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Playing Divide-and-Choose Given Uncertain Preferences 

Jamie Tucker-Foltz ∗ and Richard Zeckhauser† 

Harvard University 

July 13, 2022 

Abstract 

We study the classic divide-and-choose method for equitably allocating divisible goods be-
tween two players who are rational, self-interested Bayesian agents. The players have additive 
private values for the goods. The prior distributions on those values are independent and com-
mon knowledge. 

We characterize the structure of optimal divisions in the divide-and-choose game and show 
how to efciently compute equilibria. We identify several striking diferences between optimal 
strategies in the cases of known versus unknown preferences. Most notably, the divider has 
a compelling “diversifcation” incentive in creating the chooser’s two options. This incentive, 
hereto unnoticed, leads to multiple goods being divided at equilibrium, quite contrary to the 
divider’s optimal strategy when preferences are known. 

In many contexts, such as buy-and-sell provisions between partners, or in judging fairness, it 
is important to assess the relative expected utilities of the divider and chooser. Those utilities, 
we show, depend on the players’ uncertainties about each other’s values, the number of goods 
being divided, and whether the divider can ofer multiple alternative divisions. We prove that, 
when values are independently and identically distributed across players and goods, the chooser 
is strictly better of for a small number of goods, while the divider is strictly better of for a 
large number of goods. 

1 Introduction 

Ever since Abraham and Lot divided the land of Canaan, with Abraham dividing and Lot choosing, 
the divide-and-choose method has been employed to parcel out assets. Today the method is widely 
used when partners in a real estate deal invoke their buy-sell agreement, or when siblings divide 
up an inheritance. 

Sometimes, as with the famed cake-cutting problem, the assets are continuous. Other times, 
there are separate indivisible assets, as perhaps valuables from an estate. Consider cake-cutting, 
where the cake has vanilla flling, chocolate icing, and a cherry, each element being divisible. One 
player will divide the cake; the other will then choose her piece. Posit that the two players have 
additive preferences and that fractional portions of assets take proportional fractional values. If 
the players’ preferences are known, the divider arrays the assets (flling, icing, cherry) in order of 
the ratio of his value to her (the chooser’s) value. Just enough low-ratio assets are placed in pile 2 
to assure that the chooser selects it, leaving the divider the high-ratio assets in pile 1.1 Only one 
asset will generally need to be divided fractionally; in knife-edge situations it could be none. 

∗ jtuckerfoltz@gmail.com 
†richard zeckhauser@hks.harvard.edu 
1Throughout this paper, we assume without loss of generality that “pile 1” is the divider’s preferred pile. 
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Or consider, as a more consequential example, partners in a real-estate company with a buy-
sell arrangement. As is common, after a specifed period of years, either partner can trigger the 
arrangement by creating a two-pile division. Pile 1 might consist of asset Q and a required payment 
of $1.5 million. Pile 2 would contain the remaining asset, R, and receipt of $1.5 million. Partner 
A launches as the divider. Partner B must then choose between the two piles. 

In real life, the players rarely know each others’ preferences. The cake divider will know his 
own preferences, but will only have a feel – that is a Bayesian prior – for how the chooser values 
flling to icing to cherry. While the divider can think in terms of expected ratios, he will remain 
uncertain of the chooser’s total value for any two piles. The divider’s optimal strategy will weigh 
the disadvantages of putting fewer goods (or lower amounts of divisible goods) in pile 1 against the 
likelihood that the chooser picks pile 1. How that trade-of should be handled is the subject of this 
paper. 

1.1 Our contributions 

Our central contribution is to analyze the divide-and-choose game when information is asymmetric. 
That is, the players’ values are private information, though the priors for these values are common 
knowledge. This is the typical setup for self-interested players in Bayesian games. Section 2 presents 
our model for divide-and-choose. 

The literature on divide-and-choose games focuses overwhelmingly on the case when preferences 
are known, though real-world situations rarely meet that standard. In the comforting land of known 
preferences, the divider has a simple optimization task. He simply allocates goods based on the 
ascending ratio of his own value to the chooser’s value until the chooser just picks pile 2. In 
sharp contrast, once uncertainty enters, a strategic Bayesian divider generally faces a complicated 
optimization problem, potentially with a myriad of local optima. In Section 3 we show that such 
complexities can arise even for extremely simple priors, such as independently and identically 
distributed (i.i.d.) normal and two-point discrete distributions. 

This complexity arises because it is often benefcial to divide more than one good.2 To take 
our cake analogy, if a divider prefers flling and suspects that the chooser has a high value for both 
the icing and the cherry, pile 1 may optimally consist of 100% of the flling, plus 59% of the icing 
and 31% of the cherry. By ensuring that pile 2 contains a bit of icing and cherry, he decreases the 
probability that the chooser will opt for the divider’s preferred pile 1. In Section 4 we investigate 
the divider’s incentive to diversify his risk by dividing several goods (or, for indivisible assets, using 
a lottery to conduct such divisions). Even for a risk-neutral divider, diversifcation is warranted 
for a wide range of prior distributions. Furthermore, we show that, when the relevant goods are 
divisible, risk-aversion increases the extent to which the divider should diversify. These results still 
do not determine which goods should be split between the two piles. We show that simple rules 
can lead the divider astray. 

The apparent lack of structure to the divider’s optimization problem suggests that it may be 
computationally intractable in general. One of our main contributions, however, is a method that 
efectively accomplishes the task for independent normal priors. That method efciently computes 
divisions that yield expected utility that comes arbitrarily close to the maximal expected utility 
(Section 3.2). Formally, we prove that this algorithm is a fully polynomial-time approximation 
scheme. We also present an algorithm that solves the case of discrete priors, which is practical 
when the number of possible chooser types is small. 

2With known preferences, to secure equality of the chooser’s total value, at most good need be divided between 
the two piles. 

2 



Finally, in Section 5 we analyze the expected utilities of the divider and chooser under a range 
of circumstances. For example, if both players’ values are drawn from the same distribution, which 
player is better of a priori? With known preferences, it is far preferable to be the divider. With 
signifcant uncertainties about the players’ values of the individual goods, the chooser is better of 
when there are few goods, but the advantage tips to the divider as the number of goods increases. 
The divider’s utility increases notably if he is allowed to make multiple alternative ofers to divide 
the goods in diferent manners. Surprisingly, even in the case of i.i.d. priors, the divider’s ability 
to make multiple ofers can decrease the chooser’s expected utility. 

Our Conclusion, Section 6, presents a number of open questions that emerged from this analysis. 
It closes by stressing that although our focus has been on theory and computational methods, 
the analysis is widely applicable in real world contexts. The divide-and-choose method, or close 
analogues, though rarely identifed that way, are widely used in practice. Take-it-or-leave-it ofers 
and buy-and-sell agreements between business partners are salient examples. 

1.2 Related work 

The divide-and-choose method features prominently in the literature on fair division. In the cake-
cutting model [20], agents are assumed to have additive, divisible preferences over the unit interval 
[0, 1] (the “cake”) and a feasible allocation is a partitioning of [0, 1] between the players, where each 
player’s part of the allocation is a fnite union of intervals. With two players, the divide-and-choose 
method is particularly useful in this model for the following reasons: 

(i) If the frst player divides the cake equally, the allocation will be envy-free, meaning that the 
players each value their own piece of cake the highest. 

(ii) The protocol can be implemented by asking the players simple queries. 

Extensions have also been discovered for 3 or more players [6, 2]. These methods require several 
rounds of dividing and choosing, but ultimately satisfy the same two properties. Another major 
line of work studies deterministic allocations of indivisible goods, in which case envy-freeness is 
sometimes not feasible. Think of three goods each valued roughly the same by both players. They 
can at best be divided 1 and 2, so the divider will generally be envious. Hence, various natural 
relaxations have been studied [8, 12]. 

The fair division literature has largely focused on fnding mechanisms satisfying axiomatic 
properties such as envy-freeness, efciency, etc., when players do not behave strategically. A handful 
of works consider the objective of strategy-proofness as well, both for divisible [11, 10, 4, 5, 9] and 
indivisible [3, 1] goods. These works largely draw on the mechanism design perspective, studying 
questions such as, what is the optimal worst-case utility approximation to the socially optimal 
outcome under the constraint of strategy-proofness? 

Our work is more in the spirit of Clausewitz the strategist than Solomon the arbitrator; we are 
not interested in fnding mechanisms to implement socially desirable outcomes. Rather, we ask how 
strategic players should actually behave to maximize their personal welfares. Issues of welfare and 
efciency enter our analysis, particularly how those issues are afected by some simple extensions 
of the divide-and-choose game. However, our goal is not to modify the game to bolster its fairness 
or efciency, but rather to analyze the efects from a descriptive perspective. There is a small 
experimental literature on strategic behavior under various cake-cutting protocols; for instance, see 
Kyropoulou, Ortega, and Segal-Halevi [18]. On the theoretical front, however, much less is known. 
We are aware of one prior work, by Delgosha and Gohari [14], that studies optimal strategies in an 
environment where players may learn about each other’s preferences through repeated interactions. 
Our interest is in the more common setting of one-shot interactions. 
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Our problem bears many similarities to the problem of optimal pricing of multiple goods [13]. 
In that case, the seller (the divider) must post optimal prices (a division of goods) taking into 
account the uncertainty over the buyer’s (chooser’s) value. We may think of the divider as ofering 
the chooser a bundle of goods in one of the piles, hoping that the chooser takes that pile and leaves 
the remaining (more valuable goods to him) to the divider, just as a seller hopes that the buyer will 
accept a given bundle at the designated posted price. Of course, the two settings are not entirely 
isomorphic, as there is no money being transferred; instead the divider’s utility is afected in a 
more subtle way. A further diference is that the divider is constrained to ofer only a single bundle 
of goods to the chooser, whereas a seller of multiple goods can (and often should) post several 
diferent options. Restricting the number of ofers has also been considered in the literature on the 
optimal pricing of multiple goods [16, 17]. In Section 5.2 we consider a realistic extension of the 
divide-and-choose game that essentially amounts to relaxing the constraint of having only a single 
bundle. 

