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1 Introduction

A recent New York Times article observed that self-interested behavior tends to counterbalance

the effects of vaccination against infectious disease. “The administration’s emphasis on vaccines

has undermined the importance of building other precautions into people’s lives in ways that are

comfortable and sustainable”, referring to precautions such as “wearing a mask, or avoiding indoor

dining and crowded bars.”1 Early evidence (Auld and Toxvaerd (2021)) supports the contention of

that article that increases in vaccination tend to be followed by reduction in protective behaviors.

The fact that the introduction of a vaccine erodes incentives for these behaviors is ingrained in

economic theory but still seems to be novel in some current policy discussions.

This paper develops a simple framework for analyzing the effects of policy interventions in re-

sponse to an epidemic of an infectious disease and highlighting the economic intuition that underlies

the predicted effects of those interventions. The analysis draws insights from several different strains

of recent literature: (1) models of the trajectory of an epidemic with endogenous social distancing

(Reluga (2010); Engle et al., (2021); Makris and Toxvaerd (2020); Toxvaerd (2020); Weitz et al.,

(2020); McAdams et al., (2021); McAdams (2021) provides an incisive summary of this literature);

(2) models designed for calibration to the observed spread of COVID-19 (Atkeson (2021a, 2021b);

Atkeson et al (2020b); Droste and Stock (2021)); (3) models studying optimal regulation in re-

sponse to an epidemic (Acemoglu et al (2020); Baqaee et al (2020); Budish (2020); Eichenbaum

et al., (2020); Farboodi et al., (2020); Rachel (2020); Alvarez et al., (2021)); (4) models studying

the incentives for vaccination (Geoffard and Philipson (1997); Galvani and Reluga (2011); Galeotti

and Rogers (2013); Chen and Toxvaerd (2014); Toxvaerd and Rowthorn (2020); Goodkin-Gold et

al. (2021)). Appendix Table 1 summarizes the features included in papers with theoretical models

of strategic social distancing and/or vaccination in response to an epidemic. Despite the explosion

of recent papers related to COVID-19, there appear to be comparatively few studies that consider

the interaction of vaccination and other policy interventions with endogenous social distancing.

The paper relies on a barebones discrete time framework for expositional purposes while uti-

lizing an associated continuous time model for more formal analysis. The text focuses on the case

of myopic social distancing behavior, whereby individuals choose current actions to minimize im-

mediate expected costs rather than attempting to map out and respond optimally to the projected

future course of infections; this assumption encompasses social distancing choices that depend only

1https://www.nytimes.com/2021/08/18/health/covid-cdc-boosters-elderly.html
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on the current infection rate. The baseline model yields individual-level incentives that can be

summarized in simple cost-benefit terms, highlighting the economic factors underlying equiilbrium

with endogenous social distancing and vaccination decisions.

The assumption of myopic behavior has the twin virtues of plausibility, since the waxing and

waning of COVID infection rates in 2020 and 2021 have consistently confounded expert predic-

tions, and tractability, since a fully rational model is necessarily non-stationary as the proportion

of previously uninfected people necessarily declines over the course of an epidemic.2 The paper

considers two primary alternatives to myopic behavior: forward-looking optimization where social

distancing choices are based on fully rational optimization of present and future discounted payoffs

and pandemic fatigue as suggested by Atkeson (2021a, 2021b) and Droste and Stock (2021). By

comparison to myopic behavior, forward-looking optimization yields greater inclination for social

distancing over time, since protective behavior has more benefits when the future is less risky,

whereas pandemic fatigue induces the opposite behavior with less social distancing over time at

a given infection rate. The assumption of myopic social distancing facilitates formal analysis and

proofs; most of the qualitative results hold for all three descriptions of individual behavior.

The paper proceeds as follows. Section 2 presents the baseline model of infectious disease and

endogenous social distancing. Section 3 provides equilibrium and comparative static analysis and

considers the effect of individual policy interventions on the trajectory of infections in equilibrium.

Section 4 extends the model to the case where a perfect vaccine (that provides full immunity

from infection) is available and considers the effect of mandates designed to promote vacccination

rates. Section 5 extends the model to allow for forward-looking social distancing choices as well

as pandemic fatigue. Section 6 sketches an extension of the model with perfect vaccination to

an imperfect vaccine that provides partial but incomplete immunity from infection. Section 7

concludes.

2Gans (2020) discusses this point in detail; Gans (2021) refers to nonstationarities in a fully rational model of

infectious disease as a “pain in the neck”. McAdams, Song, and Zou (2021) show that steady state analysis is possible

if births exactly offset deaths from infection.
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2 The Model

Consider a discrete time model of infectious disease for a population of measure 1 where sick people

are contagious for a single period and re-infection is not possible. The disease is characterized by

exogenous parameters T > 1 for the baseline transmission rate, I0 for the initial (small) positive

proportion of individuals who are sick, δ for the per-period discount rate, and D for the cost of

contracting the disease. This paper falls into the subcategory of game theoretic SIR (Susceptible-

Infectious-Recovered) models, because each person is in one of these three categories at each mo-

ment in time and because social distancing and other decisions are made by individuals in a Nash

equilibrium framework. Each person is assumed risk neutral with a separable utility function with

total cost equal to the sum of the discounted costs (in utility units) of disease, financial outlays,

and reduced activities from social distancing.

In the base case, the ordinary level of social activity per person is normalized to 1 and the

level of social activity for infected people is given by an exogenous constant AI ≤ 1, where activity

level α < 1 corresponds to proportion α of that ordinary activity level.3 Section 3.4 relaxes the

assumption that AI is a known constant by allowing AI to be determined endogenously in the case

of asymptomatic infection. The time-varying parameters in the baseline model, indexed by t, are

St for the proportion of susceptible (never infected) people, It for the current infection rate and

ASt for the (average) activity level chosen endogenously by those who are susceptible.

In each period t, each susceptible person j chooses activity level Ajt, once again with activity

level normalized so that Ajt = 1 in the absence of threat of infection. The probability that a person

who is susceptible in period t is infected in that period is proportional to that person’s number of

interactions with those who are currently infected:

P (person j is infected in period t) = TAIAjtIt,
4

With no social distancing, the probability of infection for Person j in period t is TAIIt. Since

each infectious person is assumed to be contagious for exactly one period, TAI is equivalent to

R0, the baseline reproduction rate per infection, when everyone is susceptible and there is no

social distancing. The text assumes TAI > 1 so that the disease tends to spread under baseline

3McAdams (2021) assumes AI = 1 because infected people have no incentive to reduce activity to avoid illness.

Altruism and the possibility of asymptomatic infection each suggest AI < 1. Toxvaerd (2021) studies the effects of

altruism and reduced social interactions when asymptomatic infections are possible.
4This formulation assumes random interactions between people. Acemoglu et al., (2020) allows for different contact

rates across subgroups.
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conditions. Aggregating across susceptible individuals, the period-by-period transition equation

for the infection rate is proportional to ASt, the average activity rate for susceptible individuals in

period t:

It+1 = TAIAStItSt,

In a homogeneous population, as assumed for most of this this paper, all susceptible individuals

choose the same activity level and so ASt = Ajt for any susceptible person in period t.

The cost to person j for employing social distancing by forgoing proportion x of activities to

reduce activity to 1 − x in a given period is C(x), which represents the summed value of those

forgone activities. C(x) is assumed to be continuous with C ′(0) = 0, C ′(x) > 0 for x > 0 and

C ′′(x) > 0, where these properties follow from time-use optimization by Person j according to

the following logic. First, C ′(0) = 0 follows from optimization under default conditions since then

Person j must be indifferent between more and fewer activities at the default optimum xj = 0

(corresponding to activity level Ajt = 1) with no risk of disease. Second, since Ajt = 1 with no

threat of this particular disease, each inframarginal activity up to Ajt = 1 yields positive utility,

thereby suggesting C ′(x) > 0 for x > 0. Finally, optimization by Person j in response to the

risk of infection suggests reduction of activities in priority order, starting with the least valuable

activities, indicating C ′′(x) > 0, so that the earlier forgone activities are less costly than later

forgone activities.5

With myopic maximization, each susceptible person j seeks to maximize expected payoff for a

single period

π(xjt, It) = −DP (person j is infected in period t)− C(xjt) = −TAIAjtItD − C(xjt),

where Ajt = 1 − xjt.
6 Since It is the only time-varying parameter in the single-period utility

function for susceptible person j, the optimal (myopic) one-period level of social distancing x∗jt(It)

is a function of It alone.

5The case of constant marginal costs for social distancing C(x) = Kx, where K is a positive constant, greatly

simplifies equilibrium analysis and has been studied by Gans (2020, 2021), Rachel (2020) and Toxvaerd (2019). We

discuss the implications of this cost structure in greater detail in Appendix B.
6Cochrane (2021) illustrated by a series of examples that myopic social distancing based on observation of the

current number of deaths rather than infections can produce a trajectory of infections with multiple peaks because

social distancing is not synchronized with peak infection rates. Atkeson (2021a, 2021b), Atkeson et al., (2020b),

Droste and Stock (2021), and Weitz et al., (2020) elaborate on this observation.
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2.1 Continuous Time Version of the Model

The continuous time version of the model allows for instantaneous changes in all variables including

the level of social distancing chosen by each person, with time-varying values written as functions

of time t so that S(t) and I(t) represent the proportion of susceptible and infected people at time t.

The time paths of these variables are characterized by their derivatives, which are drawn directly

from the discrete time transition equations above:

S′(t) = −TAIAStI(t)S(t) = −TAI(1− x(t))I(t)S(t).

I ′(t) = TAI(1− x(t))I(t)S(t)− I(t).

We can think of the continuous time model as the limit of the discrete time model where each period

of the original discrete time model is divided into N subperiods as N tends to infinity. Assuming

that cost of social distancing and the probability of infection transmission are proportional to the

length of time for each subperiod, individuals face the same myopic incentives for the discrete and

continuous time models and thus choose the same level of social distancing for a given infection

rate in each case. One difference between the discrete time and continuous time model is that the

length of infection is deterministic in the discrete time model and stochastic with mean 1 in the

continuous time model.

A primary advantage of the continuous time formulation is that it yields an exact moment that

the infection rate reaches a given value. By contrast, a discrete time model yields coarser sets of

realized values for current and cumulative infection rates, which in turn can lead to an alternating

series of infection rates above and below that threshold for some number of periods of time. For

this reason, Proposition 1(d) and all of the formal properties of the model with vaccination rely on

the continuous time version of the model.

3 The Trajectory of Infections with Endogenous Social Distancing

Herd immunity is reached when the susceptible population declines to the point where a new

infection produces an average of one further infection in the absence of social distancing. Given

this definition, herd immunity occurs when the remaining proportion of susceptible people is the

inverse of the baseline transmission rate TAI meaning 1 −H = 1
TAI

, Thus, the herd immunity

level of cumulative infections is the proportion H = TAI−1
TAI

. Once herd immunity is reached, the
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level of disease must gradually die out because any additional infection reduces the reproduction

rate of the disease to less than 1, even without allowing for the possibility of social distancing.

