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Abstract

We consider mechanism design in social choice problems in which agents’ types are con-

tinuous, multidimensional, and mutually payoff-relevant, and there are three or more agents.

If the center receives a signal that is stochastically related to the agents’ types and direct

returns are bounded, then for any decision rule there is a balanced transfer function that

ensures that any strategy that is not arbitrarily close to truthful is dominated by one that

is. If direct returns are continuous as well, truthful revelation becomes an ε-dominant strat-

egy, all Bayes-Nash equilibrium strategies are nearly truthful, and at least one such strat-

egy exists. If the center’s information is not informative but agents’ types are stochastically

related, then there exist balanced transfers under which truthful revelation is a Bayesian ε-

equilibrium, again for any decision rule. Analogous results hold for decentralized decision prob-

lems when agents also take mutually payoff-relevant actions in advance of any action by the cen-

ter.
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1 Introduction

Eliciting private information about preferences to guide social decisions is a classic problem of

economic theory. For the private-values case, in which agents’ private information does not affect

other agents’ preferences, the pioneering work of Vickrey (1961), Clarke (1971), and Groves (1973)

shows that if each agent’s preferences depend only on his own information and if the budget need not

be balanced, externality payments make honest revelation a dominant strategy. However, dominant

strategy implementation is generally incompatible with the requirement that the budget balance.1

If the solution concept is weakened, positive results are possible. For example, d’Aspremont and

Gérard-Varet (1979, 1982) show in the private-values environment that if the agents’ beliefs about

other agents’ types satisfies a certain condition, which they call compatibility, then for any efficient

decision rule there exist balanced Bayesian incentive-compatible transfers that implement it.2

When one agent’s private information affects other agents’ preferences, the case of interde-

pendent valuations or mutually payoff-relevant private information, the problem becomes more

difficult, and positive results have been mostly limited to the case where agents’ types take on only

finitely many values.3 For example, d’Aspremont, Crémer, and Gérard-Varet (1990) show in the

interdependent values case that if there are more than two agents, and if agents’ types take on

only finitely many values, then for generic distributions of agents’ types there exists a Bayesian

incentive-compatible Pareto-optimal mechanism.

When agents’ types are continuous and values are interdependent, some positive implementation

results are possible, but only at the expense of imposing additional structure on the model. For

example, in the auctions context, Maskin (1992) and Dasgupta and Maskin (2000) show that when

buyers’ values are interdependent and one dimensional, a generalized Vickrey auction is efficient if a

single-crossing property (each buyer’s signal to has a greater impact on his own value than on others’

values) is satisfied. When types are multidimensional and continuous, the problem becomes even

more difficult because, in general, single-crossing will not be satisfied. In this case, Maskin (1992)

and Dasgupta and Maskin (2000) argue that when buyers’ types are “truly” multidimensional in

1See Green and Laffont (1977; 1979) and the discussion in Mas-Colell, Whinston, and Green (1995).
2Unlike its use in implementation theory (see Jackson, 2001), throughout the paper we use “implement” to refer

to the case where there is an outcome of the game that agrees with the decision rule. When we wish to say that all

outcomes of the game agree with the decision rule, we will use the phrase “uniquely implements.”
3Work in this area includes Crémer and McLean (1985; 1988); Johnson, Pratt, and Zeckhauser (1990); Matsushima

(1990; 1991); Aoyagi (1998); and McLean and Postlewaite (2003).
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the sense that they cannot be summarized by a one-dimensional type, there may be no efficient

auction.

In a general mechanism design framework, Jehiel and Moldovanu (2001) explore the difficulty

in implementing efficient decision rules when types are multidimensional and continuous. When

agents’ types are independently distributed, efficient design is possible only when a certain “congru-

ence condition relating the social and private rates of information substitution is satisfied (Jehiel and

Moldovanu, 2001, p. 1237).” Intuitively, this is because, generically, the center’s one-dimensional

transfers are not sufficiently rich to extract agents’ private information when multiple dimensions

of the agents’ signals are important in determining their valuations.4

The present paper addresses the social choice problem in environments in which agents’ pri-

vate information is continuous, multidimensional, and mutually payoff-relevant (i.e., valuations are

interdependent). However, we relax the Jehiel-Moldovanu assumption that agents’ private infor-

mation is independently distributed. Our primary concern is to show that when there are more

than two agents and the center observes information that is stochastically dependent on agents’

types (either because the center’s signal is dependent on agents’ types or because agents’ types are,

themselves, stochastically dependent), it is possible to design a system of transfer payments that

induces agents to (nearly) truthfully reveal their private information and that (nearly) implements

any decision rule. Thus our results provide a type of converse to those of Jehiel and Moldovanu.

When agents’ types are dependent — in a weak sense of dependence we call stochastic relevance —

then (nearly) efficient design generally is possible.5 Further, if the distribution of types satisfies

stochastic relevance, our implementation results place very few additional requirements on agents’

preferences.6 In particular, we do not require a single-crossing property.

McAfee and Reny (1992) also consider the case of continuous, multidimensional, and mutually

payoff-relevant types with stochastically dependent information. Taking the game played by the

agents as given, they show that it is possible to construct for each agent a finite menu of participation

fee schedules that extracts almost all of the agent’s rent from playing the game.7 However, they do

4See Maskin (1992), Dasgupta and Maskin (2002), and Krishna (2002, section 17.2) for further discussion of this

point in the auctions context.
5Jehiel and Moldovanu (2001) note that, despite their impossibility results, successful design may be possible if

agents’ types are correlated.
6Specifically, we require only that agents’ direct returns from the center’s decision be bounded and continuous.
7See Neeman (2002) for further discussion of mechanism design with correlated information.
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not directly address the issue of which decision rules can be implemented, the primary concern of this

paper. For example, with multidimensional types and interdependent values, there is, in general,

no ex post efficient auction mechanism unless additional assumptions are made that ensure that

the agents’ multidimensional information can be summarized by a one-dimensional type (Maskin

(1992), Dasgupta and Maskin (2000), Krishna (2002)). Therefore, in such environments, the

McAfee-Reny mechanism would be unable to extract the full information rent (i.e., the rents that

would be generated if the auctioneer knew the agents’ types), since the McAfee-Reny construction

depends on the existence of an ex post efficient mechanism to which the participation fees can

be appended. The present paper fills this gap by showing how to construct an ex post efficient

mechanism in this environment, thus making it possible to apply the McAfee-Reny result.

McAfee and Reny’s (1992) positive results as well as those of Crémer and McLean (1985; 1988)

rely on constructing a menu of lotteries for each agent such that the agent maximizes his expected

utility when he chooses the lottery intended for his type. Intuitively, this is possible whenever

learning an agent’s type provides information about the distribution of the other agents’ types.

Our analysis follows in the same spirit, although we require a slightly weaker notion of dependence.

We capitalize on the decision theory literature on strictly proper scoring rules, which considers how

an informed expert can be induced to truthfully reveal his beliefs about the distribution of future

random events. A scoring rule assigns payoffs to the expert based on his announced probabilities

for various future events and the event that actually occurs. A strictly proper scoring rule has the

property that the decision maker maximizes his expected score when he truthfully announces his

beliefs about the distribution.8

This paper considers two distinct cases. In the first, the center receives a signal of its own

whose distribution depends on agents’ types. In the second, the center does not receive a signal,

but agents’ types are themselves stochastically dependent. In either case, our construction requires

only a very weak form of dependence: for each agent, different values of the agent’s type imply

different distributions of the center’s signal (or of the other agents’ types if the center receives

no signal of its own). We call this condition stochastic relevance. When stochastic relevance is

satisfied, a scoring rule that pays the agent based on the logarithm of the likelihood of the center’s

information (or the other agents’ types if the center receives no signal of its own) is strictly proper,

and therefore a suitable scaling of log-likelihood payments induces agents to truthfully reveal their

8See Cooke (1991) and the references therein for a discussion of proper scoring rules.
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private information.9 This leads directly to the main results of this paper.