A key concept we discuss is the critical ratio of a good, which we defne to be the ratio of the 
divider’s value to the expectation of the chooser’s value. This is a ubiquitous notion in contexts 
from hypothesis testing to cost/efectiveness analysis (see, for example, Weinstein and Zeckhauser 
[21]). In the case where the divider has complete knowledge of the chooser’s preferences, the 
divider places the goods with the highest critical ratio in pile 1 and those with the lowest critical 
ratio in pile 2. He determines the cutof so that the chooser just picks pile 2. The optimality 
of this strategy in the setting of cake-cutting is noted by H. P. Young [22], as well as Brânzei, 
Caragiannis, Kurokawa, and Procaccia [7]. One of the key conceptual takeaways from this paper is 
that uncertainty over preferences notably complicates the task of computing optimal divisions in a 
way that is not characterized by critical ratios. 

Model 

There are two players: the divider (D) and the chooser (C). There are n divisible goods, which 
we number from 1 to n, writing [n] := {1, 2, 3, . . . , n} for the set of goods. We may also think of 
the goods as indivisible, in which case we allow the divider to fractionally allocate goods between 
the piles via lotteries that are resolved after the chooser has chosen her pile. A player’s value is 
simply the sum of the values of the goods received. Players are risk-neutral, except in Section 
4.2 on risk aversion. For each i ∈ [n], we denote the respective private values of good i to the 

D
i and gCidivider and chooser by g , which are drawn independently from respective distributions 

GD
i 

C
i . 

D := (gD 
1 , g D 

2 
D
n 

Cand G More compactly, we denote the value vectors g ) and g :=, . . . , g 
(gC 

1 , g C 
2 

C
n ), which are drawn from respective distributions GD := GD 

1 
D 
2 · × GD

n× G and× · ·, . . . , g 
GD := GC 

1 × G C 
2 × · · · × G Cn . The divide-and-choose game proceeds in three steps. 

D
i ∼ GD

i and the chooser privately observes (i) For each good i, the divider privately observes g 
gCi ∼ G Ci . 

(ii) The divider chooses a division of the goods, which is a vector p = (p1,p2, . . . ,pn) ∈ [0, 1]n . 
We refer to pile 1 as the allocation consisting of pi of each good i and pile 2 as the allocation 
consisting of (1 − pi) of each good i. 

(iii) The chooser picks her higher-valued pile, namely pile 1 or pile 2, for herself. The other pile 
goes to the divider. 
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Formally, the payofs are defned as follows. If the chooser picks pile 1, then the divider receives a 
payof of Xn 

D D
iu := (1 − pi)g 

i=1 

and the chooser receives a payof of X 
i=1 

On the other hand, if the chooser picks pile 2, then the divider receives a payof of 

n 
C C

i:=u pig . 

u D := 
X 

pig 
i=1 

n 
D
i 

and the chooser receives a payof of 

X 
:= (1 − pi)g 

n 
C C

i .u 
i=1 

To facilitate understanding, we refer to pile 1 as the pile that the divider would prefer to have for 
himself, an assumption that is without loss of generality (see Lemma 3.2). Given a division p, we 
refer to the probability that the chooser picks pile 1 as P . 

Thus, the game is completely parameterized by the value distributions GD
i and GC

i . We focus 
on the following distributions: 

• Normal priors: The value for good each i is drawn from N (µi, σi) for some mean µi ∈ R and 
standard deviation σi > 0. 

• Discrete priors: The value for each good i is drawn from an arbitrary distribution over R 
with fnite support. 

• Uniform priors: The values for all goods are drawn i.i.d. from the uniform distribution on 
[0, 1]. 

D
iThroughout this paper we often assume that each g has been fxed, in which case the distri-

bution GD
i 

D
i 

D
iis irrelevant. Given fxed values of g , we defne the critical ratio of good i to be g 

C
i ∼ G Ci .divided by the expectation of g 

Note that our model allows for goods with potentially negative values (i.e., “bads”). With 
normal priors this will happen with some nonzero probability, though in most of our examples the 
mean is sufciently large to render this probability negligibly small. We only discuss critical ratios 
in the context where all means are positive. 

We later consider extensions of this game whereby the divider may simultaneously propose 
multiple divisions, allowing the chooser to select whichever she wishes. We introduce notation for 
this setting when needed. 

Our solution concept is that of a subgame-perfect, Bayes-Nash equilibrium. Without loss of 
generality we need only consider pure strategies for both players, since at no point can either player 
beneft from inferring information about the other player’s type from their actions. We make a 
minor additional technical assumption: indiference is always broken in favor of the other player. 
This is only necessary for knife-edge cases in some of our theorems. In practice, we would expect 
optimal divisions and optimal pile choices to be unique, rendering this assumption unnecessary. 
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3 Computing optimal divisions 

D
n . How should he use that infor-The divider frst observes his values for the n goods g1 , g2 , . . . , g 

mation together with the known priors on the chooser’s values to determine his optimal division? 
We frst establish some basic, general properties of the equilibria of the divide-and-choose game. 
We then present algorithms to determine the divider’s optimal division for both normal priors and 
discrete priors. 

We begin with the following observation, which, to use terminology from the fair division literature, 
says that all equilibria satisfy proportionality for the chooser and expected proportionality for the 
divider. In other words, both players can expect to take away at least half of their total values. 

D 

3.1 The general of optimal divisionsstructure 

Lemma 3.1. In equilibrium of the divide-and-choose the following hold.any game, 

D 

D C(i) For any realizations of g and g , 

nX 
2 

i=1 

1C ≥u 

E [u D] ≥ 
1 

g Ci . 

D(ii) For any realization of g , 
nX 

i=1 

g Di . 
2C ∼GCg 

nnn 

Proof. To prove (i), observe that the average utility from the chooser’s two options is !X X X1 1 
pig Ci + (1 − pi)g Ci = g ,

2 2 

nn 

i=1 i=1 i=1 

so at least one of the options must yield at least this utility. To prove (ii), observe that the division� �
1 1 1p = 2 , 2 , . . . , yields utility 2 X X� � 

1 1 
g Di 

D
i = g

2 2 

n 

i=1 i=1 

when the chooser picks pile 2 and utility 

X� � nX 
= g 

1 1D
i 

D
i1 − g

2 2 

n
i 

i=1 i=1 P 
when the chooser picks pile 1. As the divider always has a strategy guaranteeing utility 1 

2 =1 g
D
i , 

nn 

at equilibrium he must receive at least that utility in expectation. 

We refer to the quantities X X1 1 
andg Di g Ci 

C
i 

2 2 
i=1 i=1 

as the respective baseline utilities of the divider and chooser. 
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It is convenient to consider the divider’s optimization problem, not employing the pi variables 
taking values in [0, 1], but instead in terms of the auxiliary variables 

qi := 2pi − 1 = pi − (1 − pi), (1) 

taking values in [−1, 1]. For reference, the inverse of this correspondence is 

qi 1 
pi = + . (2)

2 2 

We frequently refer to a division as p or q interchangeably. 

Lemma 3.2. A divider-optimal division with the following two properties always exists. 

• The divider weakly prefers pile 1: 
nX 

D qig ≥ 0. (3)i 
i=1 

• The chooser is weakly more likely to pick pile 2: " # 
nX 1CP := Pr qig ≥ 0 ≤ . (4) 

gC ∼GC i 2 
i=1 

Furthermore, the divider can achieve a strictly higher interim expected utility than his baseline if 
and only if both of these inequalities can be made strict. 

Proof. We frst show that optimal divisions exist. Using Equation (2), We may express the divider’s 
expected utility as ! ! 

n nX X 
D DE[u D] = P (1 − pi)g + (1 − P ) pigi i 

i=1 i=1! ! 
n � � n � �X Xqi 1 D qi 1 D = P 1 − − g + (1 − P ) + gi i2 2 2 2 

i=1 i=1 
n n n n n nX D X D X D X D X D X Dg g qi g qi g g qi gi i i i i i = P − P + + − P − P 

2 2 2 2 2 2 
i=1 i=1 i=1 i=1 i=1 i=1 

n � � nX D Xgi 1 D = + − P qig . (5)i2 2 
i=1 i=1 

The optimal utility is attained by maximizing Equation (5) over the variables q1,q2, . . . ,qi ∈ [−1, 1]. 
1 2Let u ∗ denote the supremum of this optimal utility, and consider a sequence of divisions q , q , q , . . . 

∗ ∗whose expected utilities converge to u . Let q ∈ [−1, 1] be the division in the limit of a convergent 
∗ ∗subsequence. We claim that q yields the optimal utility u . Indeed, since Equation (5) is a 

continuous function of q and P , this could only fail if there were a discontinuity in the function 
∗P (q) at q . Such a discontinuity must be the result of a set of chooser types S of positive probability 

∗ mass where all types in S pick the divider’s strictly preferred pile at q and the other pile after 
∗ an arbitrarily small deviation from q . But this means that all chooser types in S are indiferent 

between the two piles, which contradicts our assumption that an indiferent chooser breaks her 
∗ ∗indiference in favor of the divider. Thus, q attains the optimal utility u . 
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If a given division does not satisfy Equation (3), then sending each qi 7→ −qi will satisfy it. This 
corresponds to sending pi 7→ 1 − pi, so it is an equivalent division up to renaming the piles. Thus, 
it is without loss of generality to assume (3) holds in an optimal division. 

1If P > 2 , then, since the fnal sum in Equation (5) is nonnegative by (3), we have 

n DX 
D] ≤ 

giE[u ,
2 

i=1 

so the divider is no better of than his baseline utility. Therefore, the divider is at least equally� �
1 1 1well-of setting p = 2 , 2 , . . . , , in which case it is without loss of generality that P ≤ 12 .2 

To prove the fnal statement, simply observe that the fnal term in Equation (5) is nonzero if 
and only if the inequalities in both Equations (3) and (4) are strict. 

3.2 Normal priors 

In the case where the divider has normal priors over the chooser’s value, we can characterize exactly 
when the inequalities from Lemma 3.2 will be strict. 

Proposition 3.3. Suppose each GC is a normal distribution with positive mean, and suppose all i 
divider values are positive. Then the optimal division yields baseline utility if and only if all goods 
have the same critical ratios. 

Proof. Suppose frst that all goods have the same critical ratio r. Then observe that, for any 
division q, " # 

nX1 1CP > ⇐⇒ Pr qig > 0 >i2 2 " i=1 # 
n nX X 

C C⇐⇒ qig > 0 (since qig is normally distributed) E i i 
i=1 i=1" # 
n CX g⇐⇒ E qig D i > 0i D 

i=1 � g �i nX CE giD⇐⇒ qig > 0i Dgi 
n

i=1 X 
D⇐⇒ r qig > 0i 

i=1 
nX 

D⇐⇒ qig > 0 (since r is positive by assumption).i 
i=1 

In other words, the chooser is strictly more likely to pick pile 1 if and only if the divider strictly 
prefers pile 1. That it turn implies that it is not possible to achieve a higher-than-baseline utility 
by the fnal statement of Lemma 3.2. 