A full-population steady state infection level I produces the same probability of infection for

susceptible people as the current rate of infection, accounting for social distancing: TAIAStI = It.

In practice, as emphasized by Gans (2021), I is only an approximate steady state. Since the

proportion of susceptible people in period t is always less than 1, if It = I, It+1 = ISt < I.

Proposition 1 records several standard properties of the time path of infection.

Proposition 1 (a) There is a unique (myopic) optimal activity level ASt for susceptible people for

each infection rate It with ASt strictly declining in It.

(b) The cumulative infection rate is eventually at least equal to the herd immunity level H.

(c) There is a unique full-population steady state infection level I.

(d) The infection rate increases in each period until reaching a peak level less than I.

Property (a) follows from the fact that the probability of infection is linear in one’s own activity

rate, which means in turn that the marginal value of reduced risk per unit reduction in activity rate

TAIItD is constant for any activity level for person j at time t. That is, Person j maximizes utility

by conducting a cost-benefit assessment with constant marginal benefit and increasing marginal

cost of forgone activity. The optimizing plan of activities corresponds to the first-order condition

for social distancing at level x: C ′(x) = TAIItD.

Property (b) follows from the definition of herd immunity. Prior to reaching herd immunity,

the susceptible population is large enough that the reproductive rate of new infections is greater

than 1 without social distancing. If the infection rate ever becomes small when the cumulative rate

of infections is less than H, susceptible people will choose close-to-normal activity levels and so the

epidemic cannot die out at that point.

Property (d) follows from Property (c) and the fact that the optimal activity level for a suscep-

tible person is declining in the current infection rate It. By assumption, I0 is small and positive,

so there is initially very little social distancing and thus exponential growth of infections. Since

re-infections are not possible, St declines systematically over time. Each increase in It from period

to period promotes social distancing, so ASt is declining at the start of an epidemic and the infec-

tion rate increases until the product StASt falls to less than 1, at which point the infection rate

has peaked and begins to decline. The realized peak infection rate occurs when StAI = 1
AI

, which

occurs at an infection rate It < I.
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3.1 Flattening the Curve

The concept of “flattening the curve” is inherent in the trajectory of infection with endogenous

social distancing. Figure 1 depicts the relationship between the infection rate and the probability of

infection for susceptible people in the current period after accounting for social distancing. At low

levels of infection, the probability curve is steep with slope near R0 = TAI , reflecting exponential

growth of disease when there is little immediate incentive to invest in social distancing. Increases

in the infection rate promote social distancing, reducing the slope of the probability curve (and of

the observed infection rate over time). In Figure 1, Point A represents the full-population steady

state I where the current infection rate is exactly equal to the probability of infection for current

susceptible people, while Point B represents the observed peak infection rate.7 Consistent with the

discussion above, the peak infection rate must be lower than this approximate steady state.
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Figure 1. Flattening the Curve

Figure 1 also highlights two oft-emphasized, but essential observations. First, flattening the

curve is inherent in laissez-faire equilibrium because initially exponential growth of a disease pro-

motes social distancing, though there may well be policy motives to flatten the curve even more

than in the ordinary social distancing equilibrium (e.g. to diminish the strain on hospitals). Sec-

ond, flattening the curve has only limited effect on cumulative infections in the long-term. That

is, endogenous social distancing spreads out the infection curve over time but does not change the

7Figure 1 uses the parameters T = 1.5, AI = 1, D = 8 with C(x) = x2

4
. The peak infection rate at Point B is

computed for initial rate of infection I0 = 0.02% and each period divided into 5 subperiods.
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herd immunity level, precisely because there is no incentive for social distancing when an epidemic

dies out and the infection rate tends to zero.

3.2 Comparative Statics of the Steady State Infection Level

Comparative static analysis for the effects of exogenous parameters on the trajectory of the infection

rate provides the foundation for policy applications because most interventions influence the course

of an epidemic by changing the values of these parameters.

Comparative Statics of H

The herd immunity threshold H is increasing in T and AI because H = 1− 1
TAI

. More precisely,

H increases whenever the effective transmission rate TAI increases. Since herd immunity comes

into play in the end stage of an epidemic, comparative static analysis for H is predicated on a

infection rate close to 0, at which point there is very little incentive for anyone to practice social

distancing. For that reason, a policy intervention that results in a reduction of TAI can only affect

H if it maintains that effect on TAI as disease dies out and the infection rate It is close to 0.

Comparative Statics of I given changes in D

A change in D has no effect on T or AI , so does not change the activity level for susceptible

people A∗S = 1
TAI

associated with the steady state. An increase in D increases the marginal value of

social distancing, since D is the cost of an actual infection. For this reason, an increase in D induces

an increase in AS which in turn means that the activity rate corresponding to the population level

steady state is chosen at a lower infection rate than before. That is, an increase in D reduces I.

Comparative Statics of I given changes in T or AI

The parameters T and AI appear as the product form in both the steady state identity AS = 1
TAI

and the first-order condition for social distancing C ′(x) = TAIID. That is, the value of the product

TAI influences the steady state infection level but, holding TAI constant, the separate values of T

and AI do not influence I∗. For this reason, it makes sense to conduct comparative statics analysis

as a function of this product TAI of those two parameters.

Proposition 2 An increase in the effective transmission rate TAI can produce an increase or

decrease in I. If the cost function takes polynomial form C(x) = γxn where γ is a positive constant

and n > 1 (so that C(x) is strictly convex), then I is decreasing in TAI for TAI sufficiently large.

Comparative statics for I are determined by the effect of changes of exogenous parameters T

and AI on the identity I = A−1S ( 1
TAI

). Representing AS as a function of I = 1
TAI

in this identity
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serves to emphasize the fact that the value of I adjusts to maintain the identity in response to

a change in TAI . For example, an increase in TAI yields a reduction in the activity level AS

associated with I. Yet, since an increase in TAI increases the marginal value of social distancing,

it is not obvious whether AS(It) = 1
TAI

holds at the same value, a higher value, or a lower value

of It when the product TAI increases. Further, 1
TAI

is decreasing and strictly convex in TAI and

becomes quite flat as TAI increases. Unless C(x) is extremely convex, an increase in TAI when

TAI is large produces a larger effect on the activity level AS than on 1
AI

and so will reduce the

peak infection rate.

Figure 2a compares the equilibrium path of infection rates over time for T = 1.5, 2 and 4

with AI = 1 with quadratic cost of social distancing C(x) = γ
2x

2 and AI = 1 so that the initial

reproductive rate R0 is exactly equal to T .8 An increase from TAI = 1.5 to TAI = 2 shifts the

infection rate curve to the left and also results in a higher peak. A further increase from T = 2 to

T = 4 shifts the infection rate curve farther to the left but reduces the peak infection level. As the

figure suggests, with quadratic costs of social distancing, each increase in the initial reproductive

rate of disease increases the initial slope and lengthens the right tail of the infection rate curve, but

does not necessarily increase the peak infection rate.
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Figure 2a. Comparative Statics of the Peak Infection Rate

8Figure 2 uses the same parameters as Figure 1 apart from changes in the values of TAI for two of the three

curves. See the Appendix for calculations for the general case of quadratic costs. With quadratic costs, TAI = 2

yields the highest value for the full-population steady state I
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Figure 2b graphs equilibrium peak infection rates as a function of the transmission rate T in

this example with quadratic cost of social distancing. As illustrated in Figure 2a, the peak infection

rate first increases and then decreases in T . At lower values of T , the peak infection rate is clearly

below than the full-population steady state level, while at higher values of T , the peak infection

rate approaches the full-population steady state level.
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3.3 Implications for Policy Interventions

We classify policy interventions in two ways: (1) whether they are permanent or temporary; (2)

their effects on the exogenous parameters of the infectious disease framework. Table 1 classifies

interventions with regard to their effects on parameters and on their predicted effects on herd

immunity H and steady state infection rate I. Vaccination is the only intervention that unambigu-

ously reduces both H and I, and is also the only intervention that reduces the herd immunity level

without costly effort when the infection rate has declined and is close to zero.

Intervention Duration Effect on Parameters Effect on H Effect on I Reference

Lockdown Temporary Restricts AI , AS None Possible Reduction Section 3.3.1

Tests Possibly Permanent Reduction in AI Reduces (*) Ambiguous Section 3.3.2

Masks Possibly Permanent Reduction in T Reduces (*) Ambiguous Section 3.3.3

Vaccination Permanent Reduction in S Reduces Reduces Section 4.1

Table 1. Summary of Policy Interventions

(*) Tests and Masks only reduce H if continued even when I(t) approaches 0.
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3.3.1 Lockdowns

A lockdown is a government-imposed reduction in the set of possible activities. A full lockdown

order confines individuals to their homes and could be viewed as reducing activity to 0, or perhaps

close to 0 because of continuing interactions between members of the same household. As practiced

in 2020 and 2021, lockdowns in most parts of the world were generally partial, in part because

people in designated “essential” jobs were allowed to continue to work. Approximately 40% of jobs

in the U.S. count as “essential” based on the definition of the Department of Homeland Security

(McCormack et al., (2020); see also Blau et al., (2021)).

By nature, a lockdown is temporary and cannot be expected to affect the herd immunity

threshold. Although an explicit goal of a lockdown is to flatten the curve, there are several reasons

why it may not be effective. If we consider a partial lockdown as an upperbound A on individual

activity levels, the restriction may not be restrictive enough to bind: if the optimal level of activity

chosen by susceptible individuals in the absence of a lockdown is less than A, then the lockdown

actually has no effect. Even if A does restrict activity, it may not do so in an economically efficient

manner – it may be implemented in a way that rules out high-priority activities for an individual

but allowing that person to continue with lower-priority activities. That is, if A = 0.7, individuals

might choose to forgo a different 30% of activities than the ones that are precluded by a lockdown.

A lockdown does not change the full population steady state I, but will likely both delay

the timing and reduce the magnitude of the realized peak infection rate. Accounting for the

number of susceptible individuals remaining at time t, the actual peak of infection is reached when

TAIASSt = 1. Thus, for example, a lockdown may result in a peak at a time with relatively low

value of St, since some people will get sick during the partial lockdown, which would reduce the

peak rate of infection.9

3.3.2 Testing

Widespread testing has the potential advantage of alerting people with asymptomatic infections

that they are sick and should obey quarantine rules to protect others. The effects of testing listed

in Table 1 are drawn from the simplifying assumption that there are no false test results so that

a testing regime can be summarized by a reduction in the value of AI , the average activity level

9In this case, the realized peak infection rate occurs when AS = 1
TAISt

, so any reduction in AS means that the

identify holds at a higher value AS and lower level of infection than without the lockdown.
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for people when they are infectious.10 Several considerations influence the role of testing in the

context of the model: (1) the proportion of people who are tested and the frequency with which

they are tested; (2) the proportion of false negatives and positives at a given time (which depend

both on the general accuracy of the test and the current infection rate since, for example, there

can’t be any false negatives if no one is sick); (3) the degree of restriction on activities for those

who have tested positive. A further question is whether the government will continue to carry out

an aggressive testing regime at times when the infection rate is relatively low. Testing can only

reduce the herd immunity level if it is maintained during the period of time when the infection is

receding, since otherwise TAI returns to its baseline value when the infection rate tends to zero

and thus H is maintained at its original value.

