (j = 0) Total
Non Poor 91-95 (i = 0) 0:881 0:023 0:903
Poor 91-95 (i = 1) 0:060 0:037 0:097
Total 0:941 0:059 1:00

We use these parameters to test the conditions stated in Proposition 1.
The comparison between the 1980s and the 1990s is summarized in Table 3.

Table 3: Comparing the 1980s and the 1990s using the Headcount Ratio

Inequalities 1990s 1980s Di¤erencebf(0; 0) 0:881 0:849 0:032bf(0; 0) + bf(1; 0) 0:941 0:903 0:038bf(0; 0) + bf(1; 0) + bf(0; 1) 0:964 0:942 0:022

The three conditions required to rank the 1990s over the 1980s are ful�lled
for the sample estimates: (1) the share of never-poor population is higher,
(2) �nal poverty is lower and (3) the share of the always-poor is lower. To
establish whether these di¤erences are statistically signi�cant we test the null
hypothesis

H0 : f
90s �LA f 80s versus H1 : f 90s � f 80s

using the method suggested by Formby et al. [2004] and Kodde and Palm
[1986] for inferences that involve joint equality and inequality restrictions
associated with each hypothesis.35 The method uses the vector of estimates

35For completeness, a detailed explanation of this procedure can be found in Apendix
C.
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in the last column of Table 3 and the covariance matrix associated with
these parameters to construct a generalized Wald statistic W . This value is
then compared to the critical value CV corresponding to a 1% con�dence
region. The expressions for the covariance matrix and the Wald statistic
can be found in Appendix C. In this case, W = 19:059: The upper bound
critical is CV = 10:501, which is obtained from Kodde and Palm [1986] using
three degrees of freedom.36 Since W > CV we reject the null hypothesis and
conclude that the inference f 90s � f 80s is robust.

6.3.2 Poverty Gap

We repeat the comparison using a di¤erent underlying static poverty mea-
sure, the poverty gap. Table 4a shows the poverty stock �t for each time
window within a decade, and the poverty creation and destruction levels L
and G for each decade. The expressions required to rank both decades are
summarized in Table 4b (Proposition 2).

Table 4: Comparing the 1980s and the 1990s using the Poverty Gap

Table 4a: Parametersb�1 b�2 bL bG �1+�2
2

bL+ bG
1990s 0:028 0:017 0:007 0:017 :022 :024
1980s 0:028 0:025 0:011 0:013 :026 :024

Table 4b: Inequalities

1990s 1980s Di¤erenceb�2 0:017 0:025 �0:008b�1 � bG 0:010 0:014 �0:004b�1 + bL 0:035 0:038 �0:004

Observe that although the initial stock of poverty is similar in both cases
(0:028), the destruction of poverty is signi�cantly higher G (0:017 versus
0:013) and the creation of poverty L is lower during the 1990s (0:007 versus
0:011).
From the sample estimates, the last column in Table 4b shows that the

1990s dominate the 1980s. This inference is signi�cant at the 1% level. Thus,

36The distribution f has four parameters which sum to unity.
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for any linear multi-period deprivation function that satis�es the monotonic-
ity and loss aversion axioms the conclusion is the same as before, the 1990s
dominate the 1980s.

6.4 Discussion: Comparison with Social Mobility Or-
ders

There seems to be considerable agreement with respect to the dynamics of
poverty in the United States during the 1990s. The Welfare Reform was
associated with a steady reduction of the poverty rate (See, for example, Ell-
wood [2001] and Meyer [2006]) and a signi�cant reduction of poverty among
groups historically identi�ed with perennial poverty (Blank [2002]). Relative
to the 1980s, our own estimates show a signi�cant increase poverty out�ows
but similar poverty in�ows. Overall, since both poverty stocks, and the pat-
tern of poverty creation and destruction is more favorable for the 1990s than
1980s, it is not surprising that our criterion produces a clear ranking, one
consistent with the picture shared by most of the previous research. Having
said this, as shown by our next application and in contrast to the results
in this section, our ranking can have signi�cant discrepancies with those the
induced by looking at poverty reduction alone.
Since social mobility measures are the main instrument used to analyze

income dynamics it is worth to compare the ranking induced by some of these
measures relative to ours. It turns out that social mobility measures provide a
rather di¤erent picture. Indeed, this is not surprising either as these measures
aim to capture di¤erent information. Classic measures of social mobility
measures attempt to capture the extent to which an income process leads to
more or less "equalization of opportunities". The basic idea is that society
A is better than B if initial condition are less correlated with �nal outcomes
in society A than in B. From this perspective, social welfare is associated
with what is often referred as "circulation". The social mobility rankings
introduced by Atkinson [1983], Dandardoni [1993] and Prais-Shorrocks [1978]
are in this spirit. A more recent approach introduced by Fields-Ok [1996]
combines circulation and income growth (positive or negative) into a measure
of "pure mobility".
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Table 5: Comparison with Social Mobility Measures

Table 5a: Income Transition Matrix
Social Mobility Measure Ranking Using Income Transition Matrix
Prais-Shorrocks 1980s � 1990s
Fields-Ok 1980s � 1990s
Atkinson-Dardandoni Not possible to rank

Table 5b: Poverty Transition Matrix
Social Mobility Measure Ranking Using Poverty Transition Matrix37

Prais-Shorrocks 1980s�1990s
Fields-Ok 1980s � 1990s
Atkinson-Dardandoni Not possible to rank

The orders induced by some of these social mobility measures are summa-
rized in Table 5.38 It is important to recall that none of these measures has a
direct welfare implication. If anything, these �gures suggest that measures of
social mobility that are more heavily based on circulation rank the 1980s over
the 1990s.39 In general, there are three main reasons for this discrepancy be-
tween our criterion and the ranking produced by a social mobility measures.
First, our measure focuses on the mobility of the poor and not on the en-
tire distribution of income. Further, as many other social mobility measures,
the Prais-Shorrocks and the Atkinson-Dandardoni are based on a transition
matrix between income quintiles rather than "absolute" income thresholds.
The second column of Table 5 reports rankings based on the social mobility
measures that focus exclusively on transitions in or out of the poverty region,
or within the poverty region. In particular, a "poverty transition" matrix is
constructed to compute "poverty mobility" versions of the Prais-Shorrocks
and the Atkinson-Dandardoni.40 A version of the Fields-Ok "poverty mobil-
ity" index can be calculated by looking at income changes within the poverty

37See appendix A
38The mobility estimates consider the average income for each of the �ve-year windows

de�ned previously for each decade. The Atkinson- Dardandoni criterion and the Prais-
Shorrocks index were estimated using a quintile transition matrix. For each decade, the
Fields-Ok is estimated by averaging across individuals the absolute di¤erences in income
between the two time windows.
39The Atkinson-Dardandoni criterion delivers a partial order much like ours and, in this

case, it produces no ranking between the decades.
40An explicit formula for this matrix can be found in Appendix A.
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region. It can be shown that this corresponds to the sum L + G reported
in table 4a. The results are not di¤erent than the ones obtained looking at
transitions across the quintiles of the entire distribution. This means that
the main discrepancies between our ranking and those based on social mobil-
ity measures are due to other reasons. Indeed, our criterion places positive
value on mobility out of poverty but not mobility into poverty. Falling into
poverty contributes to circulation and can thus be associated with higher
values of the social mobility measures. Furthermore, our criterion takes into
account the poverty stocks, not only poverty mobility. It is possible, for ex-
ample, that an economy A that experiences a large reduction of poverty is
ranked below other economy B for which poverty stable at a relatively low
level, if the initial di¤erence in poverty stock between A and B is su¢ ciently
high. For this data set, the main reason for the discrepancy seems to be a
combination between the latter two reasons.

7 Cross-National Comparisons: Germany, Great
Britain and the United States

In this section we apply the framework in a cross-country context. We com-
pare the poverty dynamics of the 1990s of three industrialized countries:
Germany, Great Britain and the United States.