Now suppose that two goods j and k have diferent critical ratios, i.e., GjC has mean µj and GkC 

has mean µk such that, 
g gDD 
j k> . 
µj µk 
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D DLet α := max{g + µj , g + µk}, let q be the division such thatj k 

gD + µk 
qj := k 

α 
gD + µjj

qk := − 
α 

qi := 0 (for all i ∈ [n] \ {j, k}). 

1Note that qi = 0 corresponds to pi = 2 , so in words, this is a division where good j is slightly more 
in pile 1, good k is slightly more in pile 2, and all other goods are divided equally between the two 
piles (scaling by α ensures |qj | , |qk| ≤ 1). Then 

n D D DX gD + µk g + µj µkg − µj gD D D k D j D j k 
qig = qj g + qkg = g − g = > 0,i j k j kα α α 

i=1 P n Cso the divider strictly prefers pile 1. Also, the random variable , which determines whether i=1 qigi 
the chooser picks pile 1, is normally distributed. It has mean 

n D D DX gk
D + µk gj + µj gk µj − gj µk 

qiµi = qj µj + qkµk = µj − µk = < 0,
α α α 

i=1 

which implies that " # 
nX 1 

P = Pr qig C > 0 < .i 2 
i=1 

Therefore, it follows from the fnal statement of Lemma 3.2 that the divider achieves a utility that 
is higher than his baseline. 

We remark that this result does not extend to some other natural families of distributions, for 
instance, discrete 2-point distributions. In fact, even when all chooser priors and divider values are 
identical, there may exist bizarre “symmetry-breaking” divisions that yield utility higher than the 
divider’s baseline; see Proposition 4.1. 

We now turn to prove the frst main result of this paper: an efcient algorithm to compute a 
near-optimal division given the divider’s values for each good and normal priors for the chooser 
values. The procedure is presented formally as Algorithm 1; frst we give an informal explanation. 
With a bit of manipulation, we may rewrite the divider’s optimization problem as maximizing 

nX D 
iE[u D] = 
g 

(P (1 − qi) + (1 − P ) (1 + qi))
2 

i=1 

over the variables q1,q2, . . . ,qn ∈ [−1, 1]. This is almost a linear program. Indeed, the only nonlin-
earities arise from the P term, which is itself a function of the qi. The key idea is to try to guess 
the optimal P by trying several diferent values, uniformly spread out between 0 and 12 . For each 
guessed value of P , we add a constraint that the chooser picks pile 1 with probability at most P . 
For normal priors, this turns the linear program into a quadratic program, yet it is still convex, so 
can be readily solved in polynomial time. The only catch is that we lose exact optimality, picking 
up an error term from potentially missing the exact optimal value of P . Fortunately, we can use the 
structure of the objective function to bound this error in a way that gives a very strong guarantee 
of approximate optimality. 
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In what follows, Φ denotes the standard normal cumulative distribution function. 

Algorithm 1: Computes an approximately optimal division given the divider’s values and 
independent normal priors for the chooser’s values. 

D D DInput: Divider values g1 , g2 , . . . , g (not all zero), prior means µ1, µ2, . . . , µn,n 
corresponding standard deviations σ1, σ2, . . . , σn, and an additive error bound γ 
for the divider’s optimal utility. 

Output: An approximately optimal division p1,p2, . . . ,pn. 
γ 

1 δ ← P 
=1|g 

2 P ← 12 
3 u ← −∞ 

n
i 

D
i | 

4 while P > 0 do 
5 uP , q1,q2, . . . ,qi ← optimal solution to the following program CP : 

nP g 
2 

i=1 

D
imaximize uP = (P (1 − qi) + (1 − P ) (1 + qi)) 

subject to 

−1 ≤ qi ≤ 1 
nP 

Dg qi ≥ 0,i 
i=1 s 

for all 1 ≤ i ≤ n, 

nP 
µiqi ≤ Φ−1(P ) 

nP 
σ2 2 
i qi 

i=1 i=1 

if uP > u then 
6 u ← uP 

7 for i ← 1, 2, . . . , n do 
8 pi ← qi+1 

2 
9 end 

10 end 
11 P ← P − δ 
12 end 
13 return (p1,p2, . . . ,pn) 

Lemma 3.4. Algorithm 1 runs in polynomial time in the values of n and 
n
i 

P 
=1 
γ
|gDi | . 

Proof. Observe that there are at most 

1 
P n 

i=1 
Dgi = 

2δ 2γ 

iterations of the main loop. Thus, all that remains to show is that each iteration takes polynomial 
time in n. This follows from the observation that each CP is a convex program. To see this, 
note that the objective function is clearly linear in the qi variables, and all constraints except 
for the fnal one are linear as well. The fnal constraint is not linear, but we claim that the set 
S ⊆ Rn of points satisfying the constraint is convex. Suppose q := (q1,q2, . . . ,qn) ∈ S, and let qe := 

q2 qn(σ1q1, σ2q2, . . . σnqn). Then, for any positive real number c, the scaled vector cq = ( q1 , , . . . , )c c 
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lies in S as well, since 

n n 

µi(cqi) = c · µiqi 
i=1 i=1 

XX 
vuut n 

2σ2 (since q ∈ S)i qi 
i=1 

X 
≤ c · Φ−1(P ) 

= Φ−1(P )c ||qe||2 (where ||·||2 denotes the Euclidean norm) 

= Φ−1(P ) ||cqe||2 (by linearity of the Euclidean norm) vuut= Φ−1(P ) 
n 

σ2(cqi)2 .i 
i=1 

X 
Therefore, S is a cone centered at the origin, which is a convex set. 

We remark that, beyond being efcient in theory, this algorithm proves to be fast in practice. 
We implemented this algorithm using Gurobi [15] to solve CP as a convex quadratic program and 
used it to verify many of the examples in this paper. 

Lemma 3.5. Algorithm 1 fnds a division yielding divider utility within an additive γ of the optimal 
divider utility. 

The proof is long and technical, so is deferred to Appendix A. 
With a bit more work, we can translate this additive approximation guarantee into a multi-

plicative one. Formally, we can show that Algorithm 1 is a fully polynomial-time approximation 
scheme (FPTAS) for maximizing divider utility, which means that, on instances where the optimal 

∗ ∗value is u > 0, for any ε > 0, it can fnd a solution with objective value at least (1 − ε) · u in time 
polynomial in both n and 1 

ε . P
D ε n D≥ 0, running Algorithm 1 with γ :=Theorem 3.6. When all g is a fully polynomial-· i=1 gi i2 

time approximation scheme with approximation parameter ε. 

Proof. Given this choice of γ, it follows from Lemma 3.4 and the fact that gD = gD that the i i 
algorithm runs in polynomial time in n and 1 

ε . Let u denote the utility of the solution returned by 
∗the algorithm, and let u denote the optimal utility. By Lemma 3.1, 

X 

X 

n 

2u ∗ ≥ g D .i 
i=1 

Combining this inequality with Lemma 3.5, we have 

n
ε ε 

u ≥ u ∗ − γ = u ∗ − D ∗ − ∗ ∗ ≥ u · 2u = (1 − ε) · u· g .i2 2 
i=1 

as desired. 
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Divider Expected Utility as a Function of P: Local and Global Optima

Figure 1: An instance with four goods where there are four locally-optimal divisions with a variety 
of diferent values of P . The globally optimal value of P is indicated as P ∗ . The divider values 

D 
1 = 3, gD 

2 2, gD 
3 = 1, gD 

4 
C 
1 = N (5, 1),1.2, and corresponding chooser priors are Gare g = = 

GC 
2 

C 
3 

C 
4 = N (9.5, 1), G = N (13.6, 9.8), G = N (95, 169). 

One might wonder why it is necessary to sequentially search for the optimal value of P . If the 
optimal divider utility given P were a single-peaked function of P , then it would be possible to 
rapidly compute an optimal division through a ternary search over P . However, this is not always 
the case, as Figure 1 demonstrates. In fact, local optima can occur even in very simple scenarios: 

Proposition 3.7. Even for n = 3 goods, there exist positive divider values and normal chooser 
priors with identical positive means such that the divider’s interim expected utility, as a function of 
the division p, has a local maximum that is not a global maximum. 

Proof. This was discovered and verifed via computational methods, so here we just explain the 
Suppose GC 

1 = N (100, 1), GC 
2 = N (100, 1), GC 

3 = N (100, 65), andexample at a high level. 
gD 
1 = 11, g D 

2 = 9, gD 
3 = 1. There are two locally-optimal strategies. Approximately, they are: 

(i) Divide the high-variance good 3 evenly between the two piles, so that it has no infuence 
on the probability the chooser picks pile 1. Then execute the optimal perfect-information 
strategy, putting most of good 1 in pile 1 and all of good 2 in pile 2. The risk that the chooser 
picks pile 1 is very low, at P ≈ 0.015. 

(ii) Put good 3 entirely into pile 2, so that it is possible to extract a substantial amount of both 
goods 1 and 2 in pile 1. The risk that the chooser picks pile 1 is moderate, at P ≈ 0.21. 

As we verifed using Algorithm 1, strategy (i) yields utility of approximately 11 (as one would 
expect), whereas, despite the risk in relying on the high-variance good, strategy (ii) yields utility 
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of approximately 12. However, intermediate strategies yield utilities less than either one of these 
extremes. 

3.3 Discrete priors 

Now we turn to the case where the prior GC is an arbitrary distribution supported on a fnite set 
C{x1,x2, . . . ,xℓ} ⊆ Rn . For each 1 ≤ j ≤ ℓ, we write rj for the probability that g = xj . In this case, 

we can exactly solve for the optimal division, but the algorithm is not efcient. The main idea is 
similar to that of Algorithm 1: we try to guess the set of chooser types who pick pile 1; we then use 
linear programming to compute the optimal division with respect to the additional constraints that 
entails. Since there are an exponential number of subsets in contention, this means the algorithm 
is only practical when the number of types ℓ is small. This algorithm has the additional advantage 
that it works even when players’ values are correlated across multiple goods. 

Algorithm 2: Computes an optimal division given the divider’s values and an arbitrary 
discrete prior for the chooser’s values. 