3.3.3 Masks

Mask wearing reduces the rate of transmission per interaction between a susceptible person and an

infected person, especially for indoor interactions. When Person j and Person k interact, a choice

by Person j to wear a mask likely has asymmetric effects and may well be more beneficial to Person

k than to Person j. The results listed in Table 1 rely on the simplifying assumption that a mask-

intervention reduces the value of T to a new average level Tm < T for all people, corresponding,

for example, to a government regulation observed by a constant proportion of people across time.

Under these assumptions, testing and mask-wearing have analogous effects since each reduces

the effective transmission rate TAI to susceptible people without social distancing. There are

considerable subtleties to both testing and mask wearing beyond the results summarized in Table

1. The effect of false positives and false negatives produced by an ambitious testing regime could be

considerable. At relatively high rates of disease, false positives could have an unintended positive

consequence – helping to solve the collective action problem of reducing activity towards the socially

optimal rate given the positive externalities created by social distancing. At a low rate of disease,

false positives dominate false negative tests, likely resulting in substantive costs of forgone activities

by people who are not sick.

Similarly, there are a number of unmodeled incentives weighing for and against the choice to

wear a mask. Mask wearing by others reduces the incentive to wear a mask to protect oneself from

infection, but also may results in newfound social pressures to conform and wear a mask as well.

Thus, one could consider the level of mask-wearing in a given period as the equilibrium of a binary

10Atkeson et al., (2020a) provides a more sophisticated treatment of the economic value of testing.
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choice population game.11. Since it is compatively easy to put on or take off a mask, this binary

choice game is repeated over time, with likely positive correlation in each person’s choice across

time periods – this description gives the mask-wearing game some resemblance to the model of

imperfect vaccination that is discussed in Section 6.

3.4 Asymptomatic Infection

With purely asymptomatic infection, infected and susceptible people can be expected to choose the

same level of activity. For simplicity, assume that everyone who was not previously sick assumes

that they are susceptible at time t (even though some are currently infected) so that the first-order

condition for social distancing remains the same as above: C ′(x) = TAIID. From the perspective of

an individual person, AI is a fixed constant, but in fact, it will be determined endogenously by this

condition and the further restriction that AI = AS , meaning AI = 1− x. We can write the steady

state condition as AIAS = 1
T or AS = 1√

T
since AI = AS given these conditions. The comparison

between steady states with AI as a fixed value and AI = AS turns on the ordinal ranking of (1)

1
AIT

when AI is a constant and (2) 1√
T

when AI = AT .

In the case of quadratic cost of social distancing C(x) = γ
2x

2, we can still solve for I in

closed form, though this seems to be more difficult for the more general case of polynomial costs

and asymptomatic infection. With quadratic costs and AI = AS , the first-order condition for

social distancing x is x = TAIID
γ so AS = 1 − TAIID

γ . Substituting the condition AI = AS gives

AS = 1 − TASID
γ or equivalently AS(γ + TID) = γ with solution AS = γ

γ+TID . This corresponds

to steady state I = γ
TD (
√
T − 1), which is increasing if T < 4 and decreasing if T > 4.

4 Equilibrium Adoption of Perfect Vaccination

Now consider an extension of the model to allow for endogenous vaccination, focusing on the case

where a perfect vaccination is available from the start of the epidemic. Vaccination costs CV ≥ 0

(the same cost for everyone). and a one-time dose is sufficient to provide complete protection

from infection once and for all for the recipient. In equilibrium, each person chooses whether

and when to get vaccinated to maximize expected payoff, i.e. minimizing the expected cost of

11McAdams (2020) describes how social distancing and other preventative actions can be either strategic comple-

ments or substitutes in the context of an epidemic - see also Engle et al., (2021).
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vaccination combined with the expected cost of possible infection.12 All propositions in the text rely

on subgame perfect equilibrium, where each person maximizes expected payoff given the dynamic

strategies of others since vaccination by one person provides positive externalities by reducing the

future probabilities of infection to others. Using the continuous time version of the model makes it

possible to pinpoint the exact moment that the infection rate reaches a particular threshold.

Proposition 3 There is a unique equilibrium of the continuous time vaccination game. In equilib-

rium, all vaccination takes place at the first moment t∗ where the infection rate surpasses a constant

threshold I∗.

The logic of Proposition 3 follows from a heuristic cost-benefit analysis as described below for

a single period of time in a discrete time setting with no social distancing. A default plan of

vaccinating right away has immediate cost CV . The nominal benefit of waiting one period is a

reduction in cost from CV to δCV . The cost of waiting one period is an increase in this cost from

δCV to D if infected in the current period. Denoting the probability that a susceptible person is

infected in the current period by Pt, the costs Pt(D − δCV ) outweigh the benefits (1 − δ)CV of

waiting one period for vaccination if Pt(D − δCV ) ≥ (1 − δ)CV which takes the form Pt ≥ P ∗.

Without social distancing, P ∗ is the known constant (1−δ)CV
D−δCV . Since the probability of infection in

period t is proportional to It, the infection rate in period t, the threshold probability P ∗ = (1−δ)CV
D−δCV

corresponds to a threshold value for the infection rate I∗. With endogenous social distancing, the

comparison is complicated by the inclusion of the cost of social distancing, but the cost-benefit

result is of the same form – it is preferable to vaccinate now than to wait and do so at the next

opportunity if the infection rate is above a threshold I∗

In equilibrium, vaccination results in an immediate change in the slope but maintains the hump-

shaped pattern and single peak of the infection rate curve. The cost-benefit comparison indicates

that it can only be individually optimal to vaccinate at the first time t∗ when I(t∗) = I∗, as

otherwise it would be possible to increase expected payoff by delaying vaccination (if It < I∗) or

accelerating the timing of vaccination (if It > I∗). Further, each increase in vaccination rate at

time t∗ reduces the future spread of disease and thus reduces incentives for others to vaccinate.

Given this logic, there is a unique equilibrium where either (1) no one vaccinates because

vaccination at time t∗ brings lower expected payoff than remaining unvaccinated forever when no

12We assume economically rational vaccination decisions by individuals even though that is not consistent with

myopic social distancing; Section 5.2 discusses an extension of the model to a fully rational version of the model with

forward-looking social distancing decisions and economically rational vaccination decisions.
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one is expected to vaccinate; (2) vaccination proceeds at time t∗ until the point where the expected

payoff from vaccination is exactly equal to the expected payoff from remaining unvaccinated. Note

that with perfect vaccination, there cannot be an equilibrium where everyone chooses to vaccinate

at time t∗ because the disease would die out quickly after that, leaving an incentive for the marginal

person to remain unvaccinated.

Figure 3 depicts the Nash equilibrium trajectory in a discrete time numerical example with no

social distancing and I∗ approximately equal to 0.1%.13 Initially, infections proceed at exponential

rate with no vaccination. When the infection rate crosses the critical threshold, a bit more than a

third of the population chooses to vaccinate.
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Figure 3. Equilibrium Infection Trajectory with Perfect Vaccination

Figure 3 illustrates a key property of equilibrium with a perfect vaccination, which is that

the infection rate is initially increasing beyond the point of vaccination at time t∗. There is an

interesting juxtaposition between the optimal vaccination strategy and cost-benefit analysis. Since

the infection rate typically increases to a peak level and then declines, vaccination is only cost

effective for Person j on a moment-by-moment basis from t∗ until the next moment t∗∗ when

I(t∗∗) = I∗. Though vaccination is not individually cost-effective on a moment-by-moment basis

from the perspective of an individual person in the end stages of an epidemic when I(t) < I∗, it is

13The parameters for this example are T = 1.6, AI = 1, δ = .95, CV = 1, D = 3. and I0 = 0.00092%.

15



not possible to choose to be vaccinated during peak periods and then return to being unvaccinated

during fallow periods of an epidemic. Instead, equilibrium decision making involves a tradeoff

between per-period expected gains from vaccination just after t∗ when I(t) > I∗and expected

losses for t > t∗∗ and I(t) < I∗. If vaccination at time t∗ proceeds to the point where I(t) < I∗

for all t > t∗, then vaccination is not cost effective for any period of time, which motivates the

following Corollary.

Corollary 1 Equilibrium adoption of vaccination in the continuous time vaccination game yields

reproductive rate Rt∗ > 1 at the time of vaccination.

4.1 Policy Effects of Perfect Vaccination

Perfect vaccination reduces the herd immunity level on a one-for-one basis as a direct effect of

reducing the overall susecptible population. If proportion V of the population receives a perfect

vaccination, herd immunity requires only proportion H − V of the population to have been in-

fected.14 Similarly, perfect vaccination reduces the full-population steady state infection level I

according to the condition TAIAS = 1
1−V – corresponding to a higher activity rate for remaining

susceptible (i.e. unvaccinated) people and thus a lower infection rate than without vaccination.15

As suggested by the New York Times article, vaccination and social distancing strategies are

substitutes: the reduction of risk from either action reduces the value of the other. In equilibrium,

fewer people choose to vaccinate when social distancing is possible in future periods than when

it is not, precisely because future social distancing by others reduces both the immediate and

cumulative risk of being unvaccinated. At the same time, these two methods of reducing risk are

supplementary, with fewer cumulative infections in equilibrium when a person can choose between

them than when only one is available.

4.2 Vaccine Mandates

We consider two versions of vaccine mandates: (1) a work-based requirement imposed by employers

and (2) an activity-based requirement imposed by local governments and businesses. A number of

14The herd immunity threshold would decline instead to H(1−V ) if unvaccinated people maintained overall activity

rates and interacted only with each other.
15If the baseline value for I is higher than the threshold for vaccination, then no one will choose vaccination; in

that case, vaccination has no effect on either H or I.
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employers have adopted policies with deadlines for employees to be vaccinated.16. President Biden

has enacted regulation requiring federal contractors and companies with more than 100 employees

to require vaccination for their workers. This paper models a work-based vaccine mandate as a

per-period fine cF (in utility terms) for anyone who is unvaccinated.

