Harvard Kennedy School Harvard University

Search this site

logo
Faculty Research Working Paper Series
Maya Sen
Assistant Professor of Public Policy
phone: (617)495-8628
Explaining Causal Findings Without Bias: Detecting and Assessing Direct Effects
Acharya, Adivit, Matthew Blackwell, and Maya Sen. "Explaining Causal Findings Without Bias: Detecting and Assessing Direct Effects." HKS Faculty Research Working Paper Series RWP15-064, October 2015.
Abstract
Researchers seeking to establish causal relationships frequently control for variables on the purported causal pathway, checking whether the original treatment effect then disappears. Unfortunately, this common approach may lead to biased estimates. In this paper, we show that the bias can be avoided by focusing on a quantity of interest called the controlled direct effect. Under certain conditions, the controlled direct effect enables researchers to rule out competing explanations—an important objective for political scientists. To estimate the controlled direct effect without bias, we describe an easyto- implement estimation strategy from the biostatistics literature. We extend this approach by deriving a consistent variance estimator and demonstrating how to conduct a sensitivity analysis. Two examples—one on ethnic fractionalization’s effect on civil war and one on the impact of historical plough use on contemporary female political participation—illustrate the framework and methodology.
Attachment
pdf

 

 


Copyright © 2017 The President and Fellows of Harvard College