D D DInput: Divider values g1 , g2 , . . . , g (not all zero), possible chooser value vectors n 
x1,x2, . . . ,xℓ ∈ Rn , and corresponding probabilities r1,r2, . . . ,rℓ. 

Output: An optimal division p1,p2, . . . ,pn. 
1 u ← −∞ 
2 for S ⊆ [ℓ] doP 
3 P ← j∈S rj 
4 if P ≤ 12 then 

′ 5 u , q1,q2, . . . ,qi ← optimal solution to the following linear program CS : 

nP D
ig′ maximize u = (P (1 − qi) + (1 − P ) (1 + qi))2 

i=1 

subject to 
−1 ≤ qi ≤ 1 
nP 
(xj )iqi ≤ 0 

i=1 

for all 1 ≤ i ≤ n, 

for all j ∈ [ℓ] \ S 

′ if u > u then 
6 ′ u ← u 
7 

8 

9 

for i ← 1, 2, . . . , n do 
pi ← qi+1 

2 
end 

10 end 
11 end 
12 end 
13 return (p1,p2, . . . ,pn) 

Proposition 3.8. Algorithm 2 fnds a division yielding optimal divider utility in time poly(n) for 
any constant ℓ. 

∗ ∗ ∗ ∗Proof. Let p = (p1, p2, . . . , p ) denote an optimal division from Lemma 3.2, with divider utility n 
∗ u and probability P ∗ that the chooser picks pile 1. Let S∗ ⊆ [ℓ] denote the set of chooser types 

C ∗j such that, when the chooser has value vector g = xj , she chooses pile 1 given the division p . 
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P∗Note that the probability the chooser picks pile 1 given p is P ∗ = j∈S∗ rj ≤ 2
1 . It is not too hard 

to see that CS fnds the optimal division given the additional constraint that all types j ∈/ S pick 
pile 2, assuming further that all types j ∈ S will pick pile 1 (which can only lower the objective 

′ value). In particular, this means that u is always at least the utility from some feasible division, 
∗and on the iteration of the main loop when S = S∗ , Algorithm 2 will successfully fnd p = p , and 

∗the optimal utility will be u = u . The claim about running time follows from the observation that 
each CS is a linear program. 

4 Diversifcation: Why and how 

To maximize his expected utility, the divider must balance two objectives when he allocates goods 
to the piles: maximizing the returns from the more-desirable pile 1, and reducing the risk that the 
chooser picks pile 1. The divider trades of between these objectives by transferring just the right 
amount of value into pile 2. One might naturally expect that the divider’s strategic framework from 
the case of known chooser preferences would still be optimal. Namely, the divider could start with 
all goods in pile 1 and transfer goods into pile 2 in order of ascending critical ratios, thus creeping 
along the risk-return frontier to fnd the optimal utility. In the end, at most one good would need 
to be divided. 

However, another strategic factor – diversifcation – can reduce the risk to the divider that 
the chooser will pick pile 1. In the investment context, investors know they can push the entire 
risk-return frontier outwards by investing in many assets. This analogy applies quite well to our 
setting: given that the chooser is more likely to pick pile 2 (which is always the case by Lemma 
3.2), when the expected diference in the chooser’s values for the two piles fxed, she is more likely 
to pick pile 2 if the variability of the diference is lower. Thus, the optimizing divider should not 
merely transfer a sufcient amount of value into pile 2, but should also reduce variance in this value 
by dividing multiple goods between the two piles, thereby diversifying the piles to reduce risk. In 
this section, we analyze how this incentive afects the divider’s optimization problem. 

If goods are indivisible, diversifcation can still be achieved by using lotteries. Consider goods 
1 and 2 (of many others), for which the chooser’s values are either 0 or 1, equally likely. If good 1 
is put in pile 1 and good 2 in pile 2, then there is a 25% chance that the chooser’s value of those 
two assets will be greater in pile 1 than in pile 2. By contrast, if each good is put in pile 1 with 
a 50% chance, and pile 2 with a 50% chance, then the chooser – before the lotteries have been 
conducted – will always value the probabilistic assets in the piles equally. We emphasize here that 
the “diversifcation” imperative under examination is not aimed at reducing the risk in the lotteries 
for each good, but instead at reducing the risk that the chooser picks pile 1 before lotteries are 
resolved. If the divider is risk-averse, then the incentive to diversify over risk in the chooser’s action 
can be at odds with an inherent aversion to using lotteries. This is a subtle issue we address briefy 
in Section 4.2, when we discuss risk-aversion given both divisible goods and indivisible goods that 
can be divided via lotteries. 

4.1 Which goods get divided? 

We know that the divider can fnd the optimal division of goods in the normal and discrete cases 
using respectively Algorithm 1 and Algorithm 2. Here we provide a qualitative explanation of how 
goods are optimally allocated between the two piles. 
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The Optimal Division of Six Goods with Five Goods Split

Figure 2: An example with six goods where it is optimal for the divider to split fve of the goods 
between the two piles. Here gD 

1 = 101, gD 
2 = 102, gD 

3 = 103, gD 
4 = 104, gD 

5 = 105, gD 
6 = 200, and 

the chooser’s prior for each good is GC
i = N (10, 1). The optimal value of P is 0.034. 

We begin by observing that it may be optimal for the divider to split all but one good, as Figure 
2 illustrates. The most valuable good – worth about twice as much as any of the others – is placed 
entirely in pile 1, while the other goods are all placed mostly in pile 2 but split between the two 
piles in order to reduce variance, pushing P extremely close to zero. This optimal division was 
computed using Algorithm 1.3 

This result starkly contrasts with the case of complete information. As we discussed in Section 
1.2, a divider with perfect information never needs to split more than one good between the piles. 

Although the frst fve goods are diversifed, the ones the divider values more tilt more toward 
pile 1 than the ones the divider values less. This suggests an intuitive rule by which the divider 
could be guided in constructing his optimal division. Recall that, in the absence of uncertainty, 
the fraction pi of good i placed in pile 1 is monotonically increasing in the critical ratio of good i. 4 

3Technically speaking, the division output by Algorithm 1 is not guaranteed to be “close” to the globally optimal 
division, even though the objective values must be similar. However, for the divisions in Figures 2, 3, and 6, we did 
verify that the optimal division, p ∗ , must be close to the computed division shown in the fgure, p, in the sense that 
||p ∗ − p|| ≤ 0.05. (For Figure 6, we only obtained 0.1 instead of 0.05.) This is a close enough approximation to∞ 
conclude that the properties we are claiming hold in these two examples. We computed this by re-running Algorithm 
1 with an additional constraint that each pi be bounded away from the value in the original computed solution by 0.05. 
We did this separately for each good i, and each direction of the deviation (bounded away from above/below). For 
a small enough value of the error parameter γ, we can conclude that, in each of these 2n constrained optimizations, 
the optimal objective value decreases by more than γ. Thus, the globally optimal solution p ∗ cannot respect any of 
these additional constraints, implying that ||p ∗ − p|| ≤ 0.05. 

4Indeed, that fraction is zero or one, except for 
∞ 
a single good intended to keep the piles even in value to the 

chooser. 
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Does this monotonicity result survive in the presence of uncertainty? 
While it seems intuitive that prioritization by critical ratios would carry over to the uncertainty 

case, it will not if the priors have diferent variances. Even if a good has a very large or very 
small critical ratio, its variance may be so large to make it too risky to place it mostly in one pile. 
Thus, when variances difer among goods, monotone divisions may be suboptimal. Surprisingly, we 
observe that this may happen even with normal priors with identical variances. 
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An Optimal Division That Is Non-Monotonic in Critical Ratios

Figure 3: An instance with three goods where, despite all prior variances being the same, the pi 
are not monotone in the critical ratios. Here gD 

1 = 1, gD 
2 = 2, gD 

3 = 3, and corresponding chooser 
priors are GC 

1 = N (100, 5), GC 
2 = N (198, 5), GC 

3 = N (100, 5). The optimal value of P is 0.005. 

Figure 3 shows the optimal division in a simple example with three normally-distributed goods, 
again computed using Algorithm 1. Even though good 2 has a higher critical ratio and the same 
variance as good 1, the optimal division sets p2 < p1. The primary reason is that the value of good 
2 to the chooser, in absolute terms (rather than relative to the divider’s value), is so large that, in 
order to ensure that the value of P stays low, raising p2 would require lowering p1 by such a large 
amount that the divider would be worse of. 

This example is surprising given the small amount of variance relative to the mean of each good. 
While in the polar case of zero variance, monotonicity in the critical ratios is optimal, a sliver of 
uncertainty dramatically breaks this result. 

A further departure from the case of certain preferences is that the divider can achieve a higher-
than-baseline utility even when all critical ratios are the same – in fact, even when the chooser’s 
prior distributions are identical and the divider values every good identically. Clearly, such a 
division is not feasible with normal priors by Proposition 3.3. With two-point (or multi-point) 
discrete priors, despite such identical values across goods, it is feasible for the divider to beat the 
baseline. 
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Proposition 4.1. There exists a number of goods n and a discrete distribution D supported on two 
Dpositive values such that, even if, for each good i ∈ [n], g = 1 and GC = D, there exists a divisioni i 

of goods yielding utility higher than the divider’s baseline. 

Proof. Let n = 5 and let D be the following distribution: value 0.01 with probability 0.6 and value 
1 with probability 0.4. Consider the division 

p = (1, 0.4, 0.4, 0.4, 0.4). 

Observe that if the chooser values the frst good at 0.01 and at least one of the other goods at 1, 
then she prefers pile 2. This happens with probability 

0.6 · (1 − 0.64) = 0.553344 > 
1 
. 

2 

Since the divider values pile 1 more than pile 2, he achieves a higher utility than his baseline; 
specifcally, his expected utility is 2.510068 > 2.5. 

Finally, we note that there is a limit to the the need to diversify through lotteries. It is never 
strictly optimal to split all goods between the two piles. 

Lemma 4.2. If the divider can achieve a higher-than-baseline utility, he will always leave one good 
entirely in one of the two piles. 

Proof. Let q be an optimal division from Lemma 3.2. If q achieves a higher-than-baseline utility, 
then there must be some good i such that |qi| > 0. Let i∗ be a good maximizing |qi∗ |. If |qi∗ | = 1, 
then good i∗ is put entirely into one of the two piles; otherwise, we claim that the divider can 
improve the division by linearly scaling q, dividing each component by |qi∗ |. Since " # " # 

n nX X qi
P = Pr qig C > 0 = Pr g C > 0 ,i i qi∗ 

i=1 i=1 

the chooser is just as likely to pick pile 1, but now the divider obtains a greater utility from pile 1, 
so he receives a higher expected utility. 