In August 2021, New York City imposed a new rule requiring proof of vaccination for indoor

dining at restaurants.17 France adopted a more expansive requirement for a “pass sanitaire”,

requiring government certification that one is vaccinated for access to cultural venues (as of July

21, 2021), restaurants, cafes, and bars (as of August 9, 2021) with initial approval to impose this rule

through November 15, 2021. This paper models an activity-based vaccine mandate as a constraint

limiting activities by unvaccinated people to AM < 1, imposing minimum cost of social distancing

C(1 − AM ) per unit-time since it is still possible for an unvaccinated person to choose an even

greater level of social distancing than is indicated by the new regulation.18

The analysis below assumes that the details and timing of the mandate are anticipated in ad-

vance and that it takes effect after time t∗, the moment when vaccination takes place in equilibrium

without the mandate.19

Proposition 4 An anticipated work-based vaccine mandate in the continuous time vaccination

game that begins at time tM > t∗ increases vaccination rates and reduces the cumulative infection

rate, but has no effect on the expected utility for any person.

A vaccine mandate changes incentives and equilibrium actions by making it unappealing to

remain unvaccinated beyond time tM . A work-based vaccine requirement provides unambiguous

incentives for vaccination because it imposes direct costs on those who are unvaccinated, but does

not alter incentives for the timing of a perfect vaccination.20 If a work-based vaccine is anticipated,

16https://www.nbcnews.com/business/business-news/here-are-companies-mandating-vaccines-all-or-some-

employees-n1275808
17https://www.cnbc.com/2021/08/15/new-york-city-vaccine-mandate-presents-new-challenges-for-

restaurants.html
18This framework assumes that the mandate pertains to proportion 1 −M of activities that are of lowest value to

each person.
19 If sufficiently punitive, an unanticipated mandate imposed after some people have been vaccinated at t∗ induces

additional vaccination, thereby reducing subsequent infection rates but also reducing expected utility for those who

are unvaccinated at the time of the mandate.
20There is one important exception: if it is never cost-effective to vaccinate in the absence of a mandate, the

mandate may yield a new equilibrium with vaccination at time tM , in which case the mandate results in an increase

in the vaccination rate but a reduction in expected utility for each person in equilibrium.
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it induces an increase in vaccination rates at time t∗ and thus lower cumulative infection rates

thereafter than in the equilibrium of Proposition 3. However, since all vaccination continues to

take place at time t∗, a work-based mandate does not change the infection rates prior to t∗ or the

expected payoffs for vaccination at time t∗. Further, given the equilibrium indifference condition

for vaccination at time t∗, expected payoffs for those who remain unvaccinated are also unaffected

by the work-based mandate.21

It may seem natural to relax a work-based vaccine mandate once the infection rate reaches

a sufficiently low level, both since there is diminsihed future risk of infection and because it is

implausible that anyone else will choose to be vaccinated from then on. Yet, any relaxation of a

vaccine mandate undermines its purpose.

Corollary 2 Ending a work-based mandate at a predetermined time or infection level reduces vac-

cination rates, increases cumulative infections, and has no effect on the realized expected utility for

either those who choose to vaccinate at time t∗ or those who remain unvaccinated.

An activity-based vaccine requirement has an additional effect because it constrains activity

in some periods subsequent to vaccination and cthereby changes the future trajectory of infection

conditional on a given level of vaccination. Since there are positive externalities associated with

social distancing, mild restrictions on activities (i.e. AM close to 1) may yield Pareto-gains while

very strong restrictions on activities (i.e. AM close to 0) yield Pareto-losses for the unvaccinated

relative to the vaccine equilibrium with no mandates. Thus, if AM is sufficiently small, an activity-

based mandate is analogous to a work-based mandate.

Corollary 3 An activity-based vaccine mandate that begins at time tM > t∗ has the same qualita-

tive effects as a work-based vaccine mandate if AM is sufficiently small.

4.2.1 Comment on the Expected Utility Effect of Vaccine Mandates

Although a vaccine mandate does not change expected utility for anyone in equilibrium, it shifts

the burden for the unvaccinated from costs imposed by disease to financial losses and losses from

forgone activities. Since the vaccine mandate imposes new forms of costs on the unvaccinated, their

discounted expected losses from infection and thus their discounted probability of infection must

also fall. In a more expansive model (such as Baqaee et al., (2020) and Alvarez et al., (2021)),

21There is an exception here as well. If the penalty for a work-based mandate is sufficiently large, then everyone

will choose vaccination at time t∗ to avoid the penalty.
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these reductions in infection rates might yield population-level externalities - perhaps by allowing

for more aggressive “re-opening” practices - that don’t alter the incentives for social distancing and

vaccination that are present in the current model. In that case, a vaccine mandate would produce

Pareto gains with universal gains in expected utility.

4.3 Heterogeneous Costs of Vaccination

There is a growing body of anecdotal evidence that some people are more averse to vaccination

than others. This observation suggests an adjustment to the model with heterogeneous costs of

vaccination across people according to continuous cumulative distribution function FCV (x). This

heterogeneity of costs spreads out the timing of vaccinations but produces similar qualitative results

to those for the model with homogeneous vaccination costs.22

Proposition 5 With hetergeneous cost of vaccination, there is a unique equilibrium with gradual

vaccination during time period [t∗, t∗] in order of ascending vaccination cost and Rt > 1 at the

completion of vaccination. A vaccine mandate that begins at tM > t∗ increases vaccination rates

and reduces future infections but reduces realized expected utility for all types with vaccination cost

too high to vaccinate in the equilibrium without a vaccine mandate.

5 Alternative Models of Social Distancing

This section considers extensions with alternative descriptions of individual behavior. Forward-

looking social distancing accounts for future risk, which is ignored by myopic social distancing, and

thus involves less protective behavior at any infection level than myopic behavior. Pandemic fatigue

also involves less protecive behavior than myopic social distancing, but only in the later stages of

an epidemic. If the same infection rate occurs twice in the course of an epidemic, forward-looking

social distancing predicts greater endogenous social distancing at the later time because there is less

future risk for a given infection rate when the infection rate is declining than when it is increasing,

but pandemic fatigue yields the opposite prediction.

The choice among these three models has little effect on herd immunity because they all yield

similar behavior with very little social distancing near the point of herd immunity when the infection

rate is low and Rt → 0. In all three cases, social distancing remains quite responsive to changes

22See the discussion of linear utility in Appendix Section E for a comparison to Gans (2021), which considers a

vaccination mandate with heterogeneous cost of vaccination and no social distancing.
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in the infection rate, which limits the possibility of large and lasting differences in equilibrium

trajectories for the infection rate across these models.

5.1 Pandemic Fatigue

Assume that pandemic fatigue causes a change in the cost function from C(x) to CPF (x) from

time tPF onwards, where C ′PF (x) > C ′(x) for each x so that the marginal cost of social distancing

increases after pandemic fatigue sets in. (Assume also that CPF (x) retains the essential properties

of C(x), i.e. it strictly increasing and strictly convex.) Since pandemic fatigue has no effect on the

cost function prior to time tPF , the realized infection rate is the same with or without pandemic

fatigue until some people choose to vaccinate at t∗ or pandemic fatigue sets in at tPF .

Proposition 6 With perfect vaccination and tPF > t∗ in the continuous tmie vaccination game,

if pandemic fatigue is anticipated, it results in an increase in vaccination rates and has no effect

on expected utility in equilibrium.

With perfect vaccination, pandemic fatigue is superficially regrettable, but actually reduces

equilibrium infection rates because it induces an increase in vaccination that more than offset the

reductions in social distancing corresponding to pandemic fatigue. Since the timing of vaccination

(and myopic social distancing decisions prior to that) are unaffected by pandemic fatigue, the

indifference condition for perfect vaccination at time t∗ ensures that equilibruim expected payoffs are

the same as in Proposition 3. The anticipation of pandemic fatigue in the future makes vaccination

more attractive and so equilibrium vaccination rates must increase in response. In this sense,

pandemic fatigue resembles a work-based vaccine mandate as each has the primary effect of reducing

expected utility to those who remain unvaccinated after t∗, thereby promoting vaccination. Of

course, this conclusion relies critically on the assumption that future pandemic fatigue is anticipated

accurately at the time of vaccaination.23 As in the case of vaccine mandates, if there are unmodeled

societal benefits to a reduction in peak infection rate and in the rate of increase of infections prior

to that peak, pandemic fatigue may actually result in improved outcomes since it shifts some of

the costs incurred in equilibrium from infections to more costly reductions in activities after tPF .

23By contrast, unanticipated pandemic fatigue would induce additional vaccinations at time tPF , thereby reducing

but not offsetting the effect of reduced social distancing on expected utility.
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5.2 Forward-Looking / Economically Rational Social Distancing

With forward-looking social distancing, each susceptible person chooses a level of social distancing

at each moment in time to minimize the expected discounted sum of future payoffs. Denoting Vt

as the expected sum of discounted future costs at time t (in time-t utility units), the objective

function at time t for susceptible person j when vaccination is not possible is

−P (xt, It)D−C(xt) + δ(1−P (xt, It))Vt+1 = −TAI(1−xt)ItD+C(xt) + δ[1−TAI(1−xt)It]Vt+1.

The first-order condition for the optimal level of social distancing xt at time t is then

C ′(xt) = TAIIT (D − δVt+1).

This first-order condition is distinct from the first-order condition for myopic maximziation because

of the inclusion of the term δVt+1. That is, a forward-looking susceptible person chooses a level of

social distancing based on the understanding that avoiding infection now saves D now but does not

rule out the possibility of future infection and costs. Thus, forward-looking optimization results

in a lower level of social distancing than does myopic optimization for any given infection rate

(assuming the same social distancing cost function C(x) in both cases).

The inclusion of the term Vt+1 in the period t objective function brings a recursive element into

the model, since expected payoffs at time t now depend on future actions at time t+ 1 and beyond.

Nevertheless, most of the results with myopic optimization carry over to the model with forward-

looking behavior. A key first observation is that the gain from avoiding immediate infection is at

least (1− δ)D,24 which means that the first-order condition for xt corresponds to positive marginal

cost and thus x∗t > 0 for all t. That is, forward-looking equilibrium behavior always includes some

social distancing.

Figure 4 repeats Figure 2 with forward-looking rather than myopic social distancing.25 There are

higher infection rates for each value of T with forward-looking than with myopic social distancing

but the general relationships of the curves are much the same as in Figure 2. As in Proposition 2, an

increase in the effective transmission rate from TAI has ambiguous effects on I with forward-looking

social distancing.

24Since one possible strategy is to set xjt = 0 in all periods, incurring no cost of social distancing, Vt must be at

least −D.
25The equilibrium trajectory rates in this figure are based on the results of iterative approximation of the value

function Vt+1.
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Figure 4. Peak Infection Rates with Forward-Looking Social Distancing

5.2.1 Perfect Vaccination with Forward-Looking Social Distancing

Forward-looking social distancing complicates analysis of the optimal timing of vaccination. Vac-

cination at time t reduces future infection rates, which in turn, alters the continuation payoff V (t)

for remaining unvaccinated, and thus alters social distancing choices and infection rates prior to

time t. Despite this circularity, a one-step comparison of payoffs for vaccination in periods t and

t + 1 yields a similar threshold rule for vaccination as the comparison described in Section 4 with

myopic maximization.