When the center receives a signal of its own whose distribution differs for different types, we

show that for any decision rule there exists a balanced transfer scheme that ensures that truthful

revelation dominates any announcements that are not close to the truth. When the center does not

receive a signal of its own but the distribution of agents’ types satisfies a version of stochastic rele-

vance — each agent’s type affects the conditional distribution of the other agents’ types — dominance

or near-dominance results are not possible. Since the center must use the agents’ announcements

to police them, truthful revelation is not a best response when other agents lie. However, in this

case we show that, for any decision rule there is a balanced transfer scheme that implements it in

a Bayesian ε-equilibrium.10,11

The paper proceeds as follows. Section 2 presents the model. Section 3 derives the results

for the case where the center receives a signal of its own. Section 4 presents the result for the

case in which the center receives no signal of its own, but the distribution of agents’ types satisfies

stochastic relevance. Section 5 discusses several extensions, one of which is more fully developed

in Appendix A, and Section 6 concludes.

2 The Model and Implementation Strategy

Suppose N > 1 agents, indexed by i = 1, ..., N , interact with the center. Let G be the set of

social alternatives. Although it may be necessary to impose structure on G for certain purposes,

such as ensuring the existence of an efficient decision rule, our general results do not require any

restrictions on G.

Each agent i has private information or type ti, where Ti is the set of all possible types for agent

i. Following the standard notation we use t = (t1, ..., tN ) for the vector of types, t−i for the vector

of all but player i’s type, and t−ij for all but the types of players i and j. The center receives a

private signal z ∈ Z. We assume that Z and Ti are compact, convex subsets of finite-dimensional
Euclidean spaces with non-empty interiors, and that (z, t) is distributed according to commonly

9Although we adopt the logarithmic rule in this paper, any strictly proper scoring rule could have been used in

our construction. See Cooke (1991) for a discussion of alternative strictly proper scoring rules.
10Technically, for budget balance it must be that for every agent i there is another agent i∗ such that the conditional

distribution of the types of all agents but i and i∗ depends on agent i’s type.
11 In a Bayesian ε-equilibrium, the payoff attained by each player’s strategy is within ε of the payoff earned by a

best response. See d’Aspremont and Gerard-Varet (1982).
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known joint distribution F (z, t).12 We use ×Ti to denote the product space of the N agents’ type

spaces.

Each agent’s utility is quasilinear in its direct return from the social alternative, g, and money,

x, taking the form: ui (z, t, g, x) = v∗i (z, t, g)+x. The direct return function v
∗
i depends on the

center’s information, z, all agents’ types, t, and the chosen social alternative, g. We assume that

v∗i (z, t, g) is continuous in t.

A decision rule g : Z× (×Ti)→ G maps a type for each agent and the center’s information to a

social alternative. For simplicity, we assume that g (z, t) is single valued. For g (z, t) that are not

single-valued, our implementation result applies to any selection from g (z, t), and therefore this

restriction is without loss of generality. A decision rule g (z, t) is (ex post) efficient if and only if

the following holds for all states (z, t) and all ĝ ∈ G:
X
i

v∗i (z, t, g (z, t)) ≥
X
i

v∗i (z, t, ĝ) . (1)

That is, efficient decision rules maximize the aggregate direct return. Given an efficient decision

rule, g (z, t), let V (z, t) =
P
i v
∗
i (z, t, g (z, t)) be the maximized aggregate direct return function.

Applying the revelation principle, we consider direct revelation mechanisms in which each agent

sends a message to the center consisting of an element from his type space. We denote these

announcements by ai ∈ Ti, and let a, a−i, and a−ij refer respectfully to the full announcement
vector, the announcement vector leaving off agent i, and the announcement vector leaving off

agents i and j. The remainder of the mechanism consists of a transfer function xi (z, a) for each

i and a decision rule g (z, a), with the standard interpretation that if the center’s information is

z and agents announce a, social alternative g (z, a) is realized and transfers xi (z, a) are made to

each i. Although the center’s information is not known to the agents when they make their

announcements, the center can verifiably reveal its information at the time transfers are made and

the social alternative is implemented.

Denote the vector of transfer rules to all agents by x (z, a), which we call a transfer scheme.
12The dimensionality of the type-spaces may differ for each agent and for the center. Only the existence results in

Corollaries 2 and 3 depend on convexity. Otherwise, this assumption can be replaced with Ri being simply connected.

Compactness can be relaxed in many places without affecting the results, but at the expense of additional complexity

in the mechanism. The assumption of non-emptiness is without loss of generality (except for the case where agents’

type spaces are one dimensional), since agents’ type spaces can always be defined in terms of the minimal dimension

in which the set of feasible types has a non-empty interior.
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A transfer scheme is balanced if transfers sum to zero:
PN
i=1 xi (z, a) = 0. If a decision rule

is implemented by a balanced transfer scheme, it does not require an outside subsidy. For fully

efficient social choices we are concerned both with maximizing direct returns and with doing so

using a balanced transfer scheme.

Since our mechanism is essentially the same for any decision rule and depends on the decision

rule only through the direct return function, we integrate the decision rule into the direct return

function and write v∗i (z, t, g (z, a)) as vi (z, t, a). If there exists a transfer scheme that satisfies a

particular solution concept with payoffs vi (z, t, a), then those transfers implement g (z, a) under

that solution concept.

An announcement strategy for player i is a function ai (ti) : Ti → Ti that specifies agent

i’s announcement in the message game as a function of his information. Announcement strategy

ai (ti) is ε-truthful if ||ai (ti)− ti|| < ε for all ti, where ||·|| refers to Euclidean distance. When
the agent’s type is ti, a single announcement is ε-truthful when ||ai − ti|| < ε and ε-deceptive if

||ai − ti|| ≥ ε.

Given transfer scheme x (z, a) we say that ε-deceptions are dominated for player i, if,

for every ti and a0i such that ||a0i − ti|| ≥ ε there exists an announcement a∗i (a
0
i, ti) such that

||a∗i (a0i, ti)− ti|| < ε and for every a−i (t−i):

E
©
vi
¡
z, t, a−i (t−i) , a∗i

¡
a0i, ti

¢¢
+ xi

¡
z, a−i (t−i) , a∗i

¡
a0i, ti

¢¢ |tiª (2)

> E
©
vi
¡
z, t, a−i (t−i) , a0i

¢
+ xi

¡
z, a−i (t−i) , a0i

¢ |tiª ,
where the expectation is taken over t−i and z conditional on ti. That is, ε-deceptions are dominated

for player i if for every ti, any announcement that is ε-deceptive is strictly dominated by one that

is ε-truthful. In this case, the set of undominated strategies is a subset of the set of ε-truthful

strategies, and we say that transfer scheme x (z, a) ε-implements g (z, a) in undominated

strategies.