We remark that, even though all examples above place an undivided good optimally in pile 1, 
sometimes it is optimal to place a sole undivided good in pile 2. 

4.2 The efects of risk aversion 

It is optimal for the divider to increase his expected value by taking a risk on the value he receives; 
how does his strategy change if he is averse to risk? Thus, suppose the divider is an expected utility 

D Dmaximizer with utility u = f(vD), where f is an increasing concave function and v is the total 
value of all goods the divider receives. 

Thus far, we have not distinguished between deterministic divisions of divisible goods versus 
1randomized divisions of indivisible goods. For example, if pi = 2 , then it could mean that good i is 

literally split between the piles into two equal pieces, or that it will be randomly allocated, in whole, 
to one pile or the other after the chooser picks a pile. In the two cases the two players’ incentives 
are the same. However, if the divider is risk-averse, a lottery that is resolved after piles are selected 
will impose unwanted risk on him. In this section, we assume that the goods are divisible and note 
where results would be diferent if the goods were indivisible and allocated by lottery. 

We identify two main efects of a divider’s risk-aversion. First, it decreases the probability P 
that the chooser picks pile 1, as the following theorem shows. 
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Theorem 4.3. Fix divider values and let f be a concave utility function. The chooser is no less 
likely to choose pile 1 under an optimal division assuming the divider is risk-neutral than under an 
optimal division assuming the divider has utility function f . 

′ Proof. Let p be the optimal division by a risk-neutral divider, and let p be the optimal division 
by a risk-averse divider with utility function f . Let T be the total divider value of all goods. Let 

′ ′ v, P , and v , P denote the divider’s value for pile 1 and the probability the chooser picks pile 1 
′ ′ according to p and p , respectively. Suppose toward a contradiction that P < P . Then we must 

′ ′ have v < v , for otherwise p would be a strictly better division than p for the risk-averse divider, as 
it would simultaneously yield a higher value in pile 1 and higher probability of the chooser picking 

′ pile 2. Also, since the risk-neutral divider prefers q to q , it must be that 

′ (1 − P ′ )v + P ′ (T − v ′ ) < (1 − P )v + P (T − v). 

Figure 4: Illustration accompanying the proof of Theorem 4.3. 

Thus, values are ordered exactly as shown in Figure 4, where the x-coordinate of points A 
′ and C are the respective expected divider values of p and p . If the solid blue curve is the utility 

function f , then the y-coordinates of points A and C are the expected utilities of the risk-averse 
′ divider using p and p , respectively. It follows from monotonicity and convexity that A must have 

a higher y-coordinate than B, which must have a higher y-coordinate than C. This contradicts our 
′ assumption that the risk-averse divider prefers p . 

√ 
We may observe this efect empirically by assuming the utility function f(x) = x. This turns 

the convex program CP from Algorithm 1, which maximizes divider utility with respect to a fxed 
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value of P , into a non-convex program. However, it can be written with only two non-convex 
constraints, so it is still practically feasible to solve it exactly. Figure 5 plots the optimal expected√ 
divider utility given any value of P , under a divider with utility function f(x) = x. The divider’s 
values and chooser’s priors are the same as in Figure 1. Comparing the two fgures, one can see 
that risk aversion reduces the optimal utility for larger values of P , making smaller values of P 
more attractive. 
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Expected Utility for a Risk-Averse Divider as a Function of P

Figure 5: The same plot of expected divider utility versus the probability that the chooser picks 
pile 1 as in Figure 1, but with a risk averse divider. This example uses the same divider values and 
chooser priors as in Figure 1. Again, the globally optimal value of P is indicated as P ∗ . 

Theorem 4.3 does not hold when goods are indivisible. Consider a scenario with only n = 2 
goods. Good 1 deterministically has value 4 for both players. Good 2 is worth 16 to the divider 
and either 1 or 12 to the chooser, each with probability 1 

2 . A risk-neutral divider will put 2 
3 of good 

2 in pile 1 and everything else in pile 2, ensuring that the chooser always picks pile 2 (i.e., P = 0).√ 
If the divider has utility function f(x) = x, then assuming “ √ 

2 
3 of good 2” is a lottery over good 

2, this strategy yields expected utility 2 
3 16 = 8 

3 . However, by just putting the goods in separate 
piles and not using lotteries, the chooser will pick pile 2 with probability P = 1 

2 , yielding expected 
divider utility 

1 1 8√ √ 
4 + 16 = 3 > . 

2 2 3 
We verifed computationally that no division in which P = 0 yields expected divider utility greater 
than 8 

3 . 
The second major efect of divider risk aversion is to increase the amount of diversifcation. 

Consider the setting with 40 goods with both divider and chooser values drawn i.i.d. from N (1, 0.2). 
Figure 6 compares the optimal divisions by a risk-neutral divider and a risk-averse divider using the 
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√ 
utility function f(x) = x − 5 with values for the 10 goods drawn independently from N (1, 0.2). 
As one can see, risk-aversion leads to more goods being split between the two piles, and generally 
split more equally. Still, one good is always left undivided, as Lemma 4.2 holds with the same 
proof. 
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Optimal Divisions of 10 Goods With and Without Risk Aversion
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Risk-averse

Figure 6: Comparison of the divider’s optimal divisions under risk-neutrality (left, dark blue bars) 
and risk-aversion (right, light red bars). The chooser’s prior for each good i is GC

i := N (1, 0.2), 
and the divider’s values were also sampled from GD

i := N (1, 0.2). Each bar represents a value of 
pi, and is horizontally located at the divider’s value gDi (indicated by the dashed black lines). 

5 Welfares of the players 

We now turn to analyze the expected welfares of the players. Knowing their expected welfares 
is important if our concern is fairness. It is also critical in enabling a player to decide when to 
try to play divider, and when chooser. The divide and choose game is explicitly asymmetric, and 
despite its minimal axiomatic guarantees (e.g., envy-freeness), one player might end up better of 
than the other merely due to this asymmetry. We begin by studying the expected welfares of the 
two players, both theoretically and empirically. We then investigate how these welfares change in 
a realistic setting that allows for further negotiation and/or richer strategies beyond the rules of 
the original divide-and-choose game. 

5.1 Is it better to divide or choose? 

The cake-cutting literature suggests the chooser is better of, as the divider is compelled to divide 
goods roughly evenly, while the chooser can get a more favorable outcome because she knows her 
own preferences. However, if the divider has strong knowledge of the chooser’s preferences, then 
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the divider can exploit this knowledge [22, 7]. Indeed, as Nicoló and Yu [19] note in the context 
of cake-cutting, “The divide and choose rule leads to a no-envy outcome but the rule itself is not 
envy free: the chooser envies the role of the divider.” Thus, the best generalization one could hope 
to make is that the relative utilities of the two players depend on the amount of uncertainty faced 
by the divider. Hence, the greater one’s own and one’s counterpart’s knowledge, the greater the 
beneft of playing the divider. Weak knowledge, on either side, favors being the chooser. 

One natural example of this phenomenon is when values for all n goods are drawn i.i.d. from 
the same distribution. If n is small, there is signifcant uncertainty in how the chooser will value 
the piles. Moreover, the divider cannot count on receiving what he places in pile 1. Consequently, 
when goods are few, the chooser has the advantage. 

In contrast, when n is large, the uncertainty in the value of a pile shrinks relative to its mean 
value. In this situation, the divider can cluster his high-value goods into pile 1, and expect to 
receive that pile with high probability. Thus, the divider is favored. These observations lead to the 
fnal major result in this paper: under mild assumptions on the distribution of players’ values, the 
chooser is favored when n is small; the divider is favored when n is large. 

Theorem 5.1. Let D be a probability distribution such that: 

• D is supported on at least two distinct values. 

• The support of D is bounded and nonnegative. 

• The expectation of the minimum of n i.i.d. draws from D is either bounded away from zero, 
or vanishes subexponentially as n →∞. 

Suppose that, for each good i, GD = GC = D. Then, in any equilibrium, the following hold.i i 

(i) For n = 2, the chooser is ex ante strictly better of: 

E [u D] < E [u C ] 
D Dg ,gC ∼D2 g ,gC ∼D2 

(ii) For all sufciently large n, the divider is ex ante strictly better of: 

E [u D] > E [u C ] 
D Dg ,gC ∼D2 g ,gC ∼D2 

The assumptions on D are tight in several ways. If D is supported on only a single value, then 
clearly the divider and chooser are equally well-of for any number of goods: the divider will always P n nchoose a division p such that = and both players will receive their equivalent baseline i=1 pi 2 
utilities. The theorem also fails for some distributions with negative values. For example, if D is 

1the uniform distribution on [−1, 1], one can see that P = in any division, so the divider cannot2 
surpass his baseline utility for any number of goods. However, for large n, the chooser will certainly 
exceed her baseline utility (assuming the divider breaks his indiference between divisions in a way 
that benefts the chooser). 

Proof of Theorem 5.1 (i). By Lemma 4.2, the divider will always leave one good undivided. Since 
the chooser’s values for both goods are drawn independently from the same distribution D, which 
is supported only over positive values, the chooser is more likely to pick the pile with the undivided 
good. Therefore, it must be that the divider’s least-preferred good is the one which is not divided, 
for otherwise he could have a higher expected utility switching the roles of the two goods. In other 
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C 

C 

words, for some function f (that depends on the fxed distribution D), the optimal division is always 
}) > 1 

2 fraction of good D D D D D:= f({g 
) in pile 1, with the rest of that good and all of the other good in pile 2. Analogously, 

as follows: given values g and g , the divider places a p , g 1 2 1 2 
arg maxi(g

D 
i 

C C C:= f({g }), i.e., the amount of the chooser’s preferred good that would have gone into 
pile 1 if the chooser had been the divider. 
let p , g 1 2 

To compare the two players’ ex ante expected utilities, we fx realizations of gD 
1 , gD C , and, g2 1 

, and compare the chooser’s actual utility with the hypothetical utility if the roles had been g2 
D Dreversed. There are three possible cases to consider, depending on the realizations of g , g , g ,1 2 1 

Cand g .2 
Case 1: The two players weakly prefer diferent goods. In this case, the chooser will receive 

all of her favorite good in pile 2. If she had instead been the divider, then she would have only 
received a pC -fraction of her favorite good. Since pC ≤ 1, the chooser is weakly better of. 