In anticipation of vaccination next period, a forward-looking susceptible person at time t who

plans to vaccinate in period t+1 chooses xt to minimize the discounted expected cost PtD+C(xt)+

(1− Pt)δCV in time-t units, where Pt is the probability of infection at time t after accounting for

social distancing xt. Perfect vaccination at time t yields cost CV in time t units, so vaccination

at time t is preferable to waiting until time t + 1 if CV ≤ PtD + C(xt) + (1 − Pt)δCV ; neither of

these expected payoffs includes the continuation value Vt+1, which greatly simplifies analysis. The

minimum expected cost for vaccinating next period, PtD + C(xt) + (1 − Pt)δCV is increasing in

the infection rate It by revealed preference,26 so CV ≤ PtD +C(xt) + (1− Pt)δCV is equivalent to

a threshold requirement It ≥ I∗FL. Thus, incentives for vaccination with forward-looking behavior

match the cost-benefit structure from perfect vaccination with myopic social distancing; once again,

26If I1 < I2, then choosing the level of social distancing x2 that is optimal for infection rate I2 (given the plan to

vaccinate in the next period) at infection rate I1 yields lower discounted expected cost than the minimum discounted

expected cost for infection rate I2.
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vaccination is cost effective over periods of time when the infection rate surpasses a fixed threshold.

There is a new technical challenge for analysis of forward-looking social distancing as the prop-

erties and even the existence of equilibrium are no longer obvious in this case. The complicating

factor is the connection between the continuation value and current level of social distancing, as

higher expected cost for V (t+1) induces lower social distancing xt, which is in turn suggests higher

expected cost next period. For expositional purposes, Propositions 7 and 8 assume that equilib-

rium with forward-looking social distancing exists for any initial level of disease and that it yields

a single-peaked infection rate curve.27

Proposition 7 In any equilibrium with forward-looking social distancing, all vaccination in the

continuous time game takes place at the first time tFL where the infection rate surpasses threshold

I∗FL. In equilibrium, the infection rate continues to rise after vaccination takes place.

Proposition 7 verifies that the key properties of the vaccination equilibrium of Proposition 3 are

maintained with forward-looking social distancing: all vaccination takes place at a single moment

in time and is not sufficient to cause an immediate decline in infection rate. As in Figure 3, the

peak infection rate occurs after vaccination is complete. One difference between the results of

Propositions 3 and 7 is that vaccination changes the initial trajectory of the infection rate with

forward-looking behavior but has no effect on the infection rate prior to vaccination with myopic

social distancing. For this reason, it is possible to identify the timing of vaccination with myopic

social distancing from the equilibrium outcome when vaccination is not possible: I(t) reaches I∗

at the same time whether vaccination is possible or not. With forward-looking decisions, however,

vaccination reduces future risks and increases incentives for prior social distancing (as emphasized

by Makris and Toxvaerd (2021)), so the infection rate reaches threshold I∗FL at a later time in

equilibrium with vaccination than in equilibrium without vaccination. This difference between the

models is primarily technical in nature – it increases the difficulty of computation of equilibrium

strategies with forward-looking behavior without yielding especially substantive changes in observed

vaccination behavior.

As in Proposition 4, a vaccine mandate with forward-looking social distancing promotes incen-

tives for vaccination by penalizing the unvaccinated. With forward-looking distancing, the greater

27Iterative approximation of the continuation value function V (t) appears to work well for the case of quadratic

costs C(x) = γx2

2
with resulting single-peaked trajectories for equilibrium infection rates as illustrated in Figure 4.

Appendix B of Farboodi et al., (2020) provides details about the (minor) difficulties with the related procedure used

to estimate equilibrium outcomes in that paper.
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incentives for vaccination both alter the timing of vaccination and the payoffs for both vaccinated

and unvaccinated. In particular, a work-based mandate delays the spread of infection and the

timing of vaccination because the threshold infection rate I∗FL is only achieved at a time tFLV after

t∗FL when vaccination takes place with forward-looking behavior and no vaccine mandate.

Proposition 8 With forward-looking social distancing and a work-based vaccine mandate, all vac-

cination takes place at a single time tFLV where tFLV > t∗FL.

Since the work-based mandate delays the timing of vaccination, it reduces equilibrium infection

rates in the sense of delaying the time at which the infection rate reaches the threshold I∗FL.

6 Imperfect Vaccination

Imperfect vaccination that provides less than complete immunity from infection is quite topical

given the observed phenomenon of “breakthrough infections”. The phenomenon of imperfect vac-

cination opens new depths to equilibrium analysis because the activity levels of unvaccinated and

vaccinated people each influences the transmission rate of infections. If vaccinated people choose a

single level of social distancing xV t and non-vaccinated people choose a separate common level of

social distancing xNt, then these choices (likely) serve as strategic substitutes in a collective action

game with the twin goals of reducing the risk of infection at the societal level while minimizing

one’s own cost of doing so. Needless to say, this is a much more complicated game than any of the

versions of the model with perfect vaccination.

This section sketches of a model with imperfect vaccination and uses a numerical example to

provide some suggestive results. Assume that that imperfect vaccination is available to everyone

at cost CV (homogeneous cost) and that it reduces the probability of infection in period t from

TAIAjtIt to αTAIAjtIt where α is a known constant less than 1 and TAIα < 1 so that a sufficient

level of vaccination yields herd immunity.28 Then myopic social distancing by all susceptible people

yields a lower level of social distancing xV t for vaccinated people than for non-vaccinated people

VNt as a function of the infection rate at time t.

With imperfect vaccination and no social distancing, the transition equation for infection rates at

period t+1 includes the measures of both susceptible non-vaccinated SNt and susceptible vaccinated

28While it might be natural for vaccinated and unvaccinated people to choose different levels of activity when

infected, particularly in the case of asymptomatic infection, this section maintains the assumption that AI is an

exogenous fixed value and that it is the same for both unvaccinated and vaccinated people who are infected.
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people SV t as well as the current infection rate.

It+1 = TAIItSNt + αTAIItSV t.

This equation indicates that herd immunity can no longer be summarized by the cumulative infec-

tion rate because each vaccination reduces the reproductive rate Rt of disease.

Imperfect vaccination also complicates equilibrium analysis because the expected payoff for

vaccination includes the possibility of a future infection. Since future infection rates vary with

current vaccination rates, there are positive externalities of vaccination for those who are vaccinated

and not just for those who are unvaccinated (as is the case with perfect vaccination), which creates

possibilities for multiple equilibria.

With imperfect vaccination and no social distancing, vaccinating in period t yields a higher

expected payoff than waiting to vaccinate in period t + 1 if not infected in period t if δtCV +

δtαPtD + δt+1Vt+1 ≥ δtPtD + δt+1(1 − Pt)CV + δt+1(1 − Pt)Vt+1, where Pt is the probability of

infection in period TAIIt. We can write this equation to identify a threshold probability for the

benefits of immediate vaccination to outweigh the costs of waiting one period before vaccinating.

Pt ≥
CV (1− δ)

(1− α)(D − δVt+1)− δCV
.

Here Vt+1 varies with time and need not be constant for a given infection rate: an increase in Vt+1

reflects an increase in future expected cost, thereby reducing the value of the denominator and

increasing the threshold probability value above. This result reflects the economic intuition that it

is less desirable to choose imperfect vaccination when facing greater risk of infection in the future.

As in Proposition 3, vaccination can only take place in equilibrium when the cost-benefit condi-

tion holds with equality: Pt = CV (1−δ)
(1−α)(D−δVt+1)−δCV , or equivalently, It = CV (1−δ)

TAI(1−α)(D−δVt+1)−δCV . If

δ is close to 1, the continuation value Vt+1 for those who are vaccinated changes much more slowly

over time than does It, which guarantees that the cost-benefit condition holds with equality at

most twice, once when the infection rate is increasing and once when it is decreasing. Under these

conditions, equilibrium with imperfect vaccination takes the same general form as equilibrium with

perfect vaccination, with all vaccination taking place at a single point in time.

Figure 5 compares the equilibrium outcomes with perfect and imperfect vaccination for the

parameter values from Figure 3 and an imperfect vaccine that reduces transmission rates by 75%.

With imperfect vaccination, the threshold infection rate for vaccination is initially increasing and

subsequently is decreasing and is higher than the threshold with perfect vaccination. Thus, vac-

cination takes place at a later time with imperfect vaccination and the peak equilibrium infection
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rate is higher with imperfect than with perfect vaccination. In this example, Rt > 1 results at the

time of vaccination in equilibrium, since if Rt < 1, vaccination would not be cost effective over

any period of time, following the same logic as in Corollary 1.29 Vaccination is still quite effective

at limiting the epidemic. With no possibility of vaccination, the peak infection rate is 9.5% and

cumulative infections to 68.7% by comparison to peak infection rates of 1.14% and 1.72% and

cumulative infections of 41.2% and 53.4% with perfect and imperfect vaccination respectively.
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Figure 5. Equilibrium Infection Rates with Perfect vs. Imperfect Vaccination

Allowing for endogenous social distancing along with imperfect vaccination further complicates

the threshold condition for vaccination now to be more cost effective than vaccination in one period.

In equilibrium, vaccination still takes place when the cost-benefit condition holds with equality but

there may be more than one time when that condition holds with equality. Though beyond the

scope of this current paper, we believe that further investigation of the model with imperfect

vaccination may be of interest, especially in extensions that allow for different patterns of social

contact between vaccinated and unvaccinated people who remain susceptible and for different levels

of social activity between vaccinated and unvaccinated people when infected.

29One new feature of the equilibrium with imperfect vaccination for this example is that vaccination takes place at

an earlier time in equilibrium than would be optimal if no one ever vaccinated; this feature results from the positive

externalities of imperfect vaccination, which causes the infection rate to reach the cost-benefit threshold at an earlier

time when some people vaccinate than when no one chooses to vaccinate.
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7 Discussion and Conclusion

The paper develops a model with the minimal set of assumptions to study precautionary behavior

in response to the spread of infectious disease. and identifies cost-benefit considerations that are

central to individual decision-making in this context. The results emphasize the ways that an

epidemic poses society with a collective action problem, so that some policy interventions crowd

out existing incentives for private individuals to mitigate risk through social distancing. Vaccination

is the only approach that reliably reduces the herd immunity level of cumulative disease and yet

endogenous adoption of vaccination yields a reproductive rate of disease Rt > 1 at the time of

vaccination; this finding reflects the insight of Geoffard and Philipson (see also Goodkin-Gold et

al., (2021)) that increases in vaccination reduce the marginal value of vaccination to the point where

private incentives for vaccination are not sufficient for disease eradication. Given this background,

the interaction of economic forces in general equilibrium can yield seemingly counterintuitive results

– for example, that the phenomenon of pandemic fatigue can lead to a Pareto improvement in

equilbrium outcome because it promotes incentives for vaccination.