3 Implementation with Public Information

We begin our analysis by assuming that the center’s information serves as a noisy signal of the

agents’ information, which departs from the Jehiel and Moldovanu (2001) model. By condition-

ing monetary transfers to the agents on this signal, the center can create incentives for truthful

revelation. Specifically, our informativeness assumption, which we call stochastic relevance, is
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that the conditional distribution of the center’s information be different for different values of each

agent’s private information.

Let f (z|ti) be the density of the center’s information conditional on agent i’s private informa-
tion, ti. Our assumptions on f (z|ti) , assumed to hold for each agent i, are:

Assumption 1: The conditional densities f (z|ti) are jointly continuous in z and ti.

Assumption 2 (Stochastic Relevance): The conditional densities f (z|ti) differ for different
values of ti in the sense that for any distinct types ti and t0i there exists a ẑ in the interior of Z

such that f (ẑ|ti) 6= f (ẑ|t0i) .

Taken together, continuity and stochastic relevance imply that f (z|ti) and f (z|t0i) differ on an
open subset of Z and that f (z|ti) and f (z|t0i) are close together (as functions) if and only if ti is
close to t0i.

Our final regularity assumption is:

Assumption 3 (Bounded Direct Returns): There exists M ≥ 0 such that for all i, ti and a,

|E {vi (z, t, a) |ti}| ≤M .

The mechanism we propose draws on the decision-theoretic literature on proper scoring func-

tions. The essence of the result is that if it weren’t for the direct returns part of an agent’s utility,

a transfer scheme that paid him according to the log-likelihood of the center’s information would

induce him to truthfully reveal his private information.

Lemma 1: Truthful revelation uniquely maximizes the expected log-likelihood function:13

ti = arg max
ai∈Ti

Ez (ln f (z|ai) |ti) .

Proof of Lemma 1: Ez (ln f (z|ai) |ti) =
R
(ln f (z|ai)) f (z|ti) dz. Since f (z|ai) is continuous on

compact Z, this expectation is bounded above. Ez (ln f (z|ti) |ti) is bounded below since x lnx is
bounded below, and therefore Ez (ln f (z|ti) |ti) is finite. If Ez (ln f (z|ai) |ti) = −∞ for ai 6= ti,

13See also Lemma 3.1 in Johnson, Pratt, and Zeckhauser (1990).
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the Lemma is true. For any ai 6= ti such that Ez (ln f (z|ai) |ti) is finite,

Ez (ln f (z|ai) |ti)−Ez (ln f (z|ti) |ti) =

Z
(ln f (z|ai)− ln f (z|ti)) f (z|ti) dz

=

Z µ
ln
f (z|ai)
f (z|ti)

¶
f (z|ti) dz

< ln

Z
f (z|ai)
f (z|ti) f (z|ti) dz

= ln

Z
f (z|ai) dz = 0.

The inequality in the third line follows from Jensen’s inequality, strict concavity of the natural

logarithm, and stochastic relevance. ¥

Since Ez (ln f (z|a) |ti) is maximized at ti, a small change in ti has no first-order effect on the
transfer. However, since the direct returns function, vi (a, z, t), is not necessarily maximized at ti,

the agent may have an incentive to deviate from truth-telling to enjoy a personally superior social

alternative. Because the center is only able to manipulate agents’ incentives through its choice of

the transfer function, it will generally not be able to induce the agents to truthfully reveal their

multidimensional types.14 However, since the agents’ direct returns from deception are bounded by

Assumption 3, the center can pay each agent a large multiple of a log-likelihood payment, swamping

the gains from any report that is not arbitrarily close to the truth. The following theorem shows

that such a scheme ε-implements any decision rule in undominated strategies and can do so using

a balanced transfer scheme.

Theorem 1: Under Assumptions 1 - 3, for any decision rule there exists a balanced transfer

scheme that ε-implements that decision rule in undominated strategies.

Proof of Theorem: We begin by constructing transfer functions that make ε-deceptions domi-

nated. Later, we ensure the transfer functions are balanced.

Let T 0i = {(ti, ai) ∈ Ti × Ti : ||ti − ai|| ≥ ε}. Note that T 0i is compact and consists of all pairs

(ti, ai) that cannot be ε-truthful.

For K > 0, let

xiK (z, ai) = max {−K, ln f (z|ai)} . (3)

14Jehiel and Moldovanu (2001) show in the case of independent, mutually-payoff relevant private information that

it is only possible to elicit agents’ types if a certain integrability condition is satisfied, and that when agents’ types

are truly multidimensional this condition is satisfied only non-generically.
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Function xiK (z, ai) is a lower truncation of a log-likelihood proper scoring function.

Step 1: For δ > 0 sufficiently small, there exists K sufficiently large that for any i and (ti, ai) ∈ T 0i ,

E {xiK (z, ai) |ti} ≤ E {xiK (z, ti) |ti}− δ. (4)

Proof of Step 1: Let LiKi (ti, ai) = E {xiKi (z, ai) |ti} and Li (ti, ai) = E {ln f (z|ai) |ti}. By

Lemma 1,

Li (ti, ti) > Li (ti, ai) .

Let δi < max
(ti,ai)∈T 0i

(Li (ti, ti)− Li (ti, ai)) and δ ≤ mini δi. Since LiKi (ti, ai) is a lower truncation of

Li (ti, ai),

lim
Ki→∞

LiKi (ti, ai) = Li (ti, ai) .

Therefore, by compactness of T 0i , there exists a uniform Ki such that (4) holds for all (ai, ti) ∈ T 0i .
Let K ≥ maxiKi. Q.E.D., Step 1.

Choose δ so small and K so large that (4) holds for all i. Let

x∗i (z, ai) = (2M + 1)
[xiK (z, ai) +K]

δ
. (5)

Step 2: If agent i is paid according to x∗i (z, ai) , ε-deceptions are dominated.

Proof of Step 2: Consider the expected utility reaped by a truthful announcement as compared

to announcing ai with (ti, ai) ∈ T 0i .

E {vi (z, t, a−i, ai) + x∗i (z, ai) |ti}−E {vi (z, t, a−i, ti) + x∗i (z, ti) |ti}
= E {vi (z, t, a−i, ai)− vi (z, t, a−i, ti) |ti}+E {x∗i (z, ai)− x∗i (z, ti) |ti}
< 2M + (2M + 1)

·
[xiK (z, ai) +K]

δ
− [xiK (z, ti) +K]

δ

¸
< 2M + (2M + 1)

·
−δ
δ

¸
< 0.

Payment scheme x∗i (z, ai)makes ε-deceptions dominated. Notice that x
∗
i (z, ai) does not depend

on a−i. This leaves us significant leeway to balance the budget using the dependence of the

full transfer scheme on other players’ announcements. If, given a−ij , the transfer to player i,

9



xi (z, a−ij , aj , ai), is independent of aj , then player j can pay the transfer to player i without

affecting j0s incentives. Q.E.D., Step 2.

To balance the budget, let p : N → N be a permutation of the agents with no fixed points with

the interpretation that agent i pays transfers to agent p (i). Let

xi (z, a) = x
∗
i (z, ai)− x∗p(i)

¡
z, ap(i)

¢
. (6)

Transfer scheme xi (z, a) makes ε-deceptions dominated and balances the budget. ¥

Log-likelihood payment schemes potentially impose arbitrarily large negative penalties on the

agents, an infeasible mechanism given agents’ finite resources. Step 1 of the proof ensures that

there is some truncation of the log-likelihood payment scheme that distinguishes between ti and ai

when ai is not ε-truthful. By adding a constant to the truncated scheme, we can provide the same

incentives using rewards instead of penalties, as we do in this construction. Of course, since our

transfer scheme is balanced, these rewards must be funded by the other agents, and so if agents’

have limited resources available, this may impair the center’s ability to ε-implement certain decision

rules. We return to this issue in Section 5.2.