7.1 Poverty Status

The main elements de�ning poverty status are the same as in the previous ap-
plication. We use disposable income as in most cross-national comparisons41.
Our method compares societies having equivalent absolute poverty lines. In
order to identify a cross-national comparable poor household we construct an
absolute poverty line for Germany and Great Britain by applying Purchase
Power Parity (PPP) to the 1992 poverty line of the United States.42

41Disposable income deduces taxes from money income.
42This is standard for cross-national poverty analysis but it need not be an ideal cross-

national transformation of the real needs of the poor for each country because PPP takes
into account all the goods and services produced in each country rather than those that
are relevant for this speci�c population. Further, certain needs may have a cultural basis.
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7.2 Data

Our analysis is based on longitudinal household survey data from the Cross-
National Equivalent File (CNEF).43 This data set is particularly well suited
for our purpose since its variables are cross-nationally comparable. The
CNEF contains panel data for �ve countries and we use information for
three of them: Germany, Great Britain, and the United States.44 For Ger-
many, the CNEF is constructed based on the German Socio-Economic Panel
(GSOEP). The GSOEP is a longitudinal data set that started in 1984 with
a sample of 6,000 households living in the former Federal Republic of Ger-
many (Western Germany). After reuni�cation and starting in 1992 families
from Eastern Germany were included to provide a nationally representative
sample of uni�ed Germany. To avoid data issues associated to this change
we consider GSOEP data from 1992 to 2001. For Great Britain, the CNEF
uses the British Household Panel Survey (BHPS). The BHPS began in au-
tumn 1991 with a sample of 5,509 households selected based on postal code
of residence. The resulting sample is representative of the households with
postal code in England.45 For the United States, the CNEF uses the PSID
data as in the previous section.46 The data from both the BHPS and the
PSID spans from 1991 to 2000.
The PPP data used to convert the U.S. poverty line for Germany and

Great Britain is from the World Bank. As in our previous application, the
issues about the possibility of an estimation bias that resulting from attri-
tion need to be addressed. Rendtel et al. [2004] conclude that there is no
signi�cant representative bias associated to attrition in the BHPS and the
GSOEP �les once the appropriate weights are taken into account. In the ap-
pendix we asses the importance of dynamic attrition for our estimates. We

43Currently the CNEF is administered by Cornell University.
44The other two countries in CNEF are Canada and Australia. Canada has a six year

rotating sample design and Australian data is available only for the years 2001-2004. Thus
the time span covered by this data is shorter than we need in order to compute the poverty
dynamics distribution. Further, the data for Australia does not include the nineties.
45Additional samples of 1,500 households in each of Scotland and Wales were added to

the main sample in 1999. In 2001 a sample of 2,000 households was added in Northern
Ireland. This work does not include these data.
46In contrast to the PSID, which since 1997 the PSID has collected data every other

year, GSOEP and BHPS collect information annually. Also, while PSID interviews the
head of household, the other two panel surveys interview all household members aged 16
and older.
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conclude that for the case of Great Britain there is no signi�cant bias, but
for Germany we �nd some evidence suggesting the opposite. We argue that
the biases introduced by selective attrition in the GSOEP are predictable
and play a minor role in our rankings.

7.3 Ranking Germany, Great Britain and the United
States

7.3.1 Headcount Ratio

The following Table summarizes the sample estimates of the poverty dynam-
ics distribution for each country when we the headcount ratio is used as the
underlying poverty status.

Table 6: Poverty Dynamics for Germany, Great Britain and the U.S.
(Headcount Ratio)

Table 6a: GermanybfGer(i; j) Non Poor 97-01 (j = 0) Poor 97-01 (j = 1) Total
Non Poor 92-96 (i = 0) 0:876 0:029 0:905
Poor 92-96 (i = 1) 0:055 0:040 0:095

Total 0:931 0:069 1:000

Table 6b: Great BritainbfG:B:(i; j) Non Poor 96-00 (j = 0) Poor 96-00 (j = 1) Total
Non Poor 91-95 (i = 0) 0:937 0:017 0:954
Poor 91-95 (i = 1) 0:034 0:013 0:046

Total 0:971 0:029 1:000

Table 6c: United StatesbfU:S:(i; j) Non Poor 96-00 (j = 0) Poor 96-00 (j = 1) Total
Non Poor 91-95 (i = 0) 0:884 0:022 0:906
Poor 91-95 (i = 1) 0:058 0:036 0:094

Total 0:941 0:059 1:000
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The level of poverty in Great Britain is lower than in both other countries
at each point in time. In addition, the share of those initially poor who
exit poverty is 72% compared to 59% and 62% for Germany and the U.S.
respectively. Comparing Germany and the U.S. is also telling. While they
present similar levels of initial poverty (9:4% versus 9:5%), the U.S. has more
poverty destruction (5:8% versus 5:5%) and less poverty creation (2:2% versus
2:9%).47

Table 6 uses Proposition 1 to compare the poverty dynamics for each pair
of countries. To establish the statistical signi�cance of these comparisons we
use the method described in the previous section. We conclude that the
inferences fGB � fUS, fGB � fGer and fUS � fGer hold at the 1% level of
signi�cance.48.

Table 7: Comparing Great Britain, Germany and the U.S. using the
Headcount Ratio

Parameters G.B. Ger U.S. G.B.�U.S. G.B.�Ger U.S.�Gerbf(0; 0) 0:937 0:876 0:884 0:053 0:061 0:008bf(0; 0) + bf(1; 0) 0:971 0:931 0:941 0:030 0:040 0:010bf(0; 0) + bf(1; 0) + bf(0; 1) 0:987 0:960 0:964 0:023 0:027 0:004

In sum, for the headcount ratio, we �nd that during the poverty dynamics
of these countries are ranked by our criterion as follows:

fGB � fUS � fGed:

7.3.2 Poverty Gap

We extend the previous international comparison by using the poverty gap as
the underlying static measure and the linear multi-period deprivation mea-
sure, as in section 5.3.1.

47The estimate of bf for United States is slightly di¤erent in Tables 2 and 3 as the poverty
rate was anchored using the 1992 PPP o�cial poverty line for United States international
comparison as opposed to the 1980 CPS poverty rate anchor used previously.
48The corresponding Wald statistic for the hypothesis that Britain is preferred over the

U.S. is greater than the critical value (W = 409:23 > CV ). So is the one for "Britain
is preferred over Germany (W = 406:95 > CV ) and the hypothesis that U.S. dominates
Germany (W = 85:6 > CV ).
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Table 9: Comparing Great Britain, Germany and the U.S. using the
Poverty Gap

Table 8a: Parametersb�1 b�2 bL bG b�1+b�2
2

bL+ bG
Germany 0:019 0:019 0:011 0:010 0:019 0:022
Great Britain 0:009 0:009 0:006 0:006 0:009 0:013
United States 0:027 0:017 0:007 0:017 0:022 0:024

Table 8b: Inequalities

Ger G.B. U.S. G.B.�U.S. G.B.�Ger U.S.�Gerb�2 0:019 0:009 0:017 �0:008 �0:010 �0:002b�1 � bG 0:009 0:003 0:010 �0:007 �0:006 0:001b�1 + bL 0:030 0:015 0:034 �0:019 �0:015 0:004

Using the Poverty Gap as a measure of deprivation Great Britain contin-
ues to dominate the other two countries49. However, in this case Germany
and the U.S. cannot be ranked. Put di¤erently, the resulting ranking be-
tween Germany and the U.S. now depends on the value of the parameters �
and , i.e., the weights in the social welfare function of poverty in�ows and
out�ows relative to the weight of poverty stocks. Indeed, Germany has lower
a average poverty rate than the U.S., 0:019 compared to 0:022. On the other
hand, the U.S. has more poverty destruction G, 0:017 compared to 0:010,
and less poverty creation L, 0:007 compared to 0:011. It follows that if the
parameters � and  are high enough, so that the importance of poverty �ows
relative to poverty stocks is high, the United States will rank better and,
conversely, lower weights on �ows relative to stocks will favor Germany over
the U.S. in the comparison.