The minimalist design of the baseline model should facilitate further study of extensions that

add detail to the interventions mentioned in the text or incorporate new features that have been

prominent in practice. For instance, it seems natural to consider heterogeneous populations with

different levels of risk and social connections, seasonality in the infectiousness of a disease, and the

development of variants of an existing disease during the course of an epidemic. As indicated in

Appendix Table 1, many of these ideas are already present in the literature but relatively few of

them have been studied in combination with endogenous vaccination. It would also be natural to

consider extensions with combinations of symptomatic and asymptomatic infection, and strategic

interactions between unvaccinated and imperfectly vaccinated people where the social distancing

decisions of each person have spillover effects for the immediate level of risk of infection to others.
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Vaccination Codes: I = Imperfect; P = Perfect.

Intervention Codes: L = Lockdown; Te = Tests; VM = Vaccine Mandate; VS = Vaccine Subsidy.

Other Codes: G = Groups; P = Producers; PF = Fatigue; S = Seasonality; T = Treatment.
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B Proofs

Proof of Proposition 1

(a) Person j′s objective function for period t is π(xjt, It) = −TAIAStItD−C(xjt), which gives

first-order condition C ′(xjt) = TAIItD. Here, the marginal value of social distancing (per unit of

activity) is constant and equal to TAIItD, since activity increases both social interactions and the

probability of contracting an infection at a constant rate. Since C is strictly convex with C ′(0) = 0,

this first-order condition either holds for a unique optimal level of social distancing x∗(It) for each

It or else C ′(x) < TAIItD for all x < 1 in which case there is a boundary solution with x∗(It) = 1.

Since the marginal value of social distancing is increasing in It, x
∗(It) is strictly increasing and ASt

is strictly decreasing in It , once again because C is strictly convex.

(b) Define Gt as the cumulative proportion of the population that has been infected by period

t. By the Monotone Convergence Theorem, Gt must converge to a limit since it is increasing

and bounded on the range [0, 1]. Suppose that this limit is some value L < H. By definition

(1 − H)TAI = 1, so (1 − L)TAI > 1. Working backwards from the optimal social distancing /

activity level, first choose a constant κ that is sufficiently small that (1−L)TAI(1−κ) > 1. Person

j chooses a social distancing level less than κ and thus an activity level greater than 1−κ whenever

C ′(κ) > TAID(1− κ) or equivalently, It <
C′(κ)
TAID

. Next choose ε = C′(κ)
TAID

. Since Gt =
∑t

n=0 In and

G takes a limiting value of L, there is some period N such that H − St < 1 − ε for each t > N ,

implying It < ε for each t > N as well. Then the reproductive rate of disease Rt = StTAIAjt >

(1 − L)TAI(1 − κ) > 1 for each t > T (with Gt ≤ L) which contradicts the assumption that Gt

converges to L.

(c) The steady state equation (not adjusted for the size of the susceptible population) is

TAIAStIt = It or equivalently TAIASt = 1. The steady state corresponds to the infection level

such that each susceptible individual chooses activity level 1
TAI

, meaning x = 1 − 1
TAI

= TAI−1
TAI

.

Since x is determined by the (single-period) first-order condition C ′(x) = TAIITD, the steady state

is characterized by the equation C ′(TAI−1TAI
) = TAIItD. If C ′(TAI−1TAI

) < TAID, then there is some

value I < 1 such that C ′(TAI−1TAI
) = TAIItD holds with equality. Then, solving for I given It = I

yields the identity I =
C−1(

TAI−1

TAI
)

TAID
.

(d) In the continuous time verison of the model, I(t) is initially increasing and so S(t) is

decreasing at rate at least −I(0) while I(t) is increasing. Since I(t) must decrease once herd

immunity is reached at S(t) = H, there must be some time t such that I ′(t) = 0. I(t) cannot
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remain constant beyond t at I(t) because S(t) and thus I ′(t) would decrease if I(t) stayed at the

peak value past t. That is, I(t) is declining just after time t.

Next observe that I(t) achieves each value between I(0) and I(t) twice, once when I(t) is

increasing before time t and once when I(t) is decreasing after t. If not, then there must be some

value IK < I(t) such that I(t1) = I(t2) = IK , t2 > t1 > t, and I”(t1) < 0 and I ′(t2) > 0. But then

since S(t2) < S(t1) by definition of S(t), I ′(t2) must be less than I ′(t1) and so cannot be greater

than 0.

Proof of Proposition 2: Section C provides computations that encompass this result.

Proof of Proposition 3: Vaccinating at time t (conditional on no prior infection) yields a

certain loss of δtCV . Vacccinating at time t + 1 (again conditional on no infection prior to time

t) yields either a loss of δtD for contracting an infection at time t or a loss of δt+1CV for not

contracting an infection at time t and then choosing to be vaccinated in the next period. Denoting

the probability of infection at time t as Pt, it is preferable to vaccinate immediately in period t

than to wait one period if

δtCV ≤ δtPtD + δt+1(1− Pt)CV or Pt ≥
CV (1− δ)
D − δCV

.

Since Pt = TAIIt with no social distancing, this condition can be reorganized as a restriction on

It, namely It ≥ CV (1−δ)
TAI(D−δCV ) or It ≥ I∗ where I∗ = CV (1−δ)

TAI(D−δCV ) .

With social distancing, the cost-benefit inequality for a perfect vaccine in period t to yield

higher expected payoff than waiting until period t+ 1 to vaccinate if

CV ≤ PtD + (1− Pt)δ + C(xt).

In this equation, Pt is the probability of infection after accounting for social distancing and C(xt)

is the cost of social distancing given myopic choice of xt in period t. Reorganizing this inequality

with all terms that vary with the infection rate on the left-hand side gives Pt(D− δCV ) +C(xt) ≥

CV (1 − δ). We know that C(xt) is increasing in It but it is possible, as suggested by Figure 1,

that Pt is not increasing for all ranges of It after accounting for the effect of social distancing. At

infection rates such that Pt is increasing in It, both terms on the left-hand side of the inequality

are increasing in Pt. At infection rates such that Pt is decreasing in It, we can rewrite the left-hand

term as PtD+C(xt)− PtδCV , where by assumption −PtδCV is increasing in t. Endogenous social

distancing is chosen to minimize immediate expected cost to an individual PtD + C(xt) where

(by revealed preference), this optimized value must also be increasing in It. Thus, whether Pt is

33



increasing or decreasing in It, the left-hand side of the inequality Pt(S− δCV ) +C(xt) is increasing

in It and so Pt(D − δCV ) + C(xt) ≥ CV (1 − δ) holds for It ≥ I∗ where I∗ is defined implicitly so

that Pt(D − δCV ) + C(xt) = CV (1− δ).

This comparison indicates that vaccination only takes place in equilibrium in the first of some

number of periods with It ≥ I∗. With no social distancing, the reproductive rate of infection at

time t is Rt = TAISt, where St is the proportion of the population that is susceptible at time

t. Since St declines over time as previously susceptible people choose to be vaccinated or become

infected, Rt declines over time as well. That is, the infection is increasing for some period of time

when Rt > 1 and then subsequently decreasing after that since Rt < 1 implies Rn < 1 for all n > t.

As a result, there can be at most one period t∗ where It−1 < I∗ and It ≥ I∗, i.e. where the infection

rate “crosses the threshold” for possible vaccination “from below” that threshold.

In equilibrium, vaccination occurs only at time t∗ and the remaining question is about the

amount of vaccination (if any) at that time.

Lemma 1 Each increase in vaccination at time t∗ reduces cumulative infection at each subsequent

time t.

Vaccination at time t∗ provides a one-time reduction in the susceptible population but does not

change the dynamics of infection, with an initial period of increase followed by subsequent decrease

in the infection rate. Each increase in vaccination reduces the immediate size of the susceptible

population and so reduces the realized infection rate just after time t. Consider two levels of

vaccination V1 and V2 > V1 at time t∗. Denote the current infection rates for the two regimes

as IV 1(t) and IV 2(t), the infection rates as IV 1(t) and IV 2(t), the cumulative rates of infection as

GV 1(t) andGV 2(t), and the remaining susceptible populations as SV 1(t) and SV 2(t) respectively. By

construction, GV 1(t
∗) = GV 2(t

∗) and IV 1(t
∗) = IV 2(t

∗) while by definition V1 + SV 1(t) +GV 1(t) =

V2 + SV 2(t) +GV 2(t) = 1 for t ≥ t∗.

Claim: The peak infection level xV 1 for regime V1 is at least as large as the peak infection level

xV 2 for regime V2.

If I ′V 2(t) ≤ 0 for t then the peak infection rate for Regime V2 occurred previously and the result

is immediate.30

30Here I ′V 2(t∗) refers to the right-hand derivative of the infection rate at time t∗, taking account of vaccination at

that time. A subsequent result, Corollary 1 demonstrates that vaccination takes place in equilibrium prior to the

peak of the infection rate, so this case does not occur in equilibrium.
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Next consider the remaining case where I ′V 2(t
∗) > 0. By assumption, vaccination leaves a larger

susceptible population in Regime V1 than in Regime V2 and so I ′V 1(t
∗) > I ′V 2(t

∗). Then there

must be a range of infection levels y ∈ (IV 2(t
∗), y] such that for each y: (1) infection level y is

first reached at an earlier time in Regime V1 than in Regime V2; (2) the susceptible population

when infection level y is greater in Regime V1 than in Regime V2. Denote the times when infection

rate y is first reached in the two regimes as t1y and t2y respectively. Property (2) implies that

I ′V 1(t1y) > I ′V 2(t2y) for each y ∈ (IV 2(t
∗), y]. By construction, the infection rate curve is steeper for

Regime V1 than for Regime V2 on this range of infection rates, and so IV 2(t+ t2y− t1y) > IV 1(t) for

t∗ < t < t1y. That is, comparing the infection rates over equal length time periods from t∗ to t1y

for Regime 1 and from t∗+ t2y− t1y to t2y for Regime 2, the infection rate is lower at each time t in

Regime 1 than at the corresponding time t+ t2y − t1y in Regime 2. Therefore, there must be more

recoveries from infection in Regime 2 during time period [t∗+ t2y− t1y, t2y] than in Regime 1 during

time period [t∗, t1y] and by extension, more recoveries from infection from Regime 2 during time

period [t∗, t2y] than in Regime 1 during time period [t∗, t1y]. By construction, IV 1(t
∗) = IV 2(t

∗)

and IV 1(t1y = IV 2(t2y), so since there are more recoveries from infection in Regime 2 during [t∗, t2y]

than in Regime 1 [t∗, t1y], there also must be a greater number of cumulative infections in Regime

2 than in Regime 1 during these corresponding time periods for the two regimes. That is, the

difference in susceptible populations starts at V2 − V1 at IV 1(t
∗) = IV 2(t

∗) and is diverging rather

than converging at higher infection rates. Thus, the slope of the infection rate curve is larger in

Regime V1 than in Regime V2 for each new infection rate while the infection rate is increasing in

each regime. As a result, the infection rate must still be increasing in Regime V1 when it peaks in

Regime V2.