Theorem 1 shows that, for any decision rule, a transfer scheme can be constructed that induces

announcements that are arbitrarily close to truthful, provided the center’s information is stochas-

tically relevant.15 The argument we have presented does not depend on continuity of the agents’

payoff functions in their announcements. Consequently, it applies even when the decision rule is

not continuous and small changes in agents’ announcements lead to large changes in the social de-

cision. Discontinuities such as these arise whenever the center’s decision involves whether or not to

provide a certain good or service, or which of several alternative programs to adopt. Prototypical

examples involve whether or not to build a bridge, or which of three locations should be chosen for

a new library branch.

Consider the bridge problem. If the government wishes to maximize aggregate welfare, it will

build the bridge if and only if the increase in aggregate direct returns from building the bridge are

greater than its construction cost. The log-likelihood payment scheme induces agents to report

values arbitrarily close to, but not necessarily equal to, their true values. It is therefore possible

15Matsushima (1990) and Aoyagi (1998) also consider the case of public information, and so Theorem 1 and the

other results of this section can be seen as extending Aoyagi (1998) and Matsushima (1990) to the continuous case.
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that an agent who does not want the bridge may underreport his value, and that this deception

will result in the bridge not being built even though it is socially desirable to do so. Consequently,

individual agents may experience large changes in their utilities. However, for the small deception

to influence the center’s decision in this way, it must be that the aggregate welfare with and without

the bridge is nearly equal. Thus while particular individuals may experience large changes in utility,

the change in aggregate welfare will be small.

As we show in Corollary 1 below, this intuition extends beyond the binary outcome case.

Whenever the center implements an efficient decision rule, small changes in announcements lead

to small changes in aggregate welfare, even though some individuals may experience large changes

in direct returns. The reason is that if g (z, t) is an efficient decision rule, maximized aggregate

welfare V (z, t) is continuous by Berge’s maximum theorem (see Takayama, 1985, p 254) even if

g (z, t) , itself, is not continuous. This feature, combined with continuity of v∗i (z, t, g) in t, implies

that the loss in aggregate welfare due to small deceptions is small.

Corollary 1: For any δ > 0, there exist balanced transfers such that for every (z, t), every vector

of undominated strategies a∗ (t) satisfies:¯̄̄
V (z, t)−

X
v∗i (z, t, g (z, a

∗ (t)))
¯̄̄
< δ.

Proof of Corollary 1: Use the transfers specified in the proof of Theorem 1. For fixed (z, t),

let a∗ be a generic vector of undominated announcements. Note that¯̄̄
V (z, t)−

X
v∗i (z, t, g (z, a

∗))
¯̄̄

< |V (z, t)− V (z, a∗)|+
¯̄̄
V (z, a∗)−

X
v∗i (z, t, g (z, a

∗))
¯̄̄
. (7)

Since V (z, t) is continuous and Z and Ti are compact, V (z, t) is uniformly continuous.16 Similarly,P
v∗i (z, t, g (z, a

∗)) is uniformly continuous in t and V (z, a∗) =
P
vi (z, a

∗, g (z, a∗)) . Therefore,

there exists ε̂ > 0 such that ||a∗ − t|| < ε̂ implies each of the differences in (7) is made smaller than

δ
2 . Constructing transfers as in (5) and (6) with ε = ε̂

N ensures that all undominated strategies

satisfy ||a∗i − ti|| < ε̂
N and hence that ||a∗ − t|| < ε̂, which completes the proof.¥

16See, for example, Marsden and Hoffman (1993).
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3.1 Continuous Direct Returns

Theorem 1 holds quite generally. In particular, Theorem 1 does not require continuity of v∗i (z, t, g)

in any of its arguments.17 However, while at this level of generality we are able to characterize the

set of undominated strategies, without further structure on agents’ payoff functions we are unable

to characterize the game’s Bayesian-Nash equilibria. In this section, we show that if we impose the

additional assumption that agents’ payoffs are continuous in their announcements, then balanced

log-likelihood transfers that ensure that all Bayesian-Nash equilibria of the game are ε-truthful

can be constructed.18 Theorem 2 shows that balanced log-likelihood transfers can be constructed

under which truthful revelation is an ε-dominant strategy. Corollaries 2 and 3 then establish

that balanced log-likelihood payments can be constructed under which an ε-truthful Bayes-Nash

equilibrium of the game exists, all Bayes-Nash equilibria of the game are ε-truthful, and realized

social outcomes are arbitrarily close to those the center desires.

Since the log-likelihood transfers are continuous, the impact of requiring that payoffs be con-

tinuous in announcements is to demand that, given a decision rule, vi (z, t, a) = v∗i (z, t, g (z, a))

be continuous in a.19 Continuity of vi (z, t, a) ensures that the benefits to small deceptions are

uniformly small, since continuity of vi () in a on ×Ti (which is a compact set) implies uniform
continuity. Continuity of vi () in a generally requires that v∗i (t, z, g) be continuous in g and that

decision rule g (z, a) be continuous in a. The latter assumption would be reasonable if, for example,

the center is considering what kind of bridge to build (instead of whether to build one at all, as we

considered above).20

An announcement strategy, ai (ti), is ε-dominant if, given ε > 0, for every a0i and any a−i (t−i),

E
©
vi
¡
z, t, a−i (t−i) , a0i

¢
+ x∗i

¡
z, t, a−i (t−i) , a0i

¢ |tiª
− E {vi (z, t, a−i (t−i) , ai (ti)) + x∗i (z, t, a−i (t−i) , ai (ti)) |ti} ≤ ε.

That is, a strategy is ε-dominant if there is no strategy choice by the other players against which

some other strategy outperforms it by more than ε.
17Although we have assumed that v∗i (z, t, g) is continuous in t, Theorem 1 does not require this assumption.
18This additional structure is useful in the following section, which considers the case where agents types are

correlated but the center has no information of its own.
19This rules out discrete decisions such as whether or not to build a bridge.
20 In addition, for many discontinuous decision rules our mechanism can be used to realize a continuous approxi-

mation of the discontinuous rule (e.g., a rule that specifies the probability of building the bridge), with approximate

realization of the approximate decision rule coming arbitrarily close to realizing the true decision rule.
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Theorem 2: Suppose f (z|ti) satisfies Assumptions 1 and 2 and direct returns functions vi (z, t, a)
are continuous in a. Then there exists a balanced transfer scheme under which truthful revelation

is an ε-dominant strategy for each i.

Proof of Theorem 2: Continuity of direct returns on compact ×Ti implies Assumption 3.
Therefore, for any ε∗ > 0, we can construct payments according to (3) and (5) in the proof

of Theorem 1 such that truthful revelation dominates any announcement with ||ai − ti|| ≥ ε∗.

Without affecting incentives, payments can be balanced according to (6).