CCase 2: The two players strictly prefer the same good, and pD ≥ p . In this case, the chooser 
receives a pD-fraction of her favorite good in pile 1. As in Case 1, if she had instead been the 

C Ddivider, then she would have only received a pC -fraction of her favorite good. Since p ≤ p , the 
chooser is weakly better of. 

Case 3: The two players strictly prefer the same good, and pD < pC . In this case, had the 
chooser been the divider, the divider would have opted for the chooser’s preferred pile 1, since we 
know the divider would have weakly preferred a pD-fraction of his favorite good to everything else. 
Thus, he must have strictly preferred a pC -fraction of his favorite good. Moreover, if the chooser 
had been the divider she would have received her least-preferred pile, obtaining at most baseline 
utility. Since the chooser always can get at least her baseline, the chooser is weakly better of. 

In short, we have shown that the chooser is weakly better of in all cases. Furthermore, the 
chooser is strictly better of in Case 1 whenever pC < 1. If this never occurs, that means that 
the divider always puts the goods entirely into diferent piles, in which case the divider receives 
baseline utility and the chooser exceeds baseline utility, so we are done. Assuming that pC < 1 
with nonzero probability, we further observe that, conditioning on pC < 1, the players will prefer 
diferent goods (or be indiferent) at least half of the time. Thus, we see that the chooser is strictly 
better of with nonzero probability, so she is strictly better of overall. 

The proof of statement (ii) is technical; see Appendix B. We present an intuitive argument 
here. For large n, relying on the law of large numbers, the divider could be confdent that if 
he placed slightly more than 50% of the goods in pile 2, the chooser would pick pile 2 with an 
arbitrarily high probability. For example, when n = 100, on average, the optimizing divider puts 
his 45 highest-valued goods in pile 1, and his 55 lowest-valued goods in pile 2. The chooser picks 
pile 1 with probability P = 0.04. In the limit as n →∞, P tends to zero, so the divider’s ex ante 
utility is the sum of his top-half most-valued goods. On the other hand, for very large n, by the 
law of large numbers, the chooser can expect only her baseline utility from each pile, i.e., the sum 
of a random subset of half of her values. For any distribution satisfying the hypotheses of Theorem 
5.1, the expectation of this sum is strictly less than the expectation of the sum of the top-half of 
values. 

As an illustration of Theorem 5.1, take D to be the uniform distribution on [0, 1]. Table 1 lists 
the ex ante expected utilities for each player with two goods and with many goods. With two 
goods, the chooser is about 50% better of; with many goods, the divider is 50% better of. 
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Equilibrium utility per U [0, 1] good n = 2 n → ∞ 
Baseline 
Divider 

Chooser 

0.25 
19 = 0.26472 

1031 ln(3/4)+ = 0.3812160 3 

0.25 
0.375 

0.25 

Table 1: Expected utilities of the two players, normalized by the number of goods, when the value 
each player has for each good is drawn i.i.d. from the uniform distribution on [0, 1]. The n = 2 
column was computed using Mathematica. The n → ∞ column was computed using the proof of 
Theorem 5.1 (ii). 

Theorem 5.1 appears to hold for normal priors with a positive mean as well (even though they 
may take unbounded and negative values). For n = 2, the chooser is better of, while for large n, 
the divider is better of. At what value of n does the crossover occur? Figure 7 plots estimated 
utilities per good for an empirical experiment where all values are drawn from N (1, 0.2). The 
crossover appears to be around 15 goods. 
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Figure 7: Estimated utilities from repeated trials of the following experiment. We frst draw divider 
DD 

1 , g2 , . . . , g 
those values, with G 

D
nvalues g i.i.d. from N (1, 0.2), then compute the optimal division p with respect to 
C
i = N (1, 0.2) for each good i as well. We compute the divider’s and chooser’s 

DD 
1 , g2 , . . . , g 

All utilities are averaged, then normalized by dividing by the 

D
nexpected utility exactly with respect to p and g , where the expectation is taken over 

C
n 

CC 
1 , g2 , . . . , g 

number of goods n. 

Thus far we have been measuring and comparing the utilities aforded by the two roles ex ante. 
However, there is more to the story: the realizations of the values will generally afect which role 

the unknown values g . 
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is more desirable. Figure 8 plots random samples of the values of 13 goods drawn from the same 
distribution, N (1, 0.2), as in Figure 7. We chose the number of goods to be 13 since that is near 
the crossover point in Figure 7, where the two roles have similar ex ante utilities.5 As one can see, 
when values vary more widely it is better to be the divider. This is because the divider’s optimal 
strategy is to place all goods that he values highly in pile 1; he cares much less about the low-value 
goods. On the other hand, when values are more concentrated around the mean, it is better to be 
the chooser. In such a scenario, the divider’s strategy will not yield a substantially high payof. 
Instead, the chooser benefts simply from the fact that she will probably be able to take a larger 
and more valuable pile under the divider’s optimal strategy. 

0.0 0.5 1.0 1.5 2.0
Value of good

i.i
.d

. d
ra

ws
, s

or
te

d 
by

 sa
m

pl
e 

de
vi

at
io

n

Value Deviation Determines Which Role is Better

Divider better-off
Chooser better-off

Figure 8: 200 random samples of values for 13 goods drawn i.i.d. from N (1, 0.2), colored by the 
role that is better of given such values. Each row of points represents a separate draw, and the 
draws are sorted from bottom to top in increasing sample deviation (sum of absolute diferences 
between the value of good i and the mean of 1, across all 13 goods). Divider utilities are computed 
as the optimal utilities from Algorithm 1. Chooser utilities are estimated by averaging utilities 
with respect to a fxed ensemble of 4,000 optimal divisions under random divider values drawn 
from N (1, 0.2). 

5.2 The efect of multiple ofers 

In real life, players of an economic game sometimes negotiate to change the rules. We now consider 
a modifcation to the game where the divider can simultaneously ofer multiple proposed divisions 
to the chooser, not merely the original two options. 

5Even though the expected utilities are closer at 15 goods, the probability that the chooser is better of than the 
divider is closer to 

2
1 at 13 goods than at 15 goods. 
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This modifcation can only help the divider. The divider can always use his standard divide-
and-choose ofer of pile 1 versus pile 2, but can add other ofers, say piles 3 and 4, where the divider 
prefers the complements of piles 3 and 4 to pile 1, and where the chooser might prefer pile 3 and/or 
pile 4 more than pile 2. A chooser type who would choose pile 1 over pile 2 if those were the 
only two alternatives can be lured to pile 3 or 4 instead. That would happen, for example, if the 
chooser’s values were: pile 4 ≺ pile 2 ≺ pile 1 ≺ pile 3. In the original game, the divider would get 
stuck with pile 2, but with multiple ofers he would instead get the complement of pile 3. 

Formally, we model the divide-and-choose game with multiple ofers as follows. In addition to 
a division p ∈ [0, 1]n , the divider also selects an arbitrarily large set of alternatives A ⊆ [0, 1]n . The 
chooser is then allowed to pick pile 1 or pile 2, in which case allocations and payofs are defned 
by p in exactly the same way as in the original divide-and-choose game, or she may instead choose 
some alternative a ∈ A, in which case she receives a 1 − ai fraction of each good i, with the divider 
receiving an ai fraction of each good i. 

This extended game is a plausible model of realistic divide-and-choose games with multiple 
ofers. Is it still fair? Proportionality (Lemma 3.1) still holds, as neither party is required to utilize 
any of the alternative divisions, so both parties can still guarantee receiving half of their respective 
total utilities. However, the following results suggest that there may be a tinge of unfairness. 

Proposition 5.2. In the divide-and-choose game with multiple ofers, there is always an optimal 
111divider strategy using the division p = ( )., , . . . ,2 2 2 

Proof. Let (p, A) be a division and assume without loss of generality that the divider weakly prefers � � 
pile 1. Consider the alternative division (p ′′ , A ′ ) where p := 111 and A ′ := A ∪ p. For any , , . . . ,2 2 2 
realization of the chooser’s preferences where she would have originally picked an option other than 
pile 1, she will still pick that option, since the only new option that has been introduced only give 
the chooser her baseline utility. On the other hand, for any realization of the chooser’s preferences 
where she would have originally picked pile 1 (in which case the divider received pile 2), she must 
now pick one of the two new even piles, again giving both parties baseline utility, or some other 
option a ∈ A. By the assumption that the divider originally preferred pile 1, the divider’s baseline 
utility is greater than his utility from the old pile 2. Also, the divider weakly prefers any a ∈ A to 
the old pile 2, for otherwise he should have never ofered a in the frst place. Therefore, the divider 
is weakly better of with (p ′ , A ′ ) in all cases. 

Conceptually, this result says that the divider should optimally rely exclusively on his ability 
to make counterofers, not even worrying whether an initial division entices the chooser to pick 
pile 2. Under these favorable conditions, the divider completely eliminates his risk that he will fail 
to achieve his baseline utility. That assurance enables him to extract more of the value. As the 
following theorem shows, this value may come at the expense of the chooser. 

Theorem 5.3. In comparison to the ordinary divide-and-choose game, in the divide-and-choose 
game with multiple ofers, the divider is always weakly better of and the chooser may be strictly 
worse of. This can happen even in ex ante expectation, in a game with two goods where, for each 
good i, GD = GC = D for a common distribution D.i i 

Proof. The divider is weakly better of because any division in the original divide-and-choose game 
is also valid in the divide-and-choose game with multiple ofers, yielding the same utility. 

Now suppose each good is valued at 1 or 2 by each player, independently, each with probability 
1 
2 . To analyze ex ante expected payofs in each version of the game, there are two equally likely 
cases to consider. 
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When the divider draws the same value for each good, the set of optimal divisions without 
multiple ofers consists of all divisions that put an equal amount of the two goods in each pile, and 
no matter what, the divider gets utility equal to his common value for each good. At the extremes, 
he could divide both goods evenly, in which case the chooser receives expected utility 1.5, or he 
could put one good in one pile and the other good in the other pile, in which case the chooser gets 
utility 1.75. With multiple ofers, the optimal strategy is to ofer an even division of both goods, or 
0.75 of either good, in which case the divider gets utility 1.6875 but the chooser still gets utility 1.5. 
Thus, with the introduction of multiple ofers, the chooser’s utility has either decreased or stayed 
the same (and with our technical assumption that indiference was previously broken in favor of 
the chooser, the chooser’s utility has decreased). 