7.4 Discussion: Stocks and Flows, Losses and Gains

We use the cross-national comparisons above to illustrate some of the proper-
ties of our measures of poverty dynamics. We start by observing that, among

49As before, we derive the variance-covariance matrix directly from the parameters esti-
mated in the sample for each country, bdit and bdit+1, and a Wald test with three degrees
of freedom allow us to reject the null hypothesis in favor of the alternative that Great
Britain is prefered over Germany and the United States at a 1% signi�cance level.
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the three countries considered, the U.S. is the one that experienced highest
poverty reduction during the decade, while Great Britain is the country with
lowest poverty reduction. This holds using either the headcount ratio or the
poverty gap. For example, from table n it is we see that the United States re-
duced poverty in 3.6 percentage points (from 9.4% to 5.8%), Germany by 2.6
percentage points (from 9.5% to 6.9%) and, Great Britain reduced poverty
in only 1.7% percentage points (from 4.7% to 3.0%).
By contrast, our criterion ranks Great Britain �rst regardless of the

poverty measure employed. The reason for he discrepancy between our rank-
ing and the one induced by �poverty reduction�is simple. Our measures of
poverty dynamics give weight to both poverty stocks and poverty �ows and,
the weight of �ows relative to stocks is bounded by the monotonicity axiom.
In particular, the average poverty rates across the two time windows consid-
ered for Great Britain are substantially lower than the ones of the other two
countries. For example, using the headcount ratio (Table 6), Great Britain�s
average poverty was 3.9%, while the same numbers for the Germany and the
United States were 8.2% and 7.6%, respectively. Similarly, using the poverty
gap Great Britain�s poverty is 0.09 less than half of the same number for
Germany (0.019) and the United States (0.022).
A valid question is then to ask: Given the numbers obtained from our

analysis, what would it take for a measure of poverty dynamics to produce
rankings aligned with the �poverty reduction�ranking as opposed to our cri-
terion? In concrete, what would it take to rank the U.S. poverty dynamics as
�preferable�to Great Britain�s one? It would require measures that violate
two of our axioms. First, for changes in poverty to outweigh stocks, we would
need to give up monotonicity. At the individual level this would imply that
changes in the welfare attribute have potentially larger welfare implications
than absolute levels (e.g. the trajectory of someone who exits poverty could
be associated with higher well-being than the one of someone who is never
poor). We obviously do not oppose to the idea that changes in consump-
tion or income are carriers of utility. This is actually incorporated by our
measures. However, it might be hard to argue that the e¤ect of income or
consumption changes on well-being outweigh the impact of absolute levels,
especially at low levels of income and consumption. Indeed, while behavioral
economics supports the importance of changes, there is a robust relation-
ship between subjective well-being measures (a correlate of well-being) and
income levels as traditionally assumed.
Yet, giving up monotonicity would not be enough rank the poverty dy-

44



namics of the United States over Great Britain�s. Indeed, suppose we fully
ignore poverty levels and focus exclusively on �ows. From tables we see that,
while poverty creation is lower in Great Britain than in the United States,
poverty destruction is higher in the
United States. Thus, the ranking reversal would also require dropping

the loss aversion axiom (at least partially).
Finally, we observe that the criterion derived from our measures produces

a clear ranking between the U.S. and Germany when we use the headcount
ratio. However, if the underlying static measure is the poverty gap, there
is no clear ranking between these two countries. Observe that the poverty
�ows of the U.S. dominate those of Germany for either measure. From table
n, we have that the share of individuals who exit poverty during the decade
is 5.9% for the U.S. versus 5.5% in Germany. The share of the sample
entering poverty is 2.2% in the U.S. and 2.8% in Germany. Similarly, using
the poverty gap (Table n), poverty destruction is higher in the U.S. than
Germany (0.017 versus 0.010), while poverty creation is lower in the U.S. than
in Germany (0.011 versus 0.007). On the other hand, the ranking of poverty
stocks depends on the static poverty measure used. The U.S. has lower
average poverty rate than Germany using the headcount ratio (7.6% versus
8.2%) but the opposite is true using the poverty gap (0.019 for Germany
versus 0.022 for the U.S.).50 Hence, with the poverty gap, the subset of
measures satisfying our axioms that weigh heavily stocks over �ows rank
Germany over U.S. Conversely, those that emphasize �ows over stock put
the U.S. on top.

8 Conclusion

We have provided a method to evaluate income dynamics focusing on poverty
levels, in�ows and out�ows. The ranking based on our method di¤ers from
the ordering obtained in the social mobility literature. First, we focus on
stocks and �ows of poverty as opposed to transitions across all the possible
categories in the distribution of income or well-being in society. Second,
our criterion presumes a negative evaluation of downward mobility -mobility
into poverty- and a positive evaluation of upward mobility -mobility out of
poverty. In contrast, both downward and upward mobility contribute to
higher social mobility.

50This suggests that a typical poor in the U.S. is poorer than a typical poor in Germany.
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We used the method to compare and evaluate poverty dynamics across
time and space. Using data for the United States we �nd that the poverty
dynamics of the 1990s dominates the one of 1980s. Both decades exhibit
similar in�ows into poverty but the 1990s have considerably more out�ows.
This is in line with �ndings of the impact of the Welfare Reform. Interest-
ingly, a number social mobility measures deliver the opposite ordering. If we
hold the view that the conditions that shape the evolution of poverty were
signi�cantly improved by the reform, as argued by most of the literature (e.g.
Blank [2002], Ellwood [2001]), this suggests that our method provides a more
accurate account of poverty dynamics than existing measures.
Our second application compared poverty dynamics across three industri-

alized countries during the 1990s. We ranked Great Britain above the United
States, followed by Germany. A tentative explanation is that, during this pe-
riod, Great Britain had relatively good labor market opportunities for the
poor and social programs to counteract poverty triggers (Hills and Waldfogel
[2004]). Again, orderings based on social mobility yield a di¤erent ranking
with the United States �rst, followed by Great Britain, and Germany comes
in last.
We focused on measures satisfying axioms that we believe to be appealing

but are certainly restrictive. We view these axioms as a natural benchmark
that allows for a parsimonious characterization of a ranking over distribu-
tions of streams of welfare attributes, and facilitates comparisons with those
singled out by social mobility. At the same time, principles that highlight
other dimensions of income dynamics -e.g. the income growth rate of poor
individuals rather than changes in deprivation levels- can o¤er important in-
sights. Analyzing the robustness of the rankings produced by our measures as
we vary the underlying static deprivation scale also deserves more attention.
Expanding the set of applications is an important step for future research.
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A Proofs

A.1 Representation

Theorem 1 is an immediate consequence of Lemmas 1 and 2 in the main
text. We provide a proof these lemmas below. By axiom (SC), for any
multi-period deprivation measure q : Y T ! R there exists a static depri-
vation index �z and a monotonic function M : �z(Y )

T ! [0; 1] such that
q(y) = M(�z(y1); :::; �z(yT )). We write q[M; �z] to designate a multi-period
deprivation measure that satis�es these axioms for M and �z.

A.1.1 Proof of Lemma 1

The proof relies on two lemmas. The �rst one shows that measures satisfy-
ing (SF ) allow for representation with two separate components, one that
depends only on levels of deprivation regardless of there sequencing along
a trajectory, and the other one that depends exclusively on changes in de-
privation over time. The second result uses the (TD) axiom to show that
measures satisfy a time-separability property.