Continuity of vi (z, t, a) and xi (z, a) in a on compact×Ti imply that expected utility is uniformly
continuous in a. Hence for any ε > 0 there exists ε∗ such that for every i, a−i (t−i), and ti, if

||ai − ti|| < ε∗, then

E {vi (z, t, a−i (t−i) , ai) + x∗i (z, a−i (t−i) , ai) |ti}
− E {vi (z, t, a−i (t−i) , ti) + x∗i (z, a−i (t−i) , ti) |ti} < ε

Since by Claim 2 any announcement a0i with ||a0i − ti|| ≥ ε∗ is dominated by truthful revelation,

this completes the proof. ¥

Under the construction in Theorem 2, truthful revelation is arbitrarily close to being a dominant

strategy. However, truthful revelation need not be a best response to the strategies chosen by the

other players. Nevertheless, because payoffs are continuous, strategy sets are compact, and ε-

deceptions are dominated, the players’ best-response correspondences are well defined, and for any

ti the set of best responses for player i to opponents’ strategies a−i (t−i) must be ε-truthful. This

allows us to characterize the set of Bayes-Nash equilibria under the log-likelihood transfer scheme.

An announcement vector a (t) is a Bayes-Nash equilibrium given transfer scheme

x (z, a) if for each i, ti, and a0i :

E {vi (z, t, a−i (t−i) , ai (ti)) + x∗i (z, a−i, ai (ti)) |ti}
≥ E

©
vi
¡
z, t, a−i (t−i) , a0i

¢
+ x∗i

¡
z, a−i (t−i) , a0i

¢ |tiª .
Corollary 2: Suppose f (z|ti) satisfies Assumptions 1 and 2 and direct returns functions vi (z, t, a)
are continuous in a and quasiconcave in ai. There exists a balanced transfer scheme under which:

i) There is a pure strategy Bayes-Nash equilibrium in which agents play ε-truthful strategies.
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ii) In any pure-strategy Bayes-Nash equilibrium all players play ε-truthful strategies.

Proof of Corollary 2: Assumption 3 follows from the continuity of vi (z, t, a) on compact ×Ti.
Use the transfers specified in (3), (5) and (6). Existence is standard in this game since strategy

sets are compact, convex, non-empty subsets of Euclidean space and payoffs are continuous in a

and quasiconcave in ai. See Fudenberg and Tirole, 1993, Theorem 1.2. Part ii) follows from

constructing transfers that make announcements that are not ε-truthful strictly dominated for

agent i, and noting that in any Nash equilibrium, no strictly dominated strategy is played with

positive probability. ¥

Corollary 2 establishes that a Bayes-Nash equilibrium exists under the log-likelihood transfer

scheme and that the transfer scheme can be constructed to make all Bayes-Nash equilibria ε-

truthful. Corollary 3 continues to exploit continuity in order to establish that given a decision

rule, balanced log-likelihood transfers can be constructed under which the outcomes realized in any

Bayes-Nash equilibrium of the mechanism are arbitrarily close to those dictated by the decision

rule.

Corollary 3: Suppose f (z|ti) satisfies Assumptions 1 and 2. Let g (z, a) be continuous in a,

and suppose direct returns functions v∗i (z, t, g (z, a)) are continuous in a and quasiconcave in ai.

For any ε̂ > 0 there exists a balanced transfer scheme under which every Bayes-Nash equilibrium

strategy a∗ (t) satisfies for every (z, t) :

i) ||g (z, a∗ (t))− g (z, t)|| < ε̂, and

ii) |P v∗i (z, t, g (z, a
∗ (t)))−P v∗i (z, t, g (z, t))| < ε̂.

Proof of Corollary 3: Continuity of vi (z, t, g) and g (z, t) on compact set ×Ti implies uniform
continuity and Assumption 3. By uniform continuity, the transfers specified in (3), (5), and (6)

can be constructed so that i) holds and |v∗i (z, t, g (z, a∗ (t)))− v∗i (z, t, g (z, t))| < ε̂
N for each i, from

which part ii) follows. ¥

Before continuing, a few comments about Corollaries 1, 2, and 3 are in order. First, Corollary

3 holds for any decision rule, whereas Corollary 1 is a similar result that holds only for efficient

decision rules. The difference is that, in the absence of continuity in announcements, Corollary 1

relies on the theorem of the maximum to ensure that changes in aggregate welfare are small, and
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the theorem of the maximum only applies if the decision rule is the solution to some optimization

problem.21 Corollary 3 assumes continuity in announcements directly, and derives a stronger

result. Second, the assumption of quasiconcavity in Corollaries 2 and 3 can be relaxed. If all

assumptions but quasiconcavity are satisfied, the results continue to hold, but the equilibria may

be in mixed strategies (see Fudenberg and Tirole, 1993, Theorem 1.3 for existence). In this case,

ai (ti) are interpreted as referring to probability distributions over Ti, and the statements apply to

almost all announcements in the support of these mixed strategies.

4 Implementation with Correlated Types

The implementation results we have presented so far employ a multiple of log-likelihood payments

to overwhelm the direct returns to distortion. For a large enough multiple, the agent cares almost

exclusively about the transfers rather than about direct returns, and this induces him to make

a nearly truthful announcement. The same technique can be applied when the center gets no

information (or the center’s information is independent of the agents’), but the distribution of

agents’ j 6= i types conditional on agent i’s type satisfies Assumption 1 and a version of stochastic
relevance adapted to the present context (defined below). In this case, we can show that if the direct

returns to player i vary continuously with his announcement, then there exist transfer schemes that

make truthful revelation by every player a Bayesian ε-equilibrium.

For this section, we assume that the center gets no private signal and we omit argument z from

the direct returns and transfer functions. We investigate instead how the center may use other

agents’ announcements to police agent i when types are stochastically related.

We begin by defining Bayesian ε-equilibrium. Suppose that players j 6= i use announcement

strategies a−i (t−i). Given ε > 0, announcement ai (ti) is an ε-best response for player i to

a−i (t−i) given transfer functions xi (a) if for all ti and âi ∈ Ti:

E {vi (t, a−i (t−i) , ai (ti)) + x∗i (a−i (t−i) , ai (ti)) |ti}
≥ E {vi (t, a−i (t−i) , âi) + x∗i (a−i (t−i) , âi) |ti}− ε. (8)

That is, ai (ti) is an ε-best response if no other strategy outperforms it by more than ε. A vector of

announcement strategies, ai (ti), comprises a Bayesian ε-equilibrium given transfer scheme
21 Indeed, a version of Corollary 1 would hold whenever g (z, a) is derived as the solution to some optimization

problem, not just the aggregate welfare maximization problem.
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x (a) if (8) is satisfied for each i. Truthful revelation is a Bayesian ε-equilibrium given x (a) if (8)

is satisfied for each i when aj (tj) = tj for all j.

In Theorems 1 and 2, agents’ announcements did not affect the center’s information. In the

next result, the center receives no signal of its own, but uses the announcements of players j 6= i
in order to induce truthful revelation by player i. To balance the budget we assign a player i∗ to

pay the truth-inducing transfers to player i. The following strengthening of Assumption 2 ensures

that this can be done without altering the incentives provided to player i∗.

Assumption 4: Suppose N ≥ 3. For each i, there exists an agent q (i) 6= i such that f ¡t−iq(i)|ti¢
satisfies the stochastic relevance property. That is, for any distinct types ti and t0i there exists

t−iq(i) such that:

f
¡
t−iq(i)|ti

¢ 6= f ¡t−iq(i)|t0i¢ .
Agent q (i) is the agent who will balance the budget with respect to agent i. In order to provide

incentives to agent i, agent i will be asked to predict the distribution of t−iq(i), the reports of all

agents other than i and q (i). The need for at least one such agent leads to the requirement that

N ≥ 3. It need not be the case that q (i) is distinct for each i. Further, Assumption 4 is satisfied
if, for each agent i, there is another agent whose type is stochastically relevant for agent i’s type.