Now suppose the divider draws diferent values for each good. Without loss of generality, assume 
D D2 and g 1. Then the optimal division puts all of good 1 in pile 1 and all of good 2 ing = = 1 2 

pile 2, so the chooser picks pile 2 with probability 0.75. Thus, the divider and chooser both receive 
utility 1.75. With multiple ofers, the divider can essentially remove the option to take pile 1 in� �

11the case where the chooser strictly prefers it, by choosing p = and A = {(1, 0)}. 
in this case, the divider’s utility strictly increases and the chooser’s utility strictly decreases, and 

Thus, ,2 2 

in all other cases utilities remain unchanged. In total, with the introduction of multiple ofers, if 
the divider has diferent values for each good, his expected utility has increased to 1.875 and the 
chooser’s expected utility has decreased to 1.625. 

Thus, the chooser is, overall, strictly worse of when the divider makes multiple ofers. 

Stepping back from our model and into the real world, the conceptual takeaway from these 
results is that the divider has a considerable advantage in making proposals, and should try to 
press this advantage whenever possible. The chooser, on the other hand, could sometimes beneft 
from committing to playing only the original game. For instance, she could tell the divider upfront 
that she will not consider any additional ofers beyond the basic division into pile 1 and pile 2. This 
threat may not be credible in practice. 

Conclusions 

How can the two of us appropriately divide a collection of assets when neither of us will honestly 
reveal our private value to the other? That is a question that is asked by siblings, divorcing adults, 
and business partners, among others. One answer, which has been put into use by myriad duos, is 
to use the divide-and-choose method. With it, one player sets two piles, and the other chooses her 
preferred pile. 

Many siblings discover this method on their own; game theorists followed with their cake cutting 
algorithms. Others are counselled into it, by books and by advisors. When the players’ preferences 
are known, efective procedures have been well documented. However, uncertainty about each 
other’s preferences is a prime feature in many divide-and-choose contexts. Yet the subject of how 
to divide in such contexts is efectively unstudied. 

Our investigation of optimal division follows a Bayesian path; it is assumed that priors on value 
are common knowledge. In most analyses, the players are assumed to be symmetrically situated, 
hence priors on their values are identical. 

A major fnding is that the known and unknown preference situations lead to qualitatively dif-
ferent strategies. Moreover, a number of the results for the unknown preferences case are surprising. 

For example, with known preferences, the ratio of values for the two players, what we label the 
critical ratio, is in fact critical. All the goods in one pile have a higher ratio than the goods in 
the other. In addition, at most one good is divided between the piles, with division via a lottery 
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if that good is physically indivisible. With unknown preferences, assignment by critical ratios may 
be violated. That is, probability density in those lotteries may be non-monotonic in the ratios. 
Moreover, up to n − 1 out of n goods might optimally be divided by lottery. 

Uncertainty on preferences makes diversifcation a vital concern. It competes with efcient 
division as an objective for the divider. The analysis proceeds with a pile 1, preferred by the 
divider, with its complement denoted pile 2. The divider is eager to get the chooser to pick the 
latter. This is fostered in part by assigning greater chooser expected value to pile 2. This process 
is limited because the total value in pile 1 is being diminished, and that is the pile the divider 
hopes to get and will get most of the time. Holding the disparity in expected values fxed, the 
chooser is more likely to opt for pile 1 if there is substantial variability in actual values. That is 
why diversifcation comes in. Dividing multiple goods between the two piles signifcantly reduces 
the variability in value the chooser receives in either pile. Hence, dividing in this manner reduces 
the likelihood that the divider receives his bad outcome, namely that the chooser picks pile 1. 

Examples are developed with normal priors and two-point discrete priors. Intriguing, non-
intuitive results emerge. With normally-distributed priors, if the critical ratios for the goods are all 
identical, the divider can achieve no more than his baseline utility, what he would get if each good 
were assigned by a coin fip. Yet, for more general distributions, even when goods are identically 
distributed and equally valued, the divider can construct bizarre, symmetry-breaking divisions that 
beat his baseline utility. 

Computing the divider’s optimal division is easy in the known-preferences case. It is surprisingly 
difcult with preferences unknown. We already mentioned the annoying lack of monotonicity 
in critical ratios. Worse still, multiple local optima are commonly encountered. Despite these 
challenges, we are pleased to identify Algorithm 1, which computes divisions for normal priors in 
polynomial time that approximate the optimal utility to within arbitrary precision. Algorithm 
2 handles arbitrary (discrete) priors when the number of possible chooser types is small, getting 
exact results. We suspect that exactly computing optimal divisions in either of these settings is 
NP-Hard. Characterizing the precise computational complexity of these problems is an intriguing 
question for future work. 

Computational challenges plague even what appear to be straightforward divide-and-choose 
situations. Fortunately, some intriguing results prove intuitive once analyzed. A salient example 
is our result that the chooser is advantaged when the number of goods is small, but the advantage 
tips to the divider after a certain threshold number of goods. 

In the real world, players have the potential to break the rules. Rather than making two ofers 
to the chooser, the divider might ofer her an array of alternative options. We show that the divider 
benefts by making multiple ofers. Moreover, the chooser might be better of in expectation by 
insisting on just two complementary ofers. 

Some of the results above are predominantly of academic interest, such as those relating to 
the challenges in fnding optimal divisions. Many others have direct implications for real-world 
divide-and-choose situations. They include the importance of diversifcation, the tip from chooser 
advantage to divider advantage as the number of goods increases, and the divider’s advantage and 
the chooser’s disadvantage when the divider makes multiple alternative ofers. 

A promising direction for future work would be to investigate approximately optimal divisions 
in terms of their structure. For instance, can it be shown that the intuitive rule of concentrating all 
goods with the highest critical ratios in pile 1 yields a nontrivial constant-factor approximation to 
the optimal expected divider utility? In the case where all goods have positive values, a “trivial” 
constant factor is 2, since utility is always bounded between the baseline utility and twice the 
baseline utility, which is the sum of the values of all goods. Does the divider actually obtain a 
smaller factor than 2 with this strategy? Does he obtain any constant-factor approximation to his 
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optimal gains beyond his baseline utility? 
Most of our analyses assume that the players are risk-neutral. However, risk aversion exists and 

can be important when dividing a major asset, such as an estate or a business. We analyze how 
risk aversion should afect the divider’s allocation, both in the context of deterministic divisions of 
divisible goods and randomized divisions of indivisible goods. In the latter context, how the divider 
should adjust when the chooser is risk-averse remains an open question. How can the divider exploit 
the chooser’s risk aversion? 

Besides the divider making multiple ofers, there are other realistic extensions of the game that 
could be analyzed in a similar Bayesian framework. For instance, what if the basic division can be 
renegotiated after the game has ended? This introduces complicated information fows, possibly 
even requiring mixed strategies at equilibrium. For instance, the chooser will probably be able to 
confdently infer from the division which pile the divider prefers, because, for instance, it might be 
less valuable in expectation given the prior for the chooser’s value. It might then be optimal for 
her to bluf and take that pile, even if she prefers the other one. If the bluf is not detected, her 
negotiating position will have improved. Of course, a divider that expects this behavior could then 
fip the piles, tricking the chooser into choosing a small pile with goods that the divider does not 
want. And there would be further counters, and still further counters. 

A further extension would be to investigate scenarios in which values of goods are correlated 
between the players, as might be the case for commodities like valuable works of art. Playing the 
divide-and-choose game in this widely-applicable context does not appear to have been studied at 
all. 

Another setting we have not considered in this paper is one where the roles are endogenously cho-
sen. Not infrequently, players begin the divide-and-choose process by allowing for self-assignment. 
For example, in a partnership buy-sell arrangement, usually either partner can propose a division, 
with the other player then forced to choose. Frequently some condition (such as elapsed time) must 
be met before a player – the self-appointed divider – can make a proposal. Usually the proposal 
is that one player keeps most of the assets and pays a price to the other. This fts into our model 
as a divide-and-choose problem with two goods, the asset and money. Given our result that the 
preferred role might depend on the private values, one might expect a complex interplay between 
choosing roles, inferring values, and leveraging these inferences to construct optimal divisions. 

Finally, there are various other related games we expect will yield to many of the techniques 
employed here. Another common way to divide up assets is the alternating-choice (or “round-
robin”) method. It is used to pick sports teams, in contexts from playgrounds to professional 
sports leagues, and by children dividing their parents’ household goods. A key ingredient of the 
alternating-choice method is a prime divide-and-choose concern: how great is the value to me 
relative to the distribution of value to the other player? 

Take-it-or-leave-it (TIOLI) ofers are also widely encountered, as when a frm makes one of 
its standardized job ofers, or when a multi-service Internet and TV ofer is sold at a fxed price. 
Legislation that must be approved or vetoed by a chief executive is also TIOLI. Pile 2 in these cases 
can be thought of as the status quo. The main diference between TIOLI and divide-and-choose is 
that, with TIOLI, both players receive the same outcome, and the total sum of piles is no longer 
exogenous. 

Allocation systems, across a broad array from divide-and-choose to the market, involve players 
acting strategically to maximize their take given the rules and what they know of the other player’s 
value. In the allocation of academic attention, we hope to have shown, divide-and-choose strategy 
has received a smaller pile than it deserves. 
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Appendix 

A Proof of Lemma 3.5 

Observe that each division p1,p2, . . . ,pn computed by Algorithm 1 is valid, since 0 ≤ pi ≤ 1 if and 
only if −1 ≤ qi ≤ 1, which is enforced by frst constraint of CP . We claim that, on each iteration 
of the main loop, the division p1,p2, . . . ,pn computed by Algorithm 1 achieves an interim expected 
utility of E[uD] ≥ uP . (In fact, the utility will be exactly uP , but equality is not necessary to 
prove.) 