Lemma 4 If q[M; �z] satis�es axiom (SF ) then there exist S : [0; 1] ! R,
and � : U ! R such that

M(d1; :::; dT ) = S (�(d)) + �(d2 � d1; :::; dT � dT�1);

where � : DT ! [0; 1] is such that �(y) = �(�z(y1); :::; �z(yT )).
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Proof. Fix M and �z. To establish the Lemma we start with a simple
observation. Let � : Y T ! [0; 1] be the map that satis�es axiom (SF ). By
the (SC) axiom we must have that �(y) = �(�z(y1); :::; �z(yT )) for some map
� : DT ! [0; 1]. Since, � is strictly increasing in an argument yt if yt < z
then � is strictly increasing in all of its arguments. Now, consider the map
B : DT ! [0; 1] � U de�ned by B(d1; :::; dT ) = (�(d1; :::; dT ); w(d1; :::; dT ))
where � is the map de�ned above and w(d1; :::; dT ) = (d2�d1; :::; dT �dT�1).
Since � is strictly increasing, B is a bijection. Thus, there exists NM :
[0; 1]� U ! [0; 1] such that

M(d1; :::; dT ) = NM(�(d1; :::; dT ); w(d1; :::; dT )): (9)

for all (d1; :::; dT ). Using (9), we can rewrite the condition (SF2) of axiom
(SF) in terms of �. In particular, q[M; �z] satis�es (SF2) if and only if for
each �; � 0 2 [0; 1] and w; ew 2 U we have that

NM(�; w) � NM(� 0; w) =) NM(�; ew) � NM(� 0; ew);
a standard additive separability condition. It follows that there exist S and
� such that NM(�; w) = S(�) + �(w):

Lemma 5 If q satis�es axiom (TD) then there exist a collection of functions
fqtgT�1t=1 with qt : Y 2 ! R (unique up to a common a¢ ne transformation)

such that q(y) =
XT�1

t=1
qt(yt;yt+1) for any y 2 Y T .

Proof. Let h : Y T ! Y 2(T�1) be the map that assigns to each income stream
y = (y1; :::; yT ) the vector h(y) = ((y1; y2); (y2; y3); :::; (yT�1; yT )) of ordered
pairs corresponding to consecutive time periods. Note that h is injective and
its image is H = fh = (h1; :::; hT�1) 2 Y 2(T�1)jht = (ht;1; ht;2); ht;2 = ht+1;1g:
In particular, h : Y T ! H is a bijection. Denote by < the ranking on Y T

associated to q : y0 < y i¤ q(y) � q(y0). This order induces an order on H:
h(y) <H h(y0) i¤ y0 < y. We establish the lemma by showing that axiom
(TD) induces a standard additive separability condition on <H .
Indeed, the (TD) axiom on < implies that <H satis�es the following

property: For any non-empty time interval A and h; l;k 2 H such that we
have that

(kA;h�A) <H (kA; l�A), (k0A;h�A) <H (k0A; l�A)
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for any k0A 2 H. It follows from Arrow (1959) that there exist a collection of
functions fqtgT�1t=1 (unique up to a common a¢ ne transformation) such that
if h =(h1; :::; hT�1) then

qH(h) =
T�1X
t=1

qt(ht)

represents <H . Since h is a bijection, we conclude that

q(y) � qH(h(y)) =
T�1X
t=1

qt(yt;yt+1)

represents <.

Proof of Lemma 1.
We use the notation introduced in the proof of Lemma 4. Let q[M; �z]

be a multi-period deprivation measure that satis�es axioms (SC) and (TD).
From Lemma 4, there exist maps S and � such that M(d) = S(�(d)) +
�(w(d)), where �(�) is a strictly increasing map that depends exclusively
on the distribution of deprivation levels associated to d (in particular, it
is invariant to permutations of the components of vector d) and w(d) =
(d2 � d1; :::; dT � dT�1). Combining this with Lemma 5 it follows that there
exist a collection of functions fstgT�1t=1 and a collection f�tgT�1t=1 such that that

S(�(d)) =
XT�1

t=1
st(dt; dt+1) and �(w(d)) =

XT�1

t=1
�t(dt+1 � dt).

To establish the lemma we show that st(dt; dt+1) is additively separable.

Indeed, if the latter holds then S(�(d)) =
XT

t=1
emt(dt) for a collection of

functions fstgT�1t=1 . Now, since S(�(d)) depends exclusively on the distribu-
tion of deprivation levels associated to d, we must have that emt = em, i.e., it
is independent of t.
We �rst show that s1 and sT�1 -the "extremes", must be separable and

then conclude by induction. Consider the path d =(d; d2; :::dT�1; d0) and
d�=(d

0; d2; :::dT�1; d). Thus, d� is identical to d except for the fact that
the �rst and last component have been permuted. Since, �(�) is invariant
to permutations we must have that S(�(d)) = S(�(d�)), which translates
to s1(d; d2) � s1(d0; d2) = sT�1(dT�1; d) � sT�1(dT�1; d0). Since this equality
holds for any d and d0 regardless of the values of d2 and dT , we conclude that
the right hand side is independent of d2 and the left hand side is independent
of dT�1. It follows that s1 and sT�1 are additively separable. Suppose that st
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is additively separable for all t � k�1 with k > 1. That is, st(d; d0) = at(d)+
bt(d

0). We claim that sk is additively separable. Towards that end consider
an arbitrary path d =(d1; :::; dT ) and dk� which is identical to d except for the
fact that the the �rst and the kth component have been permuted. As before,
we must have that S(�(d)) = S(�(dk�)) from which, using the induction
hypothesis we get sk(d1; dk+1)� sk(dk; dk+1) = �a1(dk)+ a1(d1)+ bk�1(dk)�
bk�1(d1). Thus, sk(d1; dk+1) � sk(dk; dk+1) is independent of dk+1 and this
holds for any d1 and dk. It follows that sk is additively separable as desired.

We conclude that M(d) = 1
T

XT

t=1
m(dt) +

XT�1

t=1
�t(dt+1 � dt) for some

monotonic function m and a collection of functions f�tgT�1t=1 :
Finally, observe that the representation is unique up to an a¢ ne a com-

mon a¢ ne transformation for m and the �t functions, which allows us to im-
pose the normalizationM(1; :::; 1) = m(1)+

PT
t=2 �t(0) = 1 andM(0; :::; 0) =

m(0) +
PT

t=2 �t(0) = 0. It follows that m(1) � m(0) = 1. Without loss
of generality we can always normalize m(0) = �t(0) = 0 (as M(d) =
1
T

XT

t=1
m(dt)�m(0) +

XT�1

t=1
�t(dt+1 � dt)� �t(0)). �

A.1.2 Proof of Lemma 2

We establish the lemma for the case �z(Y ) = [0; 1]. The case in which
�z(Y ) = f0; 1g.(poverty indicator) is simpler and omitted:

Lemma 6 If q[M; �z] satis�es axioms (TD), (SF ), and (CN) then the rep-
resentation (5) must have �1 = �T�1.

Proof. We provide a detailed argument for T odd. The argument for T even
is very similar and, thus, omitted. The result is established by comparing
formula (5) for a family of paths that, given axiom (CN), are associated with
the same multi-period deprivation. Indeed, �x any � > 0 such that (T�1)� �
1. We consider two paths d� and bd� that induce the same distributions over
deprivation levels and over deprivation di¤erences . The path d� is de�ned
by d�1 = (T � 1)�; d�2 = 0, and d�k+1 = d�k + � for k � 2. That is, d� described
a sharp decrease of (T � 1)� in deprivation from period 1 to period 2 and a
constant increase of � in per-period- deprivation thereafter. The path bd� is
given by bd�1 = �; bd�k = bd�k�1 + � for k 2 f1; :::; T � 1g, and bd�T = 0. Note thatbd�T�1 = (T � 1)�, so bd� describes a path that increases � each period from
t = 1 to t = T � 1 and falls sharply in the last period. By construction, both
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paths have the same "support" of deprivation levels f0; �; :::; (T � 1)�g, and
deprivation di¤erences satisfy d�2� d�1 = bd�T � bd�T�1 = �(T � 1)�, d�T � d�T�1 =bd�2� bd�1 = �, and d�t�d�t�1 = bd�t� bd�t�1 for t 2 f3; :::; T�1g. By the (CN) axiom,
since d� and bd� induce the same distribution over deprivation levels and over
deprivation di¤erences, M(d�) =M(bd�). Using (5) and letting x = (T � 1)�,
this translates into

�1(�x)� �T�1(�x) = �T�1
�

x

T � 1

�
� �1

�
x

T � 1

�
: (10)

Since � is any arbitrary positive number such that (T � 1)� � 1, 10 holds for
all x 2 (0; 1].
A similar equation obtains if we consider two di¤erent paths a� and ba�

that also induce the same distributions over levels and di¤erences. Indeed,
let a�1 = 0, a