End Proof of Claim

Since IV 1(t) > IV 2(t) and GV 1(t) > GV 2(t) for t just greater than t∗, GV 1(t) > GV 2(t) is only

possible if the infection rate curves cross at some time t∗ and I1 then lies above I2 for some period

of time [t∗, t∗∗]. By the logic from the proof of the claim above, I2 can only cross and then lie

above I1 to the right of the peak infection point for I1. Suppose that there exists time t∗ such that

I1(t
∗) = I2(t

∗) and I ′2(t
∗) > I ′1(t

∗) so that infection rate I2 lies above I1 just after time t∗. Then

S2(t
∗) > S1(t

∗), which means that the cumulative infection rates differ by more than V1 − V2 at

that point. For each subsequent time t such that I2(t) > I1(t), there is a previous (most recent)

time t−(I2(t)) such that I1(t
−(I2(t)) = I2(t). If S2(t

−(I2(t)) > S1(t) for each such t, then the

cumulative infection rate for Regime 2 never catches up to the cumulative infection rate for Regime
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1. If, instead, there is some t such that S2(t
−(I2(t)) = S1(t), then (as above) since the susceptible

populations and infection rates are equal across the two regimes at infection rate I2(t), the future

course of infection in the two regimes must be identical from then on (from different starting times),

and the difference in cumulative infection rates at these pairs of times will be V2 − V1 and once

again, the cumulative infection rate for Regime 2 never catches up to the cumulative infection rate

for Regime 1.

End Proof of Lemma

Given the Lemma, each increase in vaccination rate at time t∗ reduces cumulative infection rates

in all subsequent periods. Since vaccination has no effects on prior infection rates, each increase in

vaccination rate at time t∗ thus reduces the expected gain from vaccination at t∗. Thus, there is

either a boundary solution where no one chooses to vaccinate at time t∗ (or at any other time) or

a mixed strategy equilibrium where susceptible individuals are indifferent between vaccination at

time t∗ and never vaccinating.

Proof of Corollary 1

If I ′(t∗) < 0, then by Proposition 1, the infection rate is decreasing at each t > t∗ and I(t) < I∗

for t > t∗. Then it is not cost effective to be vaccinated over any time interval, which contradicts

the presumption that a positive measure choose vaccination at time t∗.

Proof of Proposition 4

Assume throughout that a positive measure of people choose vaccination at time t∗ in equilib-

rium with no vaccine mandate. (Footnote 15 describes the result for the case where vaccination is

never cost effective without the mandate.) The introduction of a penalty for unvaccinated people

from time tM on yields a new threshold infection rate IM for vaccination to be cost-effective over

short-term periods from time tM onwards, but does not change the relative payoffs for vaccination

at time t∗ (or any other time t < tM ) by comparison to vaccination at time tM : the expected payoff

for vaccination at time t ≤ tM depends only on the number of people who choose to be vaccinated

prior to time t with or without the imposition of the mandate. Thus, given that all vaccination

took place at t∗ without the mandate, that must continue to be true with the mandate.

In equilibrium without a work-based mandate, susceptible people are indifferent between vac-

cinating and not vaccinating at t∗, which requires a balance of expected gains from vaccination for

[t∗, tM ), when infection rates are relatively high and expected losses from vaccination at tM and

beyond, when infection rates are relatively low. If a positive measure of people vaccinate at time

tM , the expected payoff for vaccination relative to non-vaccination from tM onward must be even
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higher than it was with no mandate. If instead, no susceptible people choose to vaccinate at time

tM , the penalty for unvaccinated people still increases the expected payoff from vaccination from

time tM onward than it was with no mandate. In either case, more people choose to vaccinate in

equilibrium at time t∗ than would vaccinate without the work-based mandate.

Proof of Proposition 5

In any equilibrium where a positive measure of people choose to vaccinate, it must be those

with the lowest costs of vaccination who choose to do so. To see this, note that if a person with

cost C1 chooses to vaccinate while a person with cost C2 < C1 chooses not to do so, then either

the person with cost C2 would increase expected payoff by vaccinating at the same time as the

person with cost C1 or the person with cost C1 would increase expected payoff by choosing not

to vaccinate. By the logic of Proposition 3, a person with given cost should only vaccinate when

the infection rate reaches the threshold corresponding to that cost. Given these observations,

equilibrium requires a set of lowest-cost types to vaccinate in turn when the infection rate reaches

the relevant threshold and then vaccination when the marginal-cost type is indifferent between

vaccinating and not vaccinating. Each type in ascending order of cost achieves lower expected

gain from vaccination in equilibrium (because types with higher costs of vaccination receive lower

expected gains from vaccination for each time period after vaccination and because they are not

vaccinated during periods of time when lower-type costs increase their total gains from vaccination).

If the lowest-cost type prefers to vaccinate at the appropriate time, there must be a higher-cost

type that is exactly indifferent between vaccinating and not vaccinated when the infection rate

reaches the relevant threshold (since if all previous types plan to vaccinate, the highest-cost type

woudl gain by not vaccinating). By construction, there is a unique equilibrium and it takes the

anticipated form.

The effect of a work-based mandate with heterogeneous costs is similar to the effect of that

mandate with homogeneous costs of vaccination. One again, this mandate increases the value of

vaccination beyond tM without affecting social distancing choices or future infection rates condi-

tional on vaccination by a given set of lowest-cost types. Thus, a mandate with heterogeneous costs

of vaccination induces a new set of next-highest cost types to choose vaccination. In a new equilib-

rium, some of those types may vaccinate when infection reaches the relevant threshold prior to the

time that the mandate becomes active and others may choose to vaccinate precisely at tM . The

equilibrium indifference condition only applies to the highest-cost type choosing to vaccinate as all

lower cost types strictly prefer to follow their equilibrium strategies for vaccination than to remain
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unvaccinated forever; by similar logic to the proof of Proposition, this type achieves lower expected

utility in the mandate equilibrium than in the equilibrium without a mandate, so the equilibrium

indifference condition indicates that the highest-cost types who never vaccinate in equilibrium with

or without a mandate achieve strictly lower expected utility with the mask mandate than without

it. Similarly, all other types who are induced to vaccinate by the mask mandate achieve lower

expected utility with the mandate than without it.

Proof of Proposition 6 The result follows almost directly from the following Lemma.

Lemma 2 If there is no possibility of vaccination, then pandemic fatigue results in an increase in

cumulative infections for each time t > tPF by comparison to cumulative infections in equilibrium

with the same cost function C(x) for social distancing at each time t.

First observe that by comparison of the first-order conditions in the two cases, there is less

social distancing in equilibrium at each infection level with CPF (x) than with C(x).

Step 1: If tPF occurs at a point when the infection rate is rising, then pandemic fatigue results

in an increase in the peak infection rate. Define IPF (t) as the equilibrium infection rate in the

case of pandemic fatigue. By assumption I(t) = IPF (t) for t ≤ tPF since the cost function is the

same in both cases before the onset of pandemic fatigue and then I ′PF (tPF ) > I ′(tPF ) since there is

less social distancing at a given infection rate with pandemic fatigue than without it. By a similar

argument to that above, if IPF (t1) = I(t2) > I(tPF ), there are greater cumulative infections at

time t2 without pandemic fatigue than there are at time t1 with pandemic fatigue. Thus, there are

more susceptible people remaining and less social distancing with pandemic fatigue than without

it, so IPF (t1) > I(t2), implying a greater peak infection rate with pandemic fatigue than without

it.

Step 2: For each value of remaining susceptible people that occurs after the peak level of infection

without pandemic fatigue, the corresponding infection level is higher with pandemic fatigue than

without it.

If tPF occurs when the infection rate is rising, then since the peak infection level of infection is

higher with pandemic fatigue than without it, IPF equals I∗, the peak value of I(t), twice – once

before and once after the peak infection rate with pandemic fatigue. Denote t as the time when

the peak infection rate is reached without pandemic fatigue and t∗∗PF as the second time that rate

is reached with pandemic fatigue. By assumption, IPF (t∗∗PF ) = I∗ and I ′(t∗) = 0 > I ′PF (t∗∗) since

t∗PF is the second ime that this infection rate is reached with pandemic fatigue, at which point, the

infection rate is declining. Since there is less social distancing at any infection rate with pandemic
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fatigue than without it, so I ′(t∗) > I ′PF (t∗∗) is only possible if ther there are more susceptible

people at time t without pandemic fatigue than at t∗∗PF with pandemic fatigue. Further, for each

t > t, there is also a higher infection rate corresponding to that level of cumulative infection with

pandemic fatigue than without it. If not, there must be some pair of times tA and tB such that there

are an equal number of susecptible people at tA without pandemic fatigue and at tB with pandemic

fatigue and also an equal infection rates without pandemic fatigue at tA and with pandemic fatigue

at tB. But then there is more social distancing without pandemic fatigue at the given infection

rate, the infection rates and susceptible populations must diverge once again in the two cases.

If tPF occurs when the infection rate is falling, then once again I(t) = IPF (t) for t ≤ tPF and

I ′PF (tPF ) > I ′(tPF ). By similar logic to the case where tPF < t∗, for any measure of susceptible

people reached without pandemic fatigue, the infection rate must be higher when that measure of

susceptible people is reached with pandemic fatigue.

Step 3: The cumulative infection rate is higher with pandemic fatigue than without it at each

time t.

At time tPF the infection rate curves diverge with higher infection rate with pandemic fatigue

than without it. Cumulative infections are clearly higher with pandemic fatigue than without it

throughout any time interval [tPF , tH ] such that IPF (t) ≥ I(t) given tPF ≤ t ≤ tH . If there is

some later time t such that I(t) > IPF (t), then by the result of Step 2, the number of remaining

susceptible people must be lower with pandemic fatigue than without it.

End Proof of Lemma 2

Lemma 2 indicates that pandemic fatigue reduces utility for unvaccinated people in equilibrium

from time tPF on. Since tM > t∗ by assumption, I(t) is the same with and without pandemic

fatigue until the moment of vaccination when I(t) = I∗ at t∗. For a given level of vaccination, the

future expected payoff for unvaccinated people is less with pandemic fatigue than without it.31 In

equilibrium from Proposition 3, the marginal person is indifferent between vaccination at t∗ and

remaining unvaccinated forever, so with this level of vaccination and pandemic fatigue anticipated

at future time tM , this same marginal person strictly prefers vaccination. Therefore, there must be

more vaccination at time t∗ with pandemic fatigue than without it.