The chooser weakly prefers pile 1 if and only if 

n nX X 
C C g pi ≥ g (1 − pi).i i 

i=1 i=1 
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Note that this is equivalent to 
nX 

C s := g qi ≥ 0.i 
i=1 

CSince each g follows a normal distribution with mean µi and variance σi 
2 , we know that s follows i 

a normal distribution with mean 
nX 

µiqi 
i=1 

and variance 
nX 

2σ2 
i qi . 

i=1 

Hence, the probability that s ≥ 0 is given by    P P n n 0 − i=1 µiqi   i=1 µiqi 1 − Φ qP = Φ qP . 
n σ2 2 n σ2 2 
i=1 i qi i=1 i qi 

Since the algorithm computes optimal q1,q2, . . . ,qn on each iteration of the main loop to satisfy the 
third constraint, we know that this probability is at most P . Therefore, 

n nX X 
D DE[u D] = Pr[chooser picks pile 1] g (1 − pi) + Pr[chooser picks pile 2] g pii i 

i=1 i=1! 
n n nX X X 

D D D = g pi + Pr[chooser picks pile 1] g (1 − pi) − g pii i i 
i=1 i=1 i=1! 
n n nX X X 

D D D≥ g pi + P g (1 − pi) − g pii i i 
i=1 i=1 i=1 

(since the second constraint ensures the term in parentheses is nonpositive) 
nX 

D = g (P (1 − pi) + (1 − P )pi)i 
i=1 
n � � � �� � ��X 

D qi 1 qi 1 
= g P 1 − + + (1 − P ) +i 2 2 2 2 

i=1 
n DX gi = (P (1 − qi) + (1 − P ) (1 + qi))

2 
i=1 

= uP . 

Thus, the claim is proved. 
∗ ∗ ∗Let (p1, p2, . . . , p ) denote an optimal division from Lemma 3.2, yielding interim expected utility n 

∗ ∗ ∗ ∗ u , and let (q1 , q2, . . . , q ) denote the respective auxiliary variables for this division (i.e., obtainedn 
from Equation (1)). Recall that, in this optimal division, the divider weakly prefers pile 1, and the 
probability that the chooser picks pile 1 is P ∗ ≤ 2

1 . Therefore, on some iteration of Algorithm 1, 

P − δ ≤ P ∗ ≤ P. 

Let (q1,q2, . . . ,qn) denote the optimal solution to CP on this iteration, with optimal value uP , and 
let (p1,p2, . . . ,pn) denote the corresponding division. 
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∗ ∗ ∗Observe that (q1, q2, . . . , q ) is feasible for CP . To see this, note that the frst constraint isn 
satisfed by the fact that it corresponds to a valid division with each pi ∈ [0, 1]. The second 
constraint is satisfed because we are assuming the divider prefers pile 1. Finally, for the third 
constraint, since P ∗ ≤ P implies Φ(P ∗) ≤ Φ(P ), we have P n ∗ 

i=1 µiqiqP ≤ Φ(P ∗ ) ≤ Φ(P ). 
n σ2 ∗)2(qi=1 i i 

∗ ∗ ∗Thus, (q1, q2 , . . . , q ) is a feasible solution for CP .n 
Therefore, denoting the objective function of CP by fP , we have that the utility of the optimal 

solution returned by the algorithm is 

E[u D] ≥ uP (from the previous claim) 

= fP (q1,q2, . . . ,qn) 
∗ ∗ ∗ ∗ ∗ ∗ ≥ fP (q1, q2, . . . , q ) (since (q1, q2 , . . . , q ) is feasible and (q1,q2, . . . ,qn) is optimal)n n 

nX Dgi ∗ ∗ = (P (1 − qi ) + (1 − P ) (1 + qi ))2 
i=1 
n nX D Xgi ∗ D ∗ = (1 + qi ) − P g qi i2 

i=1 i=1 
n n nX D X X 

i ∗ D ∗ D ∗ = 
g 

(1 + qi ) − P ∗ g q − (P − P ∗ ) g qi i i i2 
i=1 i=1 i=1 
n n nX D X X 

i ∗ D ∗ D ∗ = 
g 

(1 + 2pi − 1) − P ∗ g (2pi − 1) − (P − P ∗ ) g qi i i2 
i=1 i=1 i=1 

n n nX X X 
D ∗ D ∗ D ∗ = P ∗ g (1 − pi ) + (1 − P ∗ ) g pi − (P − P ∗ ) g qi i i i 

i=1 i=1 i=1 
n n nX X X 

D ∗ D ∗ D ∗ = Pr[chooser picks 1] g (1 − pi ) + Pr[chooser picks 2] g pi − (P − P ∗ ) g qi i i i 
i=1 i=1 i=1 

nX 
D ∗ = u ∗ − (P − P ∗ ) g qi i 

i=1 
nX 

D ∗ ≥ u ∗ − |(P − P ∗ )| g |qi |i 
i=1 

nX 
D≥ u ∗ − δ g (since P − δ ≤ P ∗ and each |qi| ≤ 1)i 

i=1 

= u ∗ − γ 

as desired. 

B Proof of Theorem 5.1 (ii) 

Let b be an upper bound on the support of D. We may decompose D into two distributions, D1 and 
D2, such that every value in the support of D1 is less than or equal to every value in the support 
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of D2, and sampling from D is equivalent to drawing j uniformly from {1, 2} and then sampling 
from Dj . Let 

+ µ := E [g], 
g∼D2 

µ := E [g]. 
g∼D 

+By the assumption that D is supported on at least two diferent values, we must have that µ < µ . 
To prove that the divider is better of, it thus sufces to show that, according to the equilibrium 
strategies, 

+1 µ
lim E [u D] ≥ , (6) 
n→∞ n D 2g ,gC ∼Dn 

1 µ
lim E [u C ] ≤ . (7) 
n→∞ n D 2g ,gC ∼Dn 

(Truly, these will both be equalities, but that is not necessary for the present result.) 
To prove (6), fx an arbitrary small ε > 0 and consider the following strategy for the divider. l √ mSupposing that values are sampled from Dj for a random j ∈ {1, 2}, let E be the event that at least 
1−ε·n goods are drawn from D2 instead of D1. It follows from the law of large numbers that,2 √ 

3 

3 1 − ε. Assuming this happens, the divider places the top-valued for sufciently large n, Pr[E] ≥l √ m 
3 1−ε·n entirely in pile 1 and all other goods entirely in pile 2. Let XC be the chooser’s value for2 

pile 1 minus the chooser’s value for pile 2. Observe that XC is the sum of n independent random 
variables bounded between −b and b, and �√ � � �√ �� � √ �3 3 1 − ε · n1 − ε · n 

E[XC ] = 3 µ − n − µ ≥ 
2 

( 1 − ε − 1)n − 2 µ.
2 

3 

Therefore, by Hoefding’s inequality, the probability that the chooser picks pile 1 is � √ � ! 
2 (( 1 − ε − 1)n − 2 µ)2� � 

XCP = Pr > 0 ≤ exp − . 
(2b)2n 

Note that, as n →∞, P → 0. Thus, let n be sufciently large so that this probability is less than√ 
(1 − 3 

3 

1 − ε). Then, according to this divider strategy, 

E[u D] ≥ Pr [E] · (1 − P ) · E[u D | E and the chooser picks pile 2]�√ �√ √ 1 − ε · n +3 3≥ 1 − ε · 1 − ε · µ
2 

+(1 − ε)nµ≥ . 
2 

This implies Equation (6). 
We next claim that, for any ε > 0, the probability that it is optimal for the divider to pick a 

division p (with auxiliary q) such that 
nX 

qi ≥ εn 
i=1 
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vanishes as n → ∞. Suppose p, q is such a division, and without loss of generality, assume the 
divider prefers pile 1 and the chooser is more likely to pick pile 2, which implies that, for all 
sufciently large n, 

nX 
qi < −εn. 

i=1 

1 ′ ′ This means there must be at least one good i∗ for which qi∗ < 0, i.e., pi∗ ≤ 2 . Let p , q be the 
′ 1 D ′ alternative division where pi∗ := pi∗ + 2 , and all other goods are divided the same. Let P , u , P , 

(uD) ′ refer to the probability the chooser picks pile 1 and divider utility in the original division and 
new division, respectively. We may bound upper-bound the interim expected divider utility in the 
old division by assuming the divider receives his preferred pile 1, as 

nX 
DE[u D] ≤ pig .i 

i=1 

On the other hand, ! 
n nX X D 

′ D D i∗ 
E[(u D) ′ ] ≥ (1 − P ′ ) pigi = (1 − P ′ ) pigi + 

g
. 

2 
i=1 i=1 

Thus, we may bound 

D n 
i∗ ′ DE[(u D) ′ ] − E[u D] ≥ (1 − P ′ )
g − P 

X 
pigi2 

i=1 
nD Xg 1 1i∗ ′ D ′ ≥ − P pig (since P < =⇒ P < )i4 2 2 "i=1 # 
n nD X Xg 1 1i∗ ′ C D ′ = − Pr q > 0 pig (since P < =⇒ P < )igi i4 2 2 

i=1 i=1!P nD n ′ 2 Xg −2 ( iµ)i∗ i=1 q D≥ − exp pig (by Hoefding’s inequality) i4 (2b)2n 
i=1� �2 ! 

mini g
D −2 −nε + 1 µ

≥ i − exp 2 bn. 
4 4b2n 

By assumption, the expectation of the frst term vanishes at most subexponentially as n →∞ while 
′ the second term vanishes exponentially. Hence, with high probability, the division p was better 

than p, so our claim is proved. 
Equation (8) now follows via a fnal application of Hoefding’s inequality to the chooser’s value. 

In more detail, assume that 
nX 

qi < εn, 
i=1 

which we may assume happens with probability at least 1 − ε for sufciently large n. Then the 
expected chooser value for pile 1 is 

n n nX X X(1 + qi)µ µn µ (1 + ε)nµ 
piµ = ≤ + qi < ,

2 2 2 2 
i=1 i=1 i=1 
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and the expected chooser value for pile 2 is likewise 

n n nX X X(1 − qi)µ µn µ (1 + ε)nµ
(1 − pi)µ = ≤ + qi < . 

2 2 2 2 
i=1 i=1 i=1 

It follows from a similar application of Hoefding’s inequality as before that, for sufciently large 
(1+2ε)nµn, with probability at least 1 − ε, the chooser value for each pile will be at most . By the2 

union bound, with probability at least 1 − 3ε, the chooser values for both piles will be at most 
(1+2ε)nµ 

2 , while with probability at most 3ε, we may still bound the chooser value for the best pile 
by nb. Thus, for sufciently large n, the total expected chooser value is at most 

(1 − 3ε)(1 + 2ε)nµ
E[u C ] ≤ + 3εnb. 

2 

This implies Equation (7), completing the proof of (ii). 
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