�
2 = (T � 1)�, and a�k = a�k�1 � � (a� describes a sharp increase

from period 1 to period 2 and steady decrease thereafter); and ba�1 = (T �2)�;ba�k = ba�k�1� � for k 2 f2; :::; T � 1g, and ba�T = (T � 1)� (ba� describes a steady
decrease from period 1 to period T � 1 and sharp increase at T ). By axiom
(CN), since M(a�) =M(ba�), using (5) we get

�1(x
0)� �T�1(x0) = �1

�
�x0
T � 1

�
� �T�1

�
�x0
T � 1

�
(11)

for any x0 2 (0; 1]. Combining (10) with (11) for x0 = x
T�1 we get �1(�x)�

�T�1(�x) = �1

�
�x

(T�1)2

�
� �T�1

�
�x

(T�1)2

�
. Iterating this formula n times

yields

�1(�x)� �T�1(�x) = �1
�

�x
(T � 1)2n

�
� �T�1

�
�x

(T � 1)2n

�
:

Letting n ! 1 and invoking the continuity of M (and thus �1 and �T�1)
gives �1(�x) � �T�1(�x) = �1 (0) � �T�1(0) = 0. Similarly, combining
(11) with (10) for x = x0

T�1 and repeating the same argument above gives
�1(x

0)��T�1(x0) = 0. In sum, �1(x) = �T�1(x) for all x 2 [�1; 1] as desired:

Proof of Lemma 2. Fix x 2 (0; 1]. To show that �t = � for all t 2
f1; :::; T � 1g it is su¢ cient to establish that for each x > 0 that there exists
two numbers bx and cx such that �t(x) = bx and �t(�x) = cx for all t.
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Since x is �xed throughout the proof, to ease notation, let bt � �t(x) and
ct � �t(�x). Our aim is to show that the set of 2(T � 1) variables de�ned
by the bt�s and ct�s is determined by two free parameters.
We start by invoking lemma 6, from which

b1 = bT�1 and c1 = cT�1. (12)

Now, consider two sets of (individual) deprivation paths �I and �R . The
�rst set, �I , consists of (T �2) "poverty-increase blip" paths, indexed by j 2
f2; :::; T �1g. Each path dj 2 �I is de�ned by dt = 0 for all t 6= j and dt = x
for t = j, i.e. a path that enters poverty reaching a deprivation level x at
time t = j and exits poverty thereafter. By construction, each of these paths
induces the same distribution on the set of deprivation levels (mass 1=T on
x and 1� 1=T on 0) and the same distribution on deprivation changes (mass
1=T �1 on �x and x respectively, and 1�2=T �1 on 0). Thus, by the (CN)
axiom any path in �I has the same deprivation level. We can summarize
this by writing M(dj) = M(dj+1) for all dj 2 �I , j = f2; :::; T � 2g. Using
the formula 5 the previous yields a system of (T � 3) linearly independent
equations of the form

bj + cj+1 = bj+1 + cj+2: (13)

The second set of paths is �R, which consists of (T�2) "poverty-reduction
blip" paths, also indexed by j 2 f2; :::; T � 1g. Each path dj 2 �R is de�ned
by dt = 1 for all t 6= j and dt = 1 � x for t = j, i.e. a path associated
with a single deprivation reduction of magnitude x at time t = j. As before,
by construction, all paths in �R induce the same distribution on deprivation
levels and changes. It follows that M(dj) = M(dj+1) for all dj 2 �R,
j = f2; :::; T � 2g. Using formula 5 we now obtain the set of (T � 3) linearly
independent equations

cj + bj+1 = cj+1 + bj+2: (14)

The system de�ned by (12), (13) and (14) de�nes 2(T � 2) linearly indepen-
dent equations. Thus, there are at most 2 degrees of freedom in the 2(T � 1)
variables de�ned by the b�s and the c�s. Further, it is immediate that bj = bx
for all j and cj = cx for all j is two-parameter solution of this system for any
values of bx and cx. The proof is complete. �
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A.2 multi-period Poverty Orders

Lemma 3 Suppose that M satis�es (6) for the pair (m;�). Then

Q[M ](f) =

Z 1

0

m(x)f(x)dx+

Z 1

�1
�(v)hf (v)dv:

Proof. If M satis�es (6) then

Q[M ](f) =
1

T

TX
t=1

Z
DT

m(xt)f(x)dx+
1

T

T�1X
t=1

Z
DT

�(xt+1 � xt)f(x)dx:

Integrating over all periods other than t, we get
R
DT f(x)m(xt)dx =

R
D
ft(x)m(x)dx.

Similarly, integrating over all periods other than t and t� 1 we getZ
DT

f(x)�(xt+1�xt)dx =
Z
D2

ft;t+1(x; x)�(x
0�x)dxdx0 =

Z
U

�(v)ht;t+1[f ](v)dv:

Combining the previous,

Q[M ](f) =
1

T

TX
t=1

Z
D

ft(x)m(x)dx+
1

T

TX
t=1

Z
U

�(v)ht;t+1[f ](v)dv

=

Z
D

"
m(x)

1

T

TX
t=1

ft(x)

#
dx+

Z
U

"
�(v)

1

T

T�1X
t=1

ht;t+1[f ](v)

#
dv

=

Z
D

m(x)f(x)dx+

Z
U

�(v)hf (v)dv;

as desired.
Recall that, given a poverty dynamics f , Hf (v) =

R v
�1 hf (u)du.

A.3 Proof of Theorem 2

Theorem 2. Suppose that D = f0; 1g (binary deprivation). Then poverty
dynamics fA dominates poverty dynamics fB if and only if

f
A
(1) + �LhfA(1) + �GhfB(�1) � f

B
(1) + �LhfB(1) + �GhfB(�1)

for each (�L; �G) 2 ET .
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Proof. If D = f0; 1g then the set of deprivation changes is U = f�1; 0; 1g.
Thus a deprivation functionM is entirely determined by two parameters, �(1)
and �(�1). Indeed, in this casem is entirely determined by the normalization
m(0) = 0 and m(1) = 1. Note also that since �(0) = 0, �(1) and �(�1) are
the only free parameters. In this case, K[M ](fA; fB) = �f + �(1)�h(1) +
�(�1)�h(�1), where �f = fA(1)� fB(1) and �h(v) = hfA(v)� hfB(v) for
v 2 f�1; 1g.
To characterize the constraints on �(1) and �(�1), observe that in this

case the (LA) property translates into �(1) � �(�1) (poverty in�ows yields
more deprivation than a poverty out�ow). We just need to check the monotonic-
ity restrictions for d0 = 1 and d = 0 for d+; d� 2 f0; 1g. Conditions (M1)
and (M2) yield the same constraints: (M1�) �(1) � 1 and (M2�) �(�1) � �1.
Condition (M3) yields two additional constraints: (M3�) j�(1)� �(�1)j � 1
and (M3�) j�(1) + �(�1)j � 1. Note that
From the previous, optimization problem (DOCP) becomes

K(fA; fB) � max
�(1);�(�1)

�f + �(1)�h(1) + �(�1)�h(�1)

subject to

(LA) �(1) � �(�1)
(M1�) �(1) � 1
(M2�) �(�1) � �1

and, if T � 3
(M3�) j�(1)� �(�1)j � 1
(M3�) j�(1) + �(�1)j � 1:

This is a linear program and the set ET is the simply set of extreme points
of the polytope de�ned by the linear constraints above (The set is di¤erent
for T = 2 and T � 3 as constraints (M3�) and (M3�) apply only to T � 3.)
Since the solution the linear program is an extreme point of this set, the
result follows.