Theorem 3: Suppose f (·|ti) satisfies Assumptions 1 and 4. If vi (t, a) are continuous in a, then
there exist transfers that make truthful revelation by each player a Bayesian ε-equilibrium.

Proof of Theorem 3: The proof follows the proof of Theorem 2. Assumption 3 follows from

continuity of vi (t, a) in a on compact ×Ti. Let a∗i (a−i (t−i) , ti) denote player i’s best response to
strategies a−i (t−i) given ti. Suppose players j 6= i announce truthfully: a−i (t−i) = t−i. Choose

q (i) according to Assumption 4. For each i, let zi = a−iq(i)
¡
t−iq(i)

¢
= t−iq(i) play the role of z in

(3), (5), and (6). The arguments in Claims 1 and 2 show that for any ε∗ > 0, transfers can be

constructed so that any strategy ai (ti) that satisfies ||ai (ti)− ti|| ≥ ε∗ for some ti is dominated by

one that reveals truthfully, conditional on ti = ti.

As in the proof of Theorem 2, since direct returns and transfers are continuous in a on compact

×Ti, each agent’s expected utility is uniformly continuous in a. Therefore, for any ε > 0 there

exists ε∗ > 0 such that if ||ai − ti|| < ε∗ then
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E {vi (t, t−i, ai) + x∗i (t−i, ai) |ti}−E {vi (t, t−i, ti) + x∗i (t−i, ti) |ti} < ε.

Hence truthful revelation is an ε-best response, provided that all other players announce truthfully.

Since i was chosen arbitrarily, truthful revelation is a Bayesian ε-equilibrium. Budget balance

follows from the same construction used in the proof of Theorem 1: agent j pays transfers to any

agent i for which j = q (i). By construction, these transfers do not depend on j’s announcement.

¥

Assumption 4 is essentially the same as Assumption 2 in Aoyagi (1998). As Aoyagi notes in the

finite case, Assumption 2 is stronger than the d’Aspremont-Gérard-Varet (1979,1982) compatibility

condition since compatibility can be satisfied by independent types. However, d’AGV compati-

bility applies to efficient decision rules when payoffs are not mutually payoff-relevant. Aoyagi’s

Assumption 2 applies to any decision rule when payoffs may be mutually payoff-relevant, although

unlike in the present paper, Aoyagi’s results are restricted to the finite-type case.

Aoyagi observes as well that the general relation between Stochastic Relevance, his Assump-

tion 2, and d’AGV Compatibility is likely to be quite complex, and we are more concerned with

demonstrating the robustness of our log-likelihood construction than with pinpointing necessary

conditions for (approximate) incentive compatibility. However, it is worth noting that Jehiel and

Moldovanu (2001) shows that incentive compatibility is generically impossible when types are in-

dependent, and Assumption 4 is a very weak form of dependence. Hence if Assumption 4 is not

necessary, the necessary condition must fall between independence and stochastic relevance, and it

is unclear to us whether the space between these two concepts is economically meaningful.

5 Extensions

As should be clear from the constructions in Theorems 1 and 3, the scoring-rule based approach

to implementation is very robust; very little structure is needed to ensure implemetability. In this

section, we illustrate how the basic mechanism can be extended to address cases where agents fact

ex ante participation constraints, interim participation constraints, or limited liability constraints.

We also discuss how our techniques can be extended to the case considered by Johnson, Pratt, and

Zeckhauser (1990, henceforth JPZ), in which agents may take costly actions in addition to making

announcements. To better match the literature on Bayesian mechanism design, we present the
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extensions in the environment where the center does not receive a signal but the agents’ types

satisfy stochastic relevance.

5.1 Ex Ante Participation Constraints

We begin by considering the case where each agent must expect to break even ex ante. Because our

mechanism balances for each realization of agents’ types, this requirement poses little additional

challenge. For fixed decision rule g (a), we assume that ex ante expected surplus is positive, i.e.,

that, assuming that agents announce truthfully, the project is expected to be worthwhile:

Et

ÃX
i

v∗i (t, g (t))

!
≥ 0.

Let xi (t) be defined as in the proof of Theorem 3. Under these transfers, truthful reporting is a

Bayesian ε-equilibrium. Agent i’s ex ante expected utility is:

ki ≡ Et (v∗i (t, g (t)) + xi (t)) .

Suppose that, prior to participating in the mechanism, each agent is charged participation fee

ki −
PN
j=1 kj
N . Since this fee does not depend on the agents’ announcements, truthful revelation

remains an Bayesian ε-equilibrium. Ex ante expected utility for agent i is then:

Et (v
∗
i (t, g (t)) + xi (t))− ki +

PN
j=1 kj

N

=

PN
j=1 kj

N
=

PN
j=1

N
Etv

∗
j (t, g (t)) ≥ 0.

Hence the ex ante participation constraint is satisfied for each agent.

5.2 Interim Participation Constraints, Full Surplus Extraction, and Limited

Liability

McAfee and Reny (1992) show that when agents’ types are correlated, for any game the center can

extract from each agent nearly all of the rents that agent earns by participating in the game. To

summarize their mechanism, let πi (ti) be the expected rent earned by agent i when his type is ti.

If πi (ti) is continuous, then, when agents’ types are correlated, it is possible to choose a finite set

of participation fee schedules z1 (t) , ..., zM (t) such that

0 ≤ πi (ti)− min
1≤m≤M

Z
zm (t−i) f (t−i|ti) dt−i < ε
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for each ti ∈ Ti.22 If the center offers the agent a choice among the M fee schedules before the

subsequent game is played, and if for each ti agent i chooses the schedule zm (t) that maximizes his

expected surplus and that choice is not used in the subsequent game, then by offering the agent

this menu of fee schedules the center can extract all of the agent’s rents and can also ensure that

the agent’s expected rent from participating in the mechanism is non-negative, i.e., that interim

participation constraints can be satisfied.

While McAfee and Reny (1992) show that for a given game, a participation fee schedule can

ensure that agents’ interim participation constraints can be satisfied at (nearly) no cost to the

center, they do not address the question of whether, for a given decision rule, a game exists that

implements that decision rule. In particular, the center cannot extract the full information rent

(i.e., the rent that would be generated if the center could observe agents’ types and make ex post

efficient decision) unless there exists a mechanism that implements the ex post efficient decision

rule. Prior to this paper, there have been no results that show, in general, that such a mechanism

exists when agents have multidimensional, continuous types and interdependent valuations.

We show that if agents’ types are correlated, then any decision rule can be implemented arbi-

trarily closely. This, coupled with the McAfee-Reny result, establishes that the center can extract

the full information rent and satisfy agents’ interim participation constraints by first offering agents

a menu of participation fees and then running our scoring-rule based system.

One of the criticisms of the correlated-mechanism-design literature is that the mechanisms rely

on payments that become very large as agents’ types become “nearly independent,” and therefore

become problematic if agents have limited resources. While this remains true in the present case,

this problem can also be addressed by coupling our mechanism with the McAfee-Reny mechanism.

In particular, suppose that instead of having agents pay other agents to balance the mechanism,

we instead had the center make all incentive payments to the agents. In this case, the ability to

implement a particular decision rule would not depend on agents’ limited resources. Although

such payments would result in rents being transferred to the agents, a menu of McAfee-Reny-style

participation fees could extract this surplus without violating agents’ participation constraints.