31By the same logic of Lemma 2, pandemic fatigue reduces utility for unvaccinated people by comparison to the

result without pandemic fatigue assuming a fixed amount of vaccination at time t∗ with and without pandemic

fatigue.
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Proof of Proposition 7

Let tFL denote the first moment when the infection rate reaches threshold I∗FL in equilibrium

when vaccination is not possible. Let V ∗(t) denote the measure of remaining susceptible people

who choose to vaccinate at time t such that I(t) = I∗FL where V ∗(t) is continuous and well-defined

on an interval [tFL, tFL] where V ∗(tFL) = 0 and V ∗(tFL) corresponds to full vaccination at time

tFL (i.e. V ∗(tFL) is a fixed value chosen in advance to equal the measure of all susceptible people

who remain at tFL given anticipation of that level of vaccination at that time). Thus, we have

constructed a range of potential equilibrium times with exactly the amount of vaccination at given

time t so that the infection rate reaches the threshold I∗FL at that time. There must be a profitable

deviation to vaccination at tFL from a proposed equilibrium with vaccination V ∗(tFL) since by

assumption there is no equilibrium without vaccination. If all vaccination takes place at time tFL

and all remaining susceptible people vaccinate at that time, then the infection rate must be lower

than I∗FL for all t > tFL and so it is preferable not to vaccinate than to vaccinate at time tFL when

everyone else follows these strategies. The payoffs from vaccination at given time and remaining

unvaccinated are continuous in time t for this range of proposed equilibria. Since it is preferable to

vaccinate in the proposed equilibrium with vaccination at tFL and it is preferable not to vaccinate

in the proposed equilibrium with vaccination at tFL, there must be some intermediate time t∗FL

such that the expected payoffs from vaccination and remaining unvaccinated are equal at time t∗FL,

so this is an equilibrium.

Proof of Proposition 8

Following the same construction as for Proposition 7, maintain the same range of proposed

equilibria, while applying a fixed reduction in the expected payoff for not vaccinating. Vaccination

remains preferable to remaining unvaccinated in the proposed equilibrium with vaccination at time

tFL. If it remains preferable to remain unvaccinated in the proposed equilibrium with vaccination

at time tFL, then there is still a time where the payoffs from both strategies are equal, but this

time must be later than t∗FL since by construction with the reduction in payoffs from the mandate,

vaccination is preferable to remaining unvaccinated in all proposed equilibria with vaccination

at time t∗FL or before. Otherwise, if it is now preferable for everyone to vaccinate than remain

unvaccinated in the proposed equilibrium with vaccination at last possible time tFL, then there is

an equilibrium where everyone waits to vaccinate at time tFL and all remaining people vaccinate

at that time. In each of these cases vaccination is delayed by the mandate to a time subsequent to

the time of vaccination in equilibrium with forward-looking behavior and no mandate.
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C Comparative Statics of I with a Polynomial Cost Functions

With quadratic cost function C(x) = γx2/2, the first-order condition for social distancing is C ′(x) =

ItTAID with single period solution for susceptible person j satisfying γxjt = ItTAID, meaning

xj = ItTAID
γ and associated activity level Ajt = 1− x∗jt = 1− ITAID

γ . Substituting this value into

the steady state equation gives 1− ITAID
γ = 1

TAI
, with associated solution (after cross-multiplying

by γTAI or I = γ(AIT−1)
A2
IT

2D
.

We can differentiate this closed form solution to determine the comparative static effect of

any parameter on I. Since D appears only in the denominator, I is decreasing in D. Next,

dI∗/d(TAI) = γ
Sd(y−1

y2
/dy) using the change of variables y = TAI to simplify notation. Using the

quotient rule, d(y−1
y2
/dy) = y2−2y2+2y

y4
, where the sign of this derivative matches the sign of the

numerator, which is positive if 2y − y2 > 0 or y > 2. That is, the steady state I is increasing in

TAI if TAI < 2 and is decreasing in TAI if TAI > 2.

The same result holds for the more general case of polynomial costs with C(x) = γxm+1/(m+1)

so that C ′(x) = xm. in this case, the first-order condition for social distancing is xm = ITAID

with solution x = (ITAID)1/m. As for the case of quadratic costs, substituting this value into the

steady state identify AS = 1
TAI

gives 1− ( ITAIDγ )1/m = 1
TAI

or (TAIIDγ )1/m = TA1−1
TAI

. Raising both

sides to the nth power and solving for I gives TAIID
γ = (TAI−1TAI

)n, which is equivalent to

I∗ =
γ(TAI − 1)m

D(TAI)m+1
.

The formula for the steady state I∗ takes the form f(y) = K (y−1)m
ym+1 , where y = TAI and K = γ

D .

Again using the quotient rule for differentiation, df
dy = n(y−1)m−1ym+1−(n+1)yn(y−1)m

y2m+2 , which has the

same sign as my − (m+ 1)(y − 1) = m+ 1− y. That is, I∗ is increasing in y = TAI for TAI < n

and is decreasing in I∗ for TAI > m.
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D Relationship between Discrete and Continuous Time Models

Suppose that we divide each discrete time period of unit length into N equal subperiods of length

1
N each. The adjusted discount factor δN per subperiod satisfies δNN = δ so δN = δ

1
N . Assuming

infection probabilities and cost are proportional to period length, the cost of social distancing level

xn in subperiod n is 1
NC(xn) and the probability of infection in subperiod N is 1

N TAI(1− xn)In,

where In is the infection rate at the start of subperiod n. With myopic maximization, the objective

function for Person j in subperiod n is −TAI(1 − xn)InS − 1
NC(xn), which yields the identical

first-order condition to the objective function for the same level of infection in the original discrete

time model with periods of length 1. To maintain the property that the recoveries are proportional

to the current infection rate, we relax the assumption of a deterministic length of time per infection

and instead assume that each infected person recovers in the next subperiod with probability 1
N so

that the average length of infection is still one (original) period. In addition to this change from

deterministic to stochastic length infections, the continuous time model allows for the possibility

of compounding in infections, similar to the phenomenon of compound interest, with the result

that the infection rate increases at a faster rate per period without social distancing in the con-

tinuous time model than in the discrete time model even though R0 = TAI is the same in both cases.

Threshold for Perfect Vaccination:

The following calculation identifies the threshold proabability P ∗ and associated infection

threshold I∗∗ for perfect vaccination in the continuous time model without social distancing. Simpli-

fying the one period discrete time inequality Pt(D− δCV ) ≥ (1− δ)CV gives Pt ≥ CV (1−δ)
D−δCV , so P ∗ =

CV (1−δ)
(D−δCV ) and I∗ = CV (1−δ)

TAID−δCV . The continuous time thresholds correspond to the limiting values for

P ∗ and I∗ with each original length period divided into N subperiods: P ∗∗ = limN→∞
NCV 1−δ1/N
D−Cδ1/N

with solution P ∗∗ = CV ln(δ)
D−CV so that I∗∗ = CV ln(δ)

TAI(D−CV ) .

42



E Social Distancing with Linear Costs

With linear cost of social distancing, C(x) = Kx, where K is a positive constant while the benefit

of social distancing through reduced risk of infection is B(x) = TAIItDx. This linear cost structure

also results when each person has a binary choice between (1) ordinary activity / no social dis-

tancing; (2) specific pre-specified reduction in activity with social distancing. With binary choice

of social distancing actions, a mixed strategy yields proportional reductions in benefits and costs

and thus linear marginal benefits and linear marginal costs of social distancing.

A key property of this case is that the marginal benefit of social distancing TAIItD and the

marginal cost K of social distancing do not depend on x. In addition, marginal cost does not vary

with time while It is the only time-varying parameter in the marginal benefit function. Starting

from a low level of initial infection, there is no social distancing in equilibrium until the infection

rate grows to exactly the point where marginal benefit equals marginal cost of social distancing:

It = IMBC = K
TAID

, then remains at that plateau for some time. While It = IMBC , social

distancing by individuals xjt adjusts from moment to moment to maintain the infection rate at

this same level in order to maintain the equality of marginal benefit and marginal cost. Since the

susceptible population declines over time, social distancing must increase steadily while It = IMBC

to maintain It at this value. The infection rate remains at IMBC until it cannot be maintained at

this level even without social distancing (i.e. herd immunity is reached).

The comparative statics of policy interventions that influence parameters T , AI , and D are

driven by the effects of these parameters on the transition function of disease without social dis-

tancing and on IMBC . For example, an increase in T necessarily causes a reduction in IMBC , so

that an increase in transmissibility always yields a lower peak infection rate.

Incentives for vaccination follow the logic of the analysis of Proposition 3 with linear costs of

social distancing. Since vaccination is cost-effective during periods of time when the infection rate is

above a critical threshold, with homogeneous cost of vaccination, in equilibrium all vaccination takes

place at a single time. Further, the level of vaccination is determined by equilibrium indifference -

vaccination proceeds until everyone is indifferent between vaccinating at that time and remaining

unvaccinated forever.32 A vaccine mandate has the same qualitative effect with linear costs of

social distancing as in the baseline model with convex and increasing costs of social distancing. For

instance, a work-based mandate imposes costs on unvaccinated people at time tM and thereafter.

32Since vaccination does not affect any of the parameters in the marginal benefit function, it does not change the

peak level of infection but does change the cumulative infection level required for herd immunity.
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As in Proposition 4, a mandate yields an increase in vaccination rates, along with reduction in

cumulative infection rates, but no change in expected utility since it does not change expected

utility for those who vaccinate in equilibrium without a mandate.33

Similarly, with heterogeneous costs of vaccination and linear costs for social distancing in a

continuous model, vaccination proceeds with lowest-cost types choosing to vaccinate in sequence,

with each type vaccinating when the infection rate reaches the cost-effectiveness threshold for that

type. Once again, vaccination stops when the marginal person (i.e. lowest cost-type that is not

yet vaccinated) is indifferent between vaccinating and remaining unvaccinated. Since a work-based

mandate nominally reduces future payoffs for unvaccinated people beyond time tM , it induces

additional people - those with next lowest vaccination costs - to choose vaccination. That is,

the effect of a vaccine mandate with heterogeneous costs of vaccination and linear costs of social

distancing mirrors the qualitative effect of the mandate observed in Proposition 5. Gans (2021)

finds a different result for an activity-based mandate under these assumptions (linear costs of

social distancing and heterogeneous costs of vaccination) primarily because that paper focuses on

the (temporary) steady state where the infection rate is at peak level for some period of time.

33An increase in vaccination does not reduce the peak infection rate associated with linear costs but does reduce

the length of time (possibly to zero) that the infection rate is maintained at that peak level for a shorter time.
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