A.4 Proof of Theorem 3

The Theorem follows from the following Lemmata:

Lemma 7 Let �(v) � �(v) � �(�v). Suppose that m� and � are di¤eren-
tiable almost everywhere: The pair (m;�) satis�es monotonicity constraints
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(M1)-(M2) and � satis�es the (LA) property if and only if (LA) �0(v) � 0
and the following conditions are satis�ed:
(M1�) �0(v)� �0(�v) � am(v) � min

x2[0;1�v]
m0(x);

(M2�) �0(�v) � �m(v) � min
x2[v;1]

m0(x):

Proof. It is immediate that the (LA) property can be restated in di¤erential
terms as �0(v) � 0 for all v � 0. Observe that �0(v) = �0(v) + �0(�v).
A di¤erential version of the monotonicity condition (M1) is �0(d+ � d) �

m0(d) for all d; d+ 2 [0; 1]. This can be broken down into two parts: for each
u � 0 we have that (M1�) �0(u) � m0(x) for each x 2 [0; 1 � u], and (M2�)
�0(�u) � m0(x) for each x 2 [u; 1]. Equivalently, (M1�) �0(v) � �0(�v) �
am(v) � min

x2[0;1�v]
m0(x); and (M2�) �0(�v) � �m(v) � min

x2[v;1]
m0(x).

Now, condition (M2) is ��0(d+ � d) � m0(d+) for all d; d+ 2 [0; 1]. This
condition can be expressed as: for each u � 0, (i) ��0(u) � m0(x) for x 2
[u; 1] and (ii) ��0(�u) � m0(x) for x 2 [0; 1�u]. Observing that ��0(�u) =
��0(u)+�(u), condition (ii) is implied by (M1�) and (LA). Similarly, condition
(i) is implied by (M2�) and (LA).

Lemma 8 Let r1(x) and r2(x) be the maps de�ned in the main text. If T = 2
the value of (DOCPm) is given by

K[m](fA; fB) =

Z 1

0

m(x)�f(x)dx+

Z 1

0

[�m(x)r1(x) + am(x)r2(x)] dx

where am(x) � minv2[0;1�x]m0(v) and �m(x) = minv2[x;1]m0(v).

Proof. Using Lemma 3 we have that

K[M(m;�)](fA; fB) =

Z 1

0

m(x)�f(x)dx+

Z 1

�1
�(v)�h(v)dv, (15)

where and �h(v) = hfA(v)� hfB(v): Since fA and fB are �xed, throughout
the rest of the proof we omit the dependency of�h and�H on fA and fB for
ease of notation. Recall thatK[m](fA; fB) � sup�2�(m)K[M(m;�)](fA; fB),
where�(m) is set of �ow functions such that � andm are consistent with The-
orem 1. That is, � 2 �(m) if satis�es the (LA) property and the pair (m;�)
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satis�es the monotonicity restrictions (M1)-(M2). Letting K�[m](f
A; fB) �

sup�2�(m)
R 1
�1 �(v)�h(v)dv, from (15) we get

K[M(m;�)](fA; fB) =

Z 1

0

m(x)�f(x)dx+K�[m](f
A; fB). (16)

Now, for D = [0; 1] any deprivation function M is continuous and increasing
in each of its arguments. Thus, it is Frechet-di¤erentiable almost everywhere
(Lebesgue) on D. It follows that ifM =M(m;�), m and � are di¤erentiable
a.e. as well.
Let �H(v) = HfA(v)�HfB(v). Integration by parts, yieldsZ 1

�1
�(v)�h(v)dv = ��(�1)�H(�1)�

Z 1

�1
�0(v)�H(v)dv

where we used�H(1) = HfA(1)�HfB(1) = 0 (asHf (1) = 1) and�H(�1) =
0: Using �(v) � �(v)� �(�v),Z 1

�1
�0(v)�H(v)dv =

Z 1

0

�0(�v)�H(�v)dv +
Z 1

0

�0(v)�H(v)dv

=

Z 1

0

�0(�v)�H(�v)dv +
Z 1

0

[�0(v)� �0(�v)]�H(v)dv

= �
Z 1

0

�0(�v)� bH(v)dv + Z 1

0

�0(v)�H(v)dv

where � bH(v) � �H(v)��H(�v) = R v�v�h(u)du.
As shown by Lemma 7, the constraints (LA), (M1�) and (M2�) depend

on �0 and �0 alone and so does the above expression. Let 1(v) � �0(v) and
2(v) � �0(�v). Combining the previous,

K�[m](f
A; fB) = sup

1;2

�
Z 1

0

1(v)�H(v)dv +

Z 1

0

2(v)� bH(v)dv
subject to

(LA) 1(v) � 0 for all v � 0
(M1�) 1(v)� 2(v) � am(v) for all v � 0
(M2�) 2(v) � �m(v) for all v � 0:
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The solution of this program (which is linear in 1 and 2) has 
�
2(v) = �m(v)

for � bH(v) � 0 and �2(v) = �1(v)� am(v) if � bH(v) � 0: Letting �(v) = 1 if
� bH(v) � 0 and �(v) = 0 otherwise, the previous translates into

�2 = ��m + (1� �)(�1 � am): (17)

Using this to eliminate �2 in the objective, after some manipulation it follows
that

�1 = "(am + �m); (18)

where "(v) = 1 if (1 � �(v))� bH(v) � �H(v) � 0, and "(v) = 0 otherwise.
Using the solution (17) and (18) to evaluate K�[m](f

A; fB), we �nd that the
integrand that is linear in both am and �m. After some manipulation we get

K�[m](f
A; fB) =

Z 1

0

[�m(x)r1(x) + am(x)r2(x)] dx

as desired.

Lemma 9 Let�FA;B(x) � FA�FB, lA;B1 (u) � maxu2[0;1] 1
1�u

R 1�u
0

�
rA;B1 (x)��FA;B(x)

�
dx

and lA;B2 (u) � maxu2[0;1] 1
1�u

R 1
u

�
rA;B2 (x)��FA;B(x)

�
dx. Then

K(fA; fB) = max
u2[0;1]

flA;B1 (u); lA;B2 (u);��FA;B(u)g:

Proof. The proof has three steps. Step 1 uses Lemma 8 to show that
K(fA; fB) can be derived as the value of a calculus of variations problem
on the set of distributions on [0; 1], which is denoted �[0;1]. Steps 2 and 3
go on to show that the value of this problem is bounded above and below
by maxu2[0;1]fl1(u); l2(u);�s(u)g:For ease of notation throughout the proof
we use s � F

A � FB and note that s(1) = 0 as F (1) = 1 for any poverty
dynamics f .
For each p.d.f. � 2 �[0;1] consider the functional C(r; s;�) �

R 1
0
(��(x)r1(x) + a�(x)r2(x))dx� �(x)s(x)) dx

with ��(x) = minu2[0;1�x] �(u) and a�(x) = minu2[x;1] �(u).. We observe that
since ��(x); a�(x) � �(x), both of these maps are uniformly bounded byR 1
0
�(x)dx = 1. Note also that jsj � 1 and it�s easy to verify that r1(�)

and r2(�) are uniformly bounded by 2. It follows that C(r; s; �) is uniformly
bounded on �[0;1].
Step 1 : K(fA; fB) = sup�2�[0;1] C(r; s;�).
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From Lemma 8, integrating by parts,

K(fA; fB)[m] = m(1)s(1)�m(0)s(0)�
Z 1

0

m0(x)s(x)dx+

Z 1

0

[�m(x)r1(x) + am(x)r2(x)]

= �
Z 1

0

m0(x)s(x)dx+

Z 1

0

[�m(x)r1(x) + am(x)r2(x)] :

where we used s(1) = 0 and m(0) = 0. From above it follows that

K(fA; fB) = sup
�2�[0;1]

C(r; s;�) (19)

Step 2 : sup�2�([0;1])C(r; s;�) � maxu2[0;1]fl(u);�s(u)g
Consider the p.d.f. �u 2 �[0;1] de�ned by �u(x) = 1=1 � u for x 2

[0; 1� u] and �(x) = 0 for x 2 (1� u; 1]. It is straightforward to verify that
C(r; s;�u) = l1(u). Similarly, if �u(x) = 1=1 � u for x 2 [u; 1] and �(x) = 0
for x 2 [0; u), we have that C(r; s;�u) = l2(u). Finally, if �u is the Dirac
delta distribution -an atom- on point u, we have that C(r; s; �u) = �s(u). It
follows that C� � maxu2[0;1]fl1(u); l2(u);�s(u)g:
Step 3 : sup�2�([0;1])C(r; s;�) � maxu2[0;1]fl1(u); l2(u);�s(u)g.
We show this by solving an optimization problem closely related to (19).