22See McAfee and Reny (1992), equation 1.2. Since stochastic relevance and Lemma 1 imply that for every ti

there is a function of all agents’ types taking a unique minimum at ti, stochastic relevance is sufficient for full surplus

extraction (see Remark 2, p. 406).
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5.3 Costly Actions by Agents

Our analysis also extends readily to the environment considered in JPZ, in which, in addition to

sending messages, agents may also take actions before the center acts that affect the welfare of

all agents. The informational requirements are unchanged. Either the center must receive a

stochastically relevant signal of agents’ types or else for each agent there is stochastic relevance for

the actions of at least one other agent. If either requirement is satisfied, the center may employ

log-likelihood payments to extract the agents’ private information and then use that information

to create ex post incentives that align the agents’ uncoordinated actions with the desired decision

rule.

The simplest case of costly actions arises when there are costs associated with sending the

messages themselves. Formally, this situation could be modeled by letting the agents’ direct

returns functions depend on the agents’ messages directly, as in vi(z, t, g, a). If direct returns are

bounded, the arguments of Theorems 1, 2, and 3 go through essentially unmodified. However, in

adopting this approach, applying the revelation principal incurs some loss of generality, since doing

so restricts the agent’s action space to be identical to his type space.

Our results also extend to two cases in which agents may take costly, uncoordinated actions,

distinct from the messages they send. The first corresponds to JPZ’s “responsive actions” en-

vironment, in which there is a one-to-one relationship between agents’ types and desired actions.

In this case, actions can be used as messages and our implementation results follow. The second

corresponds to the case in which the center desires more than one type of agent to take the same

action. In this case, the space of observed actions is not rich enough to identify agents’s types. Our

implementation results once again follow, but in this case the agents’ actions must be augmented

with additional messages to the center.23

6 Conclusion

This paper extends the mechanism design literature to show the possibility of implementing prac-

tically any decision rule when agents’ types are continuous, multidimensional, and mutually payoff

relevant, provided that either the center receives an informative signal of agents’ types or agents’

types are correlated. Thus we provide a converse to Jehiel and Moldovanu (2001), who show that if

23For the sake of brevity, we relegate the formal statement and proofs of these claims to the Appendix.
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agents’ types are independent, then efficient design is generically not possible in this environment.

Further, we complement the analysis of McAfee and Reny (1992) by showing that there is an ex

post efficient mechanism in the multidimensional, continuous, mutually payoff-relevant case.

The scoring-rule based approach we adopt has the advantage of being simpler than those com-

monly adopted in the mechanism design literature. Stochastic relevance requires verifying only

that distributions are different for different types, which is substantially easier than verifying the

compatibility condition of d’Aspremont and Gérard-Varet (1979; 1982), the linear independence

condition of Crémer and McLean (1985; 1988), or the generalization of the Crémer-McLean condi-

tion found in McAfee and Reny (1992), which must hold for all prior distributions for each agent’s

type. In addition to being simpler, stochastic relevance is also slightly weaker than these condi-

tions. The log-likelihood payments used in our mechanism are also relatively simple to construct

and our proof provides a blueprint for doing so. This is in contrast to the approach adopted by

other authors, who generally prove the existence of a mechanism but provide little guidance as to

how it should be constructed.24

Another advantage of our approach is that it is robust. We address the problem of implementing

decision rules when agents’ types are continuous, multidimensional, and mutually payoff-relevant

because this problem has not been previously solved and presents the greatest technical challenge.

However, our methods would also apply to the case of finite types. In addition our methods

extend well beyond the traditional mechanism design problem. For example, as illustrated in the

Appendix, our techniques can also be applied to the case when, in addition to having mutually

payoff-relevant private information, agents may also take actions which themselves may create real

externalities.
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A Costly Actions by Agents

Thusfar we have framed this paper in the style of the mechanism design literature and presented

the results as complementing the Jehiel and Moldovanu (2001) impossibility results. However, our

analysis extends readily to the substantially more general environment considered in JPZ. Hence,

the present work can also be seen as extending JPZ to the continuous case.

In the standard mechanism design problem, agents’ merely send messages that have no direct

effect on their payoffs. It is only through the center’s decision rule that an agent’s announcement

affects his payoff. While in many circumstances, such as auctions, this is natural, there are many

collective decision problems in which, before the center acts, an agent takes actions that affect his

own welfare and possibly that of others.

To illustrate, consider a group of firms who are polluting some resource. Their actions affect

each other, i.e., convey the usual negative externality. Beyond this, the members will be subject

to government regulation that is crafted in response to information gleaned from the polluters.

Each polluter knows more than his peers or the regulator about the composition of his discharges,

and hence the magnitude of their consequences for others. In such cases, each agent will have an

incentive to take actions and send messages that influence the social alternative chosen, e.g., to

dump excessively to make it appear that it will be expensive for him to cut back, securing him

greater leeway under regulation. Such are the nature of the problems considered by JPZ, although

they deal with finitely many types.

Our log-likelihood mechanism can perform effectively in cases where, beyond eliciting honest

revelation of types, agents’ costly actions must also be appropriately aligned. The informational

requirements are unchanged. Either the center must receive a stochastically relevant signal of

agents’ types or else for each agent there is stochastic relevance from the actions of at least one

other agent. If either requirement is satisfied, the center may employ log-likelihood payments to

extract the agents’ private information and then use that information to create ex post incentives

that align the agents’ uncoordinated actions agree with the desired decision rule.25 Thus, in the

preceding example, the regulatory authority would anticipate the exaggerated dumping, and would

make the incentives sufficiently strong that each would dump as he would in a fully coordinated

25The actions are uncoordinated in the sense that agents choose them before the center acts. Each agent bases his

action choice on his private information only, and while the center may provide incentives for such actions, it cannot

directly control or coordinate them.
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game.

The simplest case of costly actions arises when there are costs associated with sending the

messages themselves. Formally, this situation could be modeled by letting the agents’ direct

returns functions depend on the agents’ messages directly, as in vi(z, t, g, a). If direct returns are

bounded, the arguments of Theorems 1, 2, and 3 go through essentially unmodified. However, in

adopting this approach, applying the revelation principal incurs some loss of generality, since doing

so restricts the agent’s action space to be identical to its type space. While this is sometimes a

reasonable restriction (see Theorem 4 below), often it is not. Nevertheless, the intuition behind

our main results is still relevant. When direct returns are bounded, log-likelihood payments can

induce agents to make nearly truthful announcements, even when the act of announcing is costly.

To further explore the connection between our present work in the continuous case and JPZ, we

now consider two cases in which agents may take costly, uncoordinated actions, distinct from the

messages they send. The first corresponds to JPZ’s “responsive actions” environment, in which

there is a one-to-one relationship between agents’ types and desired actions. In this case, actions

can be used as messages and our implementation results follow. The second corresponds to the

case in which the center desires more than one type of agent to take the same action. In this case,

the space of observed actions is not rich enough to identify agents’s types. Our implementation

results once again follow, but in this case the agents’ actions must be augmented with additional

messages to the center.

Since the construction in Theorem 1 is the driving force behind all results, for the sake of brevity

we present in this section analogues to Theorem 1 for each of the two cases under consideration.

Extensions of the other results to these cases follow the constructions in the earlier part of the

paper.

We begin by defining additional notation. Let Bi be the set of actions available to agent i,

and let bi be a typical element of that set. Thus, for example, Bi may be all the possible ways a

polluter can dump its waste prior to being regulated. Importantly, we do not require that Bi be of

the same dimension as agent i’s type space, Ti. Actions may be more or less complex than types.