In particular we solve (19) with an additional constraint, namely, we restrict
the feasible set to distributions that "simple", i.e., those that are piece-wise
constant. We next use the fact that any distribution � can be approximated
by a sequence of simple distributions. More precisely, a probability distribu-
tion � is said to be simple if there exists a �nite grid In = fe0; e1; :::; en�1g on
[0; 1] with e0 = 0 � e1 � ::: � en�1 = 1 such that �(x) =

Pn�1
j=0 �j�[ej ;ej+1)(x),

where �E is the characteristic function for E � [0; 1]. (�(�) is constant and
equal to �j on each interval [ej; ej+1).) Note that since � is a probability
distribution, the numbers �j are non-negative and

Pn�1
j=0 �j(ej+1 � ej) = 1.

The set of simple distributions with a �xed grid In is denoted by �(In). We
characterize the value of the related problem

C�(In) = sup
�2�(In)

C(r; s;�): (20)

For a �xed grid, �(In) is a �nite-dimensional space isomorphic to a simplex
in Euclidean space. To see this, for � 2 f1; 2g de�ne rj� �

R ej+1
ej

r�(x)dx and

let sj �
R ej+1
ej

s(x)dx. For each vector � = (�0; ::::; �n�1) 2 Rn let

�(r; s;�) =

n�1X
j=0

rj1�j(�) +

n�1X
j=0

rj2aj(�)�
n�1X
j=0

sj�j (21)
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where �j(�) = mink2f0;::;jg �k and aj(�) = mink2fj;:::;n�1g �k are a "cumulative
minimum" functions. Note that for a simple distribution � =

Pn�1
j=0 �j�[ej ;ej+1)

we have that C(r; s;�) = �(r; s;�) and, thus,

C�(In) = sup
�2Rn

�(r; s;�) (22)

subject to �k � 0 and
n�1X
j=0

�j(ej+1 � ej) = 1:

This multivariate optimization problem can be restated as a linear program.
This is done by introducing the auxiliary variables �j � �j(�) and aj �
aj(�), and the additional linear constraints �j+1 � �j (which derives from
�j(�) = mink2f0;::;jg �k) and, similarly, and aj � �j+1 (which derives from
aj(�) = mink2fj;:::;n�1g �k). Note that the objective (21) is linear in the
vectors of ��s, a�s, and ��s and so are the constraints. The solution of this
linear program is attained by an extreme point of the polytope de�ned by
the constraints. Using this it can be shown that (22) has �� of such that
either (1) ��k =

1
(ej+1�ej) for some k 2 f0; :::; Jg and �

�
j = 0 for all j 6= k; (2)

there exists bj � J such that ��j = 1=J for j � bj and ��j = 0 for j > bj; or else
(3) there exists bj � J such that ��j = 1=J for j � bj and ��j = 0 for j < bj.
We save the reader from details. Evaluating the objective at a point �� that
satis�es condition (1) of the claim above we get

�(r; s;��) = � sk
ek+1 � ek

=
1

ek+1 � ek

Z ek+1

ek

(�s(x))dx � max
u2[0;1]

�s(u).

Similarly, evaluating at point �� that satis�es condition (2) of the claim, it
is straightforward to verify that �(r; s;��) = l1(ebj+1) � maxu2[0;1] l1(u). Fi-
nally, for a point that satis�es (3) we conclude that �(r; s;��) = l2(ebj+1) �
maxu2[0;1] l2(u). We conclude that for any grid In, we have that C�(In) �
maxu2[0;1]fl1(u); l2(u);�s(u)g. Since this bound is independent of In, C(r; s;�) �
maxu2[0;1]fl1(u); l2(u);�s(u)g for any simple distribution �. To complete the
argument it su¢ ces to note that simple distributions are dense in �[0;1]:
any distribution � 2 �[0; 1] can approximated by a sequence �n ! � as
n ! 1 such that each element of the sequence �n is a simple distribu-
tion (See, for example, Theorem 2.4 in Stein and Shakarchi [2005]). Since
C(r; s;�n) is uniformly bounded (as argued above), by dominated conver-
gence, C(r; s;�n) ! C(r; s;�) as �n ! �. Since C(r; s;�n) is bounded
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by maxu2[0;1]fl1(u); l2(u);�s(u)g for all n, we conclude that C(r; s;�) �
maxu2[0;1]fl1(u); l2(u);�s(u)g: This holds for any distribution �, simple or
not. The proof is complete.

A.5 Proof of Proposition 2

Consider the piece-wise linear measure M characterized by parameters �
and . Let ��AB = �A � �B, �L = LA � LB and �G = GA � GB.
Then K(fA; fB)[M ] = 1

T

�
��AB + ��LAB � �GAB

�
, which is linear in

� and : From section 2, the (LA) property holds as long as  + � � 0,
and the monotonicity conditions (M1) and (M2) are j�j � 1 and jj � 1.
Condition (M3), which applies to T � 3, is �0(d+ � d) � �0(d � d�) � 1 for
all d; d+; d� 2 [0; 1] (� di¤erentiable everywhere except at 0). This translates
into j � �j � 1. Constraints (M1)-(M3) de�ne a polytope and, it can be
veri�ed that the set of extreme points of this polytope is precisely ElT . Since
K(fA; fB)[M ] is linear K(fA; fB) = maxM2M lK(fA; fB)[M ] is attained by
one of thr points in ElT .�

B Empirical Applications Appendix

B.1 Dynamic Attrition

If dynamic attrition in our sample is not random then our estimate bf of the
poverty dynamics will be biased. We asses this concern following the proce-
dure suggested by Fitzgerald, Gottschalk and Mo¢ tt (1998). The scope of
our analysis is limited to selection on observables because no proper instru-
ment can be found for testing selection on unobservables.
Consider the parametric selection model.

Pt = Pt�1�+ "t if At = 0 (23)

A�t = Zt� + �t (24)

At =

�
1 if A�t > 0
0 otherwise:

(25)

In equation (23), Pt 2 f0; 1g indicates whether the individual is considered
poor at period t and "t is the error term. We are interested in estimating �,
the proportion of poor population in t�1 that remains poor in period t: Now,
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we only are able to run this regression for the subsample of non-attritors.
Indeed, At takes the value of zero whenever the individual is observed in
both periods and one otherwise. Equation (24) describes a selection model
where A�t is the attrition latent variable, Zt is an auxiliary variable observed
for all units independently of whether they attrite or not (e.g. lagged or
time-invariant variable) and �t stands for the error term.
Selection on observables is present if "t is independent of �t but "t is

not independent of ZtjPt�1. Dependence of "t on ZtjPt�1 means that by
including Zt and Pt�1 together in the �rst regression we should �nd a non-
zero coe¢ cient for Zt. Independence of "t and �t implies that there is no
unobserved variable a¤ecting both the regression and attrition equation.
We develop two empirical tests for selection on observables. First we

evaluate whether observed characteristics among attritors and non-attritors
di¤er. We run a Linear Probability Model (LPM) with At as the dependent
variable, taking value zero for non attritors and one for future attritors. In
this case Zt is a vector including gender, age, education, marriage status,
race and relationship with the head of the household. Finding signi�cant
di¤erences would suggest that attrition is not random, leading to a biased
estimate of � in equation (23). 51. The next table summarizes the estimates
of the LPM.