Let b = (b1, ..., bN ) refer to the vector of actions taken by all agents. In order to account for the

mutually payoff-relevant direct returns from these actions, we integrate them into agents’ direct

returns functions and write v∗i (z, t, g, b). Since the center observes b before making its decision,

a decision rule may now also depend on b. Let such a decision rule be written as g (z, t, b).
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Assumption 30 extends the bounded returns assumption to this case.

Assumption 30 : There exists M ≥ 0 such that for all i, ti, g, and b,

|E {v∗i (z, t, g, b) |ti}| ≤M .

In addition to its decision rule, the center must now also consider the agents’ uncoordinated

actions. Each agent chooses bi knowing only ti. Let bi (ti) denote this dependence. Let b (t) =

(b1 (t1) , ..., bN (tN )) denote action rules for each agent.

We begin with the simplest case. Following JPZ, we say an action rule is responsive if for each

i, bi (ti) = bi
³
t
0
i

´
⇒ ti = t

0
i. That is, an action rule is responsive if different types choose different

actions. If responsiveness holds, then an agent’s action choice is effectively an announcement of a

type. If direct returns are bounded, log-likelihood payments can be used to induce the agent to

choose an action for which the associated type is arbitrarily close to his true type.

Define the inverse action function ρi (bi) as follows:

ρi (bi) =

 b−1i (bi) if bi (ti) = bi for some ti ∈ Ti
t∗ otherwise

,

where t∗ is chosen so that ||t∗ − ti|| ≥ T , where T = max ||ti − t0i|| for all i,and ti and t0i ∈ Ti. Such
an t∗ exists by compactness of Ti. The idea is that taking an action that should not be taken by

any type of agent given action rule bi (ti) is interpreted as “announcing” a type that is far from

every ti ∈ Ti.
Suppose the center employs the following mechanism. Before play, it announces decision

rule g (z, b), desired action rule b (t) and transfer scheme x (z, b). After observing their types,

agents choose actions bi. The center then implements decision g (z, b) and makes transfers x (z, b).

Following the definition of ε-truthful undominated strategies in section 2, we say that action bi is

an ε-truthful action given bi (ti) if ||ρi (bi)− ti|| < ε when the agent’s true type is ti. An action

is ε-deceptive given bi (ti) if ||ρi (bi)− ti|| ≥ ε. We say that ε-deceptive actions are dominated for

player i given bi (ti) if for every ti and b0i such that ||ρi (b0i)− ti|| ≥ ε there exists an action b̂i (b0i, ti)

such that
¯̄̄¯̄̄
ρi

³
b̂i (b

0
i, ti)

´
− ti

¯̄̄¯̄̄
< ε and for all t−i and b−i:
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That is, ε-deceptive actions are dominated if, given the action rule, for any ε-deceptive action

there is an ε-truthful action that dominates it. When ε-deceptive actions are dominated for each

player, we say that the transfer scheme ε-implements the decision and action rules in undominated

strategies.

Theorem 4: Under Assumptions 1, 2, and 3 0, for any decision rule and responsive action rule

there exists a balanced transfer scheme that ε-implements them in undominated strategies.

Proof of Theorem 4: Given responsiveness, the decision rule g (z, b) can be written ĝ (z, a), where

ai = ρi (bi). Treat action bi as if the agent announced ai = ρi (bi) and apply the construction

in Theorem 1. Transfers satisfying (3), (5), and (6) are balanced and ε-implement ĝ (z, a) in

undominated strategies, which is equivalent to ε-implementing g (z, b) and b (t) in undominated

strategies.

The responsive case is straightforward. Since agents types are encoded in their actions, actions

effectively announce types. Thus we are able to apply the revelation principle after translating

agents actions into the corresponding types according to the announced action rule. As in our

earlier analysis, continuity is a concern. If b (t) is not continuous, then nearby types may be

asked to choose very different actions, and small deceptions may lead to large changes in individual

payoffs. Nevertheless, if the center chooses b (t) and g (z, a, b) to maximize expected aggregate

direct returns, then the analogue to Corollary 1 shows that changes in expected aggregate direct

return will be small, even if some individuals experience large changes in their direct returns.26

When the center’s desired decision rule is not responsive, then actions no longer act to announce

types. Nevertheless, implementation remains possible using additional messages. As long as the

center receives a stochastically relevant signal, it can induce agents to announce their types with

arbitrary precision. Once the center has gleaned this information, it is a simple matter to check

whether the action the agent has taken agrees with the type he has announced. Imposing a

sufficiently large penalty if action and announcement fail to agree ensures that the agent will

announce (nearly) truthfully and choose the action appropriate for his announcement.

26Since agents’ actions are chosen after learning ri but before the center acts, ex post efficiency is no longer the

appropriate efficiency concept. Rather, the center should choose g (z, r, b) and b (r) to maximize ex ante expected

direct returns.
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Since actions no longer provide sufficient information, we consider mechanisms where the center

announces a decision rule g (z, a, b), action rule b (t), and vector of transfer rules hi (z, a, b) that

depend on the center’s information and agents’ messages and actions. Agents send messages ai ∈ Ti
and choose actions bi ∈ Bi, following which the center implements the decision and makes transfers.

Given action rule bi () , we say that agent i’s action agrees with his announcement if bi = bi (ai) .

Since the center observes the agent’s announcement and action, it is straightforward to induce the

agent to choose them such that they agree. By Assumption 30, the maximum gain from choosing

a non-agreeing action is bounded by 2M . Therefore, penalizing the agent 2M if his action and

announcement do not agree ensures that any action-announcement pair that does not agree is

dominated by one that does.

Theorem 5: Under Assumptions 1, 2, and 30, for any decision rule and action rule there exists a

balanced transfer scheme that ε-implements the decision rule in undominated strategies and ensures

agents’ actions agree with their announcements.

Proof of Theorem 5: Transfers constructed according to (3), (5), and (6) are balanced and

ε-implement the decision rule in undominated strategies. To induce agreement, augment xi (z, a)

as follows. Let

s∗i (ai, bi) =

 0 if bi = bi (ai)

−2M otherwise
.

Let si (a, b) = s∗i (ai, bi) −
P
j 6=i

sj(aj ,bj)
N−1 . Given ai, balanced transfers si (a, b) ensure that agent i’s

announcement and action agree. Letting i’s total transfer be hi (z, a, b) = xi (z, a)+si (a, b) satisfies

both requirements of the theorem.27

Theorems 4 and 5 extend Theorem 1 to the continuous version of the problem considered in JPZ

and show that mutually-payoff relevant, multi-dimensional private information may be successfully

elicited and appropriate actions induced. Similar extensions can be developed for the remaining

results in Section 3. As in all results in this paper, the key lies in using log-likelihood transfers

to induce nearly truthful revelation. To the extent that the desired actions are responsive, the

center’s mechanism can use the actions themselves in lieu of messages, as in Theorem 4. If actions

27Note that in equilibrium agents choose actions that agree with their announcements and no penalties are assessed.
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are not responsive, then the center can be successful by adopting a different strategy, using log-

likelihood payments to induce nearly truthful revelation and then penalizing the agent if action

and announcement do not agree, as in Theorem 5. While the latter technique is always successful,

to the extent that actions are responsive the center may be able to reduce the complexity of the

mechanism by making use of the information they contain.
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