Linear Probability Model for Future Attrition

51The LPM can also be used to obtain an unbiased estimation of � can be obtained
by weighting the non attritor sample by the normalized inverse selection probabilitiesIn
this case the proper weigh can be obtained from the linear probabiliy model using the

following formula w(Zt; Pt�1) =
h
Pr(At=0=Zt;Pt�1)
Pr(At=0=Pt�1)

i�1
. See, Fitzgerald, Gottschalk and

Mo¢ t (1998).
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U.S. 80s U.S. 90s Germany Great Britain
Intercept .126 .097 .171 .218

(.005) (.004) (.007) (.009)
Male .047 .044 .039 .033

(.005) (.005) (.006) (.007)
Age .002 .003 .004 .003

(.0001) (.0001) (.0001) (.0001)
Years of Education .003 .004 -.002 -.004

(.0006) (.0006) (.001) (.002)
Head of Household -.042 -.041 -.015 .007

(.006) (.006) (.007) (.009)
White -.127 -.127 N/A -.184

(.005) (.005) (.000)
Married -.028 -.052 -.034 -.058

(.006) (.005) (.005) (.009)
Sample Size 21137 25575 19917 14224

Number of Attritors 3103 3953 3361 2630
R2 .036 .038 .041 .044

While each observable variable plays a statistically signi�cant role ex-
plaining future attrition, the general �nding is that observables do not ex-
plain much of the attrition process. R2 is small in every case analyzed here,
suggesting that people with similar characteristics experience di¤erent attri-
tion behavior. This is consistent with what Fitzgerald et. al (1998) �nd for
longer time frame using the PSID. The concrete implication is that estimated
weights are close to one, which in turn suggests that selection on observables
is not a signi�cant source of bias.
The second exercise tests directly whether selective dynamic attrition

biases the estimate of �. Here we require a third observation for each indi-
vidual in order to compare the estimated parameter between the full and the
non-attritors sample. We �rst run equation (23) for the full sample between
periods t and t� 1. Then we repeat the estimation on the restricted sample
of those who do not attrite at t + 1. If attrition present we should observe
di¤erent coe¢ cients. Note that this test also gives us the direction of the
bias.

Pt = Pt�1�+ "t full sample (26)

Pt = Pt�1�
0 + "0t if At+1 = 0 (27)
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If coe¢ cients from equation (26) and (27) remain unchanged we conclude
that the parameter of interest is not biased when the sample is restricted to
those who do not attrite. The next table summarizes the estimation using
the PSID sample. In column 1 of the next table we take t+ 1 as the period
91-95, t as 86-90 and t � 1 as 81-85. In column 2 we de�ne t as the period
91-95.

Testing for Selective Dynamic Attrition in the PSID

Dependent Variable= Pt t = 1986� 1990 t = 1991� 1995
Variable Full Sample Non-Attrite Full Sample Non-Attrite
Intercept .051 .049 .059 .054

(.002) (.002) (.002) (.002)
Pt�1 .568 .562 .586 .583

(.006) (.006) (.006) (.006)
Sample Size 17081 15419 18302 15525

R2 .375 .371 .358 .358

For t = 1986� 1990 the estimated coe¢ cient on Pt�1 for the full sample
is .568, while the same parameter for non-attritors is .562. The small di¤er-
ence suggests that poverty persistence is slightly lower for the non-attriting
sample, however the di¤erence is not statistically signi�cantly di¤erent from
zero. For t = 91 � 95. the estimated coe¢ cients on Pt�1 is .586 and .583
for the full and non-attrite sample. This evidence suggests that at for U.S.
selective attrition does not introduce a signi�cant bias.

The previous analysis requires that we observe at least three periods. In
the case Great Britain we implement the same procedure considering the
window 2001-2004 (in addition to the two windows for the 1990s decade).
For Germany third window is the period 2002-2005.

Testing for Selective Dynamic Attrition in Great Britain and Germany
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Dependent Variable= Pt Great Britain Germany
Variable Full Sample Non-Attrite Full Sample Non-Attrite
Intercept .025 .023 .096 .029

(.002) (.002) (.002) (.002)
Pt�1 .305 .297 .252 .279

(.007) (.008) (.009) (.007)
Sample Size 11140 9716 16122 12382

R2 .13 .14 .11 .03

The previous table suggests that there is no selective attrition for Great
Britain. In contrast, for Germany there is evidence of selective attrition.
However, the data suggests that if anything, our estimation of poverty per-
sistency for Germany on the non-attrite sample is downward bias. This would
imply a lower ranking for Germany than the one inferred from the sample
estimates. Hence, it doesn�t a¤ect the conclusion that Great Britain dom-
inates Germany, and so does the U.S. if we use the headcount ratio as the
underlying poverty status.

B.2 Statistical Inference with Inequality Restrictions

For the case of the Headcount Ratio proposition 1, fA � fB requires three
inequalities to be jointly ful�lled. In our applications we observe the sample
estimates f̂A and f̂B of the poverty dynamics fA and fB. The statistical
inference associated to the joint inequality restrictions is done using a version
of the Wald statistic suggested by Formby et al. (2004) and Kodde and Palm
(1986). Let � 2 R3 be the vector

� =

0@ fA(0; 0)� fB(0; 0)
fA(0; 0) + fA(1; 0)� fB(0; 0)� fB(1; 0)
fA(0; 0) + fA(1; 0) + fA(0; 1)� fB(0; 0)� fB(1; 0)� fB(0; 1))

1A
and observe that the inequalities in Proposition 1 can be expressed as � � 0,
where 0 is the zero vector. Testing the hypothesis H0 : fA = fBversus
H1 : f

A � fB is thus equivalent to H0 : � = 0 versus H1 : � � 0.
Let 
 denote the covariance matrix associated to �. Using the sample

estimate �̂ we compute a Wald statistic from the solution to the minimization
problem

min
2R3

(�̂ � )
�1(�̂ � ): (28)
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Using � to denote the solution, we can compute two Wald estimators

W1 = �̂
0

�1�̂ � (�̂ � �)0
�1(�̂ � �)

W2 = (�̂ � �)0
�1(�̂ � �):

LetW = maxfW1;W2g and w = minfW1;W2g and denote by cv and CV the
lower and upper bounds of the critical value provided by Kodde and Palm
(1986) for the relevant signi�cant level and degrees of freedom. If W > CV
then H0 is rejected. If w < cv then H0 is accepted. Finally if W1 and W2

fall between the cv and CV a Monte Carlo simulation is required to make an
inference.
Solving (28) requires an estimate of covariance matrix 
. Observe that

� = D�0 where

D =

24 0 0 0 1 0 0 0 �1
0 0 1 1 0 0 �1 �1
0 1 1 1 0 �1 �1 �1

35
and � = (fA(1; 1); fA(0; 1); fA(1; 0); fA(0; 0); fB(1; 1); fB(0; 1); fB(1; 0); fB(0; 0)).
In particular, in this case the asymptotic covariances of the parameters are
given by52

Cov(f(i; j); f(k; l)) = � =

� bf(i;j)(1� bf(i;j))
n

if i = k and j = l

� bf(i;j) bf(k;l)
n

else

where n is the sample size. The covariance matrix of � is

� =

�
�A 0
0 �B

�
from which the asymptotic covariance matrix of � is b
 = Db�D0.

For the case of the Poverty Gap we follow a similar procedure, but now
the three inequalities required to rank fA � fB according to ?? are described
by � 2 R3

� =

0@ �B2 � �A2
�B1 �GB � �A1 +GA
�B1 + L

B � �A1 � LA

1A
52See Formby, Smith and Zheng (2004) for a detailed discussion about estimating co-

variance matrices for di¤erent type of transition matrices.
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Again, testing the hypothesis H0 : fA = fB versus H1 : fA � fB is
equivalent to H0 : � = 0 versus H1 : � � 0. Solving (28) requires an
estimate of covariance matrix 
 of �. Observe that � = D�0 where

D =

24 0 �1 0 0 0 1 0 0
�1 0 1 0 1 0 �1 0
�1 0 0 �1 1 0 0 1

35
and � = (�A1 ; �

A
2 ; G

A; LA; �B1 ; �
B
2 ; G

B; LB). We can estimate from the data
the variance-covariance matrix � = Cov(�1; �2; G; L) for each society in order
to estimate the covariance matrix of �

� =

�
�A 0
0 �B

�
which yields the asymptotic covariance matrix of �, b
 = Db�D